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A mathematical discipline is alive and well if it has many exciting open
problems of different levels of difficulty.

Vitali Bergelson [7]

1 Introduction

The general field in which the problems surveyed below arise is tradition-
ally called Selection Principles in Mathematics (SPM).1 It is at least as old as
Cantor’s works on the diagonalization argument. However, we concentrate on
the study of diagonalizations of covers of topological spaces (and their relations
to infinite combinatorics, Ramsey theory, infinite game theory, and function
spaces) since these are the parts of this quickly-growing field with which we are
more familiar. Example for an important area which is not covered here is that
of topological groups. For problems on these and many more problems in the

iPartially supported by the Golda Meir Fund and the Edmund Landau Center for Re-
search in Mathematical Analysis and Related Areas, sponsored by the Minerva Foundation
(Germany).

1Some other popular names are: Topological diagonalizations, infinite-combinatorial topol-
ogy.
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areas we do consider, the reader is referred to the papers cited in Scheepers’
survey paper [48]2.

Many mathematicians have worked in the past on specific instances of these
“topological diagonalizations”, but it was only in 1996 that Marion Scheepers’
paper [37] established a unified framework to study all of these sorts of diag-
onalizations. This pioneering work was soon followed by a stream of papers,
which seems to get stronger with time. A new field was born.

As always in mathematics, this systematic approach made it possible to
generalize and understand to a much deeper extent existing results, which were
classically proved using ad-hoc methods and ingenious arguments which were
re-invented for each specific question.

However, the flourishing of this field did not solve all problems. In fact, some
of the most fundamental questions remained open. Moreover, since Scheepers’
pioneering work, several new notions of covers where introduced into the frame-
work, and some new connections with other fields of mathematics were discov-
ered, which helped in solving some of the problems but introduced many new
ones.

In the sequel we try to introduce a substantial portion of those problems
which lie at the core of the field. All problems presented here are interesting
enough to justify publication when solved. However, we do not promise that all
solutions will be difficult – it could well be that we have overlooked a simple
solution (there are too many problems for us to be able to give each of them
the time it deserves). Please inform us of any solution3 you find or any problem
which you find important and which was not included here. It is our hope that
we will be able to publish a complementary survey of these in the future.

Much of the material presented here is borrowed (without further notice)
from the SPM Bulletin, a semi-monthly electronic bulletin dedicated to the
field [52, 53, 54, 55, 56, 57]. Announcements of solutions and other problems
sent to the author will be published in this bulletin: We urge the reader to
subscribe to the SPM Bulletin4 in order to remain up-to-date in this quickly
evolving field of mathematics.

We thank the organizing committee of the Lecce Workshop on Coverings,
Selections and Games in Topology (June 2002) for inviting this survey paper.

2Other topics which are very new, such as star selection principles and uniform selection
principles, are not covered here and the reader is referred to the other papers in this issue of
Note di Matematica for some information on these.

3See the new section Notes added in proof at the end of the paper for new results
obtained after the writing of the paper.

4E-mail us to get subscribed, free of charge.
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1.1 A note to the reader

The definitions always appear before the first problem requiring them, and
are not repeated later.

2 Basic notation and conventions

2.1 Selection principles

The following notation is due to Scheepers [37]. This notation can be used to
denote many properties which were considered in the classical literature under
various names (see Figure 1 below), and using it makes the analysis of the
relationships between these properties very convenient.

Let U and V be collections of covers of a space X. Following are selection
hypotheses which X might satisfy or not satisfy.5

S1(U,V): For each sequence {Un}n∈N of members of U, there is a sequence {Un}n∈N

such that for each n Un ∈ Un, and {Un}n∈N ∈ V.

Sfin(U,V): For each sequence {Un}n∈N of members of U, there is a sequence {Fn}n∈N

such that each Fn is a finite (possibly empty) subset of Un, and
⋃

n∈N
Fn ∈

V.

Ufin(U,V): For each sequence {Un}n∈N of members of U which do not contain a finite
subcover, there exists a sequence {Fn}n∈N such that for each n Fn is a
finite (possibly empty) subset of Un, and {∪Fn}n∈N ∈ V.

Clearly, S1(U,V) implies Sfin(U,V), and for the types of covers that we consider
here, Sfin(U,V) implies Ufin(U,V).

2.2 Stronger subcovers

The following prototype of many classical properties is called “U choose V”
in [59].

(
U
V

)
: For each U ∈ U there exists V ⊆ U such that V ∈ V.

Then Sfin(U,V) implies
(

U
V

)
.

5Often these hypotheses are identified with the class of all spaces satisfying them.
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2.3 The spaces considered

Many of the quoted results apply in the case that the spaces X in ques-
tion are Tychonoff, perfectly normal, or Lindelöf in all powers. However, unless
otherwise indicated, we consider spaces X which are (homeomorphic to) sets of
reals. This is the case, e.g., for any separable zero-dimensional metrizable space.

This significantly narrows our scope, but since we are interested in finding
good problems rather than proving general results, this may be viewed as a tool
to filter out problems arising from topologically-pathological examples. However,
most of the problems make sense in the general case and solutions in the general
setting are usually also of interest.

Part 1: Classical types of covers

3 Thick covers

In this paper, by cover we mean a nontrivial one, that is, U is a cover of X
if X = ∪U and X 6∈ U . U is:

(1) A large cover of X if each x ∈ X is contained in infinitely many members
of U ,

(2) An ω-cover of X if each finite subset of X is contained in some member
of U ; and

(3) A γ-cover of X if U is infinite, and each x ∈ X belongs to all but finitely
many members of U .

The large covers and the ω-covers are quite old. The term “γ-covers” was coined
in a relatively new paper [22] but this type of covers appears at least as early
as in [23].

Let O, Λ, Ω, and Γ denote the collections of open covers, open large covers,
ω-covers, and γ-covers of X, respectively. If we assume that X is a set of reals
(or a separable, zero-dimensional metric space), then we may assume that all
covers in these collections are countable [22, 58]. Similarly, let B,BΛ,BΩ,BΓ be
the corresponding countable Borel covers of X. Often the properties obtained
by applying S1, Sfin, or Ufin to a pair of the above families of covers are called
classical selection principles.
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4 Classification

The following discussion is based on [24, 47]. Recall that for the types of
covers which we consider,

S1(U,V) → Sfin(U,V) → Ufin(U,V) and

(
U

V

)

and
(
Λ
Ω

)
does not hold for a nontrivial space X [24, 62]. This rules out several of

the introduced properties as trivial. Each of our properties is monotone decreas-
ing in the first coordinate and increasing in the second. In the case of Ufin note
that for any class of covers V, Ufin(O,V) is equivalent to Ufin(Γ,V) because
given an open cover {Un}n∈N we may replace it by {⋃i<n Ui}n∈N, which is a
γ-cover (unless it contains a finite subcover).

In the three-dimensional diagram of Figure 1, the double lines indicate that
the two properties are equivalent. The proof of these equivalences can be found
in [37, 24].

The analogous equivalences for the Borel case also hold, but in the Borel
case more equivalences hold [47]: For each V ∈ {B,BΩ,BΓ},

S1(BΓ,V) ⇔ Sfin(BΓ,V) ⇔ Ufin(BΓ,V).

After removing duplications we obtain Figure 2.

All implications which do not appear in Figure 2 where refuted by counter-
examples (which are in fact sets of real numbers) in [37, 24, 47]. The only
unsettled implications in this diagram are marked with dotted arrows.

1 Problem ([24, Problems 1 and 2]). (1) Is Ufin(Γ,Ω) equivalent to
Sfin(Γ,Ω)?

(2) And if not, does Ufin(Γ,Γ) imply Sfin(Γ,Ω)?

Bartoszyński (personal communication) suspects that an implication should
be easy to prove if it is true, and otherwise it may be quite difficult to find a
counter-example (existing methods do not tell these properties apart). However,
the Hurewicz property Ufin(Γ,Γ) has some surprising disguises which a priori
do not look equivalent to it [27, 63], so no definite conjecture can be made about
this problem.

5 Classification in ZFC

Most of the examples used to prove non-implications in Figure 2 are ones us-
ing (fragments of) the Continuum Hypothesis. However, some non-implications
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can be proved without any extra hypotheses. For example, every σ-compact
space satisfies Ufin(Γ,Γ) and Sfin(Ω,Ω) (and all properties implied by these),
but the Cantor set does not satisfy S1(Γ,O) (and all properties implying it)
[24].

It is not known if additional non-implications are provable without the help
of additional axioms. We mention one problem which drew more attention then
the others.

2 Problem ([24, Problem 3], [14, Problem 1], [12, Problem 1]). Does
there exist (in ZFC) a set of reals X which has the Menger property Ufin(O,O)
but not the Hurewicz property Ufin(O,Γ)?

The papers [24, 41, 6] (see also Section 6 below) deal with constructions in

S1(O,O)

S1(Λ,O)S1(Λ,Λ)

S1(Ω,O)S1(Ω,Λ)S1(Ω,Ω)S1(Ω,Γ)

S1(Γ,O)S1(Γ,Λ)S1(Γ,Ω)S1(Γ,Γ)

Sfin(O,O)

Sfin(Λ,O)Sfin(Λ,Λ)

Sfin(Ω,O)Sfin(Ω,Λ)Sfin(Ω,Ω)Sfin(Ω,Γ)

Sfin(Γ,Γ) Sfin(Γ,Ω) Sfin(Γ,Λ) Sfin(Γ,O)

Ufin(Γ,O)Ufin(Γ,Γ) Ufin(Γ,Ω) Ufin(Γ,Λ)
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Ufin(Γ,Γ)
b

//

?

!!

Ufin(Γ,Ω)
d

//

?
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Ufin(Γ,O)
d

Sfin(Γ,Ω)
d

<<zzzzz

S1(Γ,Γ)
b

//

<<xxxxxxxxxxxxxxxxxxx

S1(Γ,Ω)
d

//
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S1(Γ,O)
d
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b
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// S1(BΓ,BΩ)
d
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// S1(BΓ,B)
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Sfin(Ω,Ω)
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S1(O,O)
cov(M)

OO

S1(BΩ,BΓ)
p

OO

//
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S1(BΩ,BΩ)

cov(M)

OO
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// S1(B,B)
cov(M)

OO
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Figure 2.
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ZFC of sets of reals with the Hurewicz property, and may be relevant to the
problem.

Not much is known about the situation when arbitrary topological spaces
are considered rather than sets of reals.

1 Project ([24, Problem 3]). Find, without extra hypotheses, (general)
topological spaces that demonstrate non-implications among the classical prop-
erties. Do the same for Lindelöf topological spaces.

6 Uncountable elements in ZFC

We already mentioned the fact that the Cantor set satisfies all properties
of type Sfin or Ufin in the case of open covers, but none of the remaining
ones. It turns out that some S1-type properties can be shown to be satisfied by
uncountable elements without any special hypotheses.

This is intimately related to the following notions. The Baire space NN is
equipped with the product topology and (quasi)ordered by eventual dominance:
f ≤∗ g if f(n) ≤∗ g(n) for all but finitely many n. A subset of NN is dominating
if it is cofinal in NN with respect to ≤∗. If a subset of NN is unbounded with
respect to ≤∗ then we simply say that it is unbounded. Let b (respectively,
d) denote the minimal cardinality of an unbounded (respectively, dominating)
subset of NN.

The critical cardinality of a nontrivial family J of sets of reals is non(J ) =
min{|X| : X ⊆ R and X 6∈ J }. Then b is the critical cardinality of S1(BΓ,BΓ),
S1(Γ,Γ), and Ufin(Γ,Γ), and d is the critical cardinality of the classes in Figure 2
which contain Sfin(BΩ,BΩ) [24, 47].

6.1 The open case

In [24, 41] it was shown (in ZFC) that there exists a set of reals of size ℵ1

which satisfies S1(Γ,Γ) as well as Sfin(Ω,Ω). In [45] this is improved to show
that there always exists a set of size t which satisfies these properties. In both
cases the proof uses a dichotomy argument (two different examples are given in
two possible extensions of ZFC).

In [6] the following absolute ZFC examples are given. Let N ∪ {∞} be the
one point compactification of N. (A subset A ⊆ N ∪ {∞} is open if: A ⊆ N, or
∞ ∈ A and A is cofinite.) Let Z ⊆ N(N ∪ {∞}) consist of the functions f such
that

(1) For all n, f(n) ≤ f(n+ 1); and

(2) For all n, if f(n) <∞, then f(n) < f(n+ 1).
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(Z is homeomorphic to the Cantor set of reals.) For each increasing finite se-
quence s of natural numbers, let qs ∈ Z be defined as

qs(k) =

{
s(k) if k < |s|
∞ otherwise

for each k ∈ N. Note that the set

Q = {qs : s an increasing finite sequence in N}

is dense in Z.
Let B = {fα : α < b} ⊆ NN be a ≤∗-unbounded set of strictly increasing

elements of NN which forms a b-scale (that is, for each α < β, fα ≤∗ fβ), and
set H = B ∪Q. In [6] it is proved that all finite powers of H satisfy Ufin(O,Γ).

3 Problem ([6, Problem 17]). Does H satisfy S1(Γ,Γ)?

6.2 The Borel case

Borel’s Conjecture, which was proved to be consistent by Laver, implies
that each set of reals satisfying S1(O,O) (and the classes below it) is countable.
From our point of view this means that there do not exist ZFC examples of
sets satisfying S1(O,O). A set of reals X is a σ-set if each Gδ set in X is
also an Fσ set in X. In [47] it is proved that every element of S1(BΓ,BΓ) is a
σ-set. According to a result of Miller [29], it is consistent that every σ-set of
real numbers is countable. Thus, there do not exist uncountable ZFC examples
satisfying S1(BΓ,BΓ). The situation for the other classes, though addressed by
top experts, remains open. In particular, we have the following.

4 Problem ([33], [47, Problem 45], [6]). Does there exist (in ZFC) an
uncountable set of reals satisfying S1(BΓ,B)?

By [47], this is the same as asking whether it is consistent that each un-
countable set of reals can be mapped onto a dominating subset of NN by a
Borel function. This is one of the major open problems in the field.

7 Special elements under weak hypotheses

Most of the counter examples used to distinguish between the properties in
the Borel case are constructed with the aid of the Continuum Hypothesis. The
question whether such examples exist under weaker hypotheses (like Martin’s
Axiom) is often raised (e.g., [10, 31]). We mention some known results by in-
dicating (by full bullets) all places in the diagram of the Borel case (the front
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plane in Figure 2) which the example satisfies. All hypotheses we mention are
weaker than Martin’s Axiom.

Let us recall the basic terminology. M and N denote the collections of
meager (=first category) and null (=Lebesgue measure zero) sets of reals, re-
spectively. For a family I of sets of reals define:

add(I) = min{|F| : F ⊆ I and ∪ F 6∈ I}
cov(I) = min{|F| : F ⊆ I and ∪ F = R}
cof(I) = min{|F| : F ⊆ I and (∀I ∈ I)(∃J ∈ F) I ⊆ J}

A set of reals X is a κ-Luzin set if |X| ≥ κ and for each M ∈ M, |X ∩M | < κ.
Dually, X is a κ-Sierpiński set if |X| ≥ κ and for each N ∈ N , |X ∩N | < κ.

If cov(M) = cof(M) then there exists a cov(M)-Luzin set satisfying the
properties indicated in Figure 3(a) [47] (in [34] this is proved under Martin’s
Axiom). Under the slightly stronger assumption cov(M) = c, there exists a
cov(M)-Luzin set as in Figure 3(b) [5].6 Dually, assuming cov(N ) = cof(N ) = b

there exists a b-Sierpiński set as in Figure 3(c) [47], and another one as in
Figure 3(d) [64].7

◦ // ◦ // •

◦
OO

◦

OO

// ◦
OO

// •

OO

(a)

◦ // • // •

•
OO

◦

OO

// •
OO

// •

OO

(b)

• // • // •

◦
OO

◦

OO

// ◦
OO

// ◦

OO

(c)

• // • // •

•
OO

◦

OO

// ◦
OO

// ◦

OO

(d)

Figure 3. Some known configurations under Martin’s Axiom

2 Project. Find constructions, under Martin’s Axiom or weaker hypothe-
ses, for any of the consistent configurations not covered in Figure 3.

8 Preservation of properties

8.1 Hereditariness

A property is (provably) hereditary if for each space X satisfying the prop-
erty, all subsets of X satisfy that property. Most of the properties considered

6In fact, we can require that this Luzin set does not satisfy Ufin(BΓ,BT) [59] – see Section 9
for the definition of BT.

7The last Sierpiński set actually satisfies Sfin(Bgp

Ω ,BΩ) – see Section 10 for the definition
of Bgp

Ω .
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in this paper may be considered intuitively as notions of smallness, thus it is
somewhat surprising that none of the properties involving open covers is hered-
itary [6]. However, the property S1(B,B) as well as all properties of the form
Π(BΓ,B) are hereditary [6] (but S1(BΩ,BΓ) is not [31]).

5 Problem ([6, Problem 4], [31, Question 6]). Is any of the properties
S1(BΩ,BΩ) or Sfin(BΩ,BΩ) hereditary?

This problem is related to Problem 7 below.

8.2 Finite powers

S1(Ω,Γ), S1(Ω,Ω), and Sfin(Ω,Ω) are the only properties in the open case
which are preserved under taking finite powers [24]. The only candidates in the
Borel case to be preserved under taking finite powers are the following.

6 Problem ([47, Problem 50]). Is any of the classes

S1(BΩ,BΓ), S1(BΩ,BΩ), Sfin(BΩ,BΩ)

closed under taking finite powers?

In [47] it is shown that if all finite powers of X satisfy S1(B,B) (respec-
tively, S1(BΓ,B)), then X satisfies S1(BΩ,BΩ) (respectively, Sfin(BΩ,BΩ)). Con-
sequently, the last two cases of Problem 6 translate to the following.

7 Problem ([47, Problems 19 and 21]). (1) Is it true that if X satis-
fies S1(BΩ,BΩ), then all finite powers of X satisfy S1(B,B)?

(2) Is it true that if X satisfies Sfin(BΩ,BΩ), then all finite powers of X satisfy
S1(BΓ,B)?

The analogous assertion in the open case is true [35, 24]. Observe that a
positive answer to this problem implies a positive answer to Problem 5 above.

It is worthwhile to mention that by a sequence of results in [42, 47, 5, 58],
none of the properties in Figure 2 is preserved under taking finite products.

8.3 Unions

The question of which of the properties in Figure 2 is provably preserved
under taking finite or countable unions (that is, finitely or countably additive)
is completely settled in [24, 41, 42, 5]. Also, among the classes which are not
provably additive, it is known that some are consistently additive [5]. Only the
following problems remain open in this category.

8 Problem ([5, (full version) Problem 4.12]). Is any of the classes

Sfin(Ω,Ω), S1(Γ,Ω), Sfin(Γ,Ω)
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consistently closed under taking finite unions?

9 Problem ([5, (full version) Problem 4.13]). Is Sfin(BΩ,BΩ) consis-
tently closed under taking finite unions?

Another sort of problems which remain open is that of determining the exact
additivity numbers of the (provably) additive properties. The general problem
is to determine the additivity numbers of the properties in question in terms of
well known cardinal characteristics of the continuum (like b, d, etc.). See [48]
for a list of properties for which the problem is still open. Three of the more
interesting ones among these are the following.

10 Problem ([5, (full version) Problem 2.4]). Is add(Ufin(Γ,O)) = b?

It is only known that b ≤ add(Ufin(Γ,O)) ≤ cf(d), and that the additivity
of the corresponding combinatorial notion of smallness is equal to b [5, full
version].

11 Problem. Is add(S1(Γ,Γ)) = b?

It is known that h ≤ add(S1(Γ,Γ)) ≤ b [41]. This problem is related to
Problem 45 below.

In [3] it is proved that add(N ) ≤ add(S1(O,O)).

12 Problem ([3, Problem 4]). Is it consistent that

add(N ) < add(S1(O,O))?

Part 2: Modern types of covers

In this part we divide the problems according to the involved type of covers
rather than according to the type of problem.

9 τ-covers

U is a τ -cover of X [51] if it is a large cover of X,8 and for each x, y ∈ X,
either {U ∈ U : x ∈ U, y 6∈ U} is finite, or else {U ∈ U : y ∈ U, x 6∈ U} is finite.
If all powers of X are Lindelöf (e.g, if X is a set of reals) then each τ -cover of
X contains a countable τ -cover of X [58]. Let T denote the collection of open
τ -covers of X. Then

Γ ⊆ T ⊆ Ω ⊆ O.
The following problem arises in almost every study of τ -covers [51, 59, 58,

62, 61, 31]. By [22], S1(Ω,Γ) ⇔
(
Ω
Γ

)
. As Γ ⊆ T, this property implies

(
Ω
T

)
. Thus

far, all examples of sets not satisfying
(
Ω
Γ

)
turned out not to satisfy

(
Ω
T

)
.

8Recall that by “cover of X” we mean one not containing X as an element.
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13 Problem ([52, §4]). Is
(
Ω
Γ

)
equivalent to

(
Ω
T

)
?

A positive answer would imply that the properties S1(Ω,Γ), S1(Ω,T), and
Sfin(Ω,T) are all equivalent, and therefore simplify the study of τ -covers con-
siderably. It would also imply a positive solution to Problems 15, 18(1), 25, and
other problems.9 The best known result in this direction is that

(
Ω
T

)
implies

Sfin(Γ,T) [59]. A modest form of Problem 13 is the following. If
(
Ω
T

)
implies

Sfin(T,Ω), then
(
Ω
T

)
⇔ Sfin(Ω,T).

14 Problem ([59, Problem 2.9]). Is
(
Ω
T

)
equivalent to Sfin(Ω,T)?

The notion of τ -covers introduces seven new pairs—namely, (T,O), (T,Ω),
(T,T), (T,Γ), (O,T), (Ω,T), and (Γ,T)—to which any of the selection oper-
ators S1, Sfin, and Ufin can be applied. This makes a total of 21 new selec-
tion hypotheses. Fortunately, some of them are easily eliminated. The surviving
properties appear in Figure 4.

Below each property in Figure 4 appears a “serial number” (to be used
in Table 1), and its critical cardinality. The cardinal numbers p and t are the
well-known pseudo-intersection number and tower number (see, e.g., [15] or [9]
for definitions and details). x is the excluded-middle number, and is equal to
max{s, b}, where s is the splitting number [49].

As indicated in the diagram, some of the critical cardinalities are not yet
known.

3 Project ([59, Problem 6.6]). What are the unknown critical cardinal-
ities in Figure 4?

Recall that there are only two unsettled implications in the corresponding
diagram for the classical types of open covers (Section 4). As there are many
more properties when τ -covers are incorporated into the framework, and since
this investigation is new, there remain many unsettled implications in Figure 4.
To be precise, there are exactly 76 unsettled implications in this diagram. These
appear as question marks in the Implications Table 1. Entry (i, j) in the table
(ith row, jth column) is to be interpreted as follows: It is 1 if property i implies
property j, 0 if property i does not imply property j (that is, consistently there
exists a counter-example), and ? if the implication is unsettled.

4 Project ([59, Problem 6.5]). Settle any of the unsettled implications
in Table 1.

Marion Scheepers asked us which single solution would imply as many other
solutions as possible. The answer found by a computer program is the following:
If entry (12, 5) is 1 (that is, Sfin(Γ,T) implies S1(T,T)), then there remain only

9This looks too good to be true, but a negative answer should also imply (through a bit
finer analysis) a solution to several open problems.
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Ufin(Γ, Γ)
b (18)

// Ufin(Γ, T)
x (19)

// Ufin(Γ, Ω)
d (20)

// Ufin(Γ,O)
d (21)

Sfin(Γ, T)

? (12)
//

<<zzzzzzz

Sfin(Γ, Ω)
d (13)

<<zzzzzzzz

S1(Γ, Γ)
b (0)

=={{{{{{{{{{{{{{{{{{{{{{

// S1(Γ, T)

? (1)

>>~~~~~~

// S1(Γ, Ω)
d (2)

=={{{{{{{{

// S1(Γ,O)
d (3)

??��������������������

Sfin(T, T)

? (14)
//

OO

Sfin(T, Ω)
d (15)

OO

S1(T, Γ)
t (4)

//

OO

S1(T, T)

? (5)

OO

>>~~~~~~

// S1(T, Ω)

? (6)

OO

=={{{{{{{

// S1(T,O)

? (7)

OO

Sfin(Ω, T)
p (16)

OO

// Sfin(Ω, Ω)
d (17)

OO

S1(Ω, Γ)
p (8)

OO

// S1(Ω, T)
p (9)

OO

=={{{{{{{

// S1(Ω, Ω)
cov(M) (10)

OO

<<xxxxxxx

// S1(O,O)
cov(M) (11)

OO

Figure 4. The diagram involving τ -covers

33 (!) open problems. The best possible negative entry is (16, 3): If Sfin(Ω,T)
does not imply S1(Γ,O), then only 47 implications remain unsettled.

Finally, observe that any solution in Problem 3 would imply several new
nonimplications.

Scheepers chose the following problem out of all the problems discussed
above as the most interesting.

15 Problem. Does S1(Ω,T) imply the Hurewicz property Ufin(Γ,Γ)?

The reason for this choice is that if the answer is positive, then S1(Ω,T) im-
plies the Gerlitz-Nagy (∗) property [22], which is equivalent to another modern
selection property (see Section 10 below).

Not much is known about the preservation of the new properties under set
theoretic operations. Miller [31] proved that assuming the Continuum Hypoth-
esis, there exists a set X satisfying S1(BΩ,BΓ) and a subset Y of X such that
Y does not satisfy

(
Ω
T

)
. Together with the remarks preceding Problem 5, we
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 1 1 1 1 0 ? ? ? 0 0 0 0 1 1 ? ? 0 0 1 1 1 1
1 ? 1 1 1 0 ? ? ? 0 0 0 0 1 1 ? ? 0 0 ? 1 1 1
2 0 0 1 1 0 0 ? ? 0 0 0 0 0 1 0 ? 0 0 0 0 1 1
3 0 0 0 1 0 0 0 ? 0 0 0 0 0 0 0 0 0 0 0 0 0 1
4 1 1 1 1 1 1 1 1 0 0 ? ? 1 1 1 1 0 ? 1 1 1 1
5 ? 1 1 1 ? 1 1 1 0 0 ? ? 1 1 1 1 0 ? ? 1 1 1
6 0 0 1 1 0 0 1 1 0 0 ? ? 0 1 0 1 0 ? 0 0 1 1
7 0 0 0 1 0 0 0 1 0 0 0 ? 0 0 0 0 0 0 0 0 0 1
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 ? 1 1 1 ? 1 1 1 ? 1 1 1 1 1 1 1 1 1 ? 1 1 1

10 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 0 1 1
11 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1
12 ? ? ? ? 0 ? ? ? 0 0 0 0 1 1 ? ? 0 0 ? 1 1 1
13 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 ? 0 0 0 0 1 1
14 ? ? ? ? ? ? ? ? 0 0 ? ? 1 1 1 1 0 ? ? 1 1 1
15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 ? 0 0 1 1
16 ? ? ? ? ? ? ? ? ? ? ? ? 1 1 1 1 1 1 ? 1 1 1
17 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1
18 0 0 0 0 0 0 0 0 0 0 0 0 0 ? 0 ? 0 0 1 1 1 1
19 0 0 0 0 0 0 0 0 0 0 0 0 0 ? 0 ? 0 0 0 1 1 1
20 0 0 0 0 0 0 0 0 0 0 0 0 0 ? 0 ? 0 0 0 0 1 1
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 1. Implications and nonimplications

have that the only classes (in addition to those in Problem 5) for which the
hereditariness problem is not settled are the following ones.

16 Problem ([6, Problem 4]). Is any of the properties

S1(BT,BΓ), S1(BT,BT), S1(BT,BΩ),

S1(BT,B), Sfin(BT,BT), Sfin(BT,BΩ),

hereditary?

Here are the open problems regarding unions.

17 Problem ([5, (full version) Problems 5.2 and 5.3]). Is any of the
properties S1(T,T), Sfin(T,T), S1(Γ,T), Sfin(Γ,T), and Ufin(Γ,T) (or any of
their Borel versions) preserved under taking finite unions?

And here are the open problems regarding powers.

18 Problem. Is any of the properties

(1) S1(Ω,T), or Sfin(Ω,T),

(2) S1(T,Γ), S1(T,T), S1(T,Ω), Sfin(T,T), or Sfin(T,Ω),

preserved under taking finite powers?

The answer to (1) is positive if it is for Problem 13.

10 Groupable covers

Groupability notions for covers appear naturally in the studies of selection
principles [26, 27, 2, 63] and have various notations. Scheepers has standardized
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the notations in [48]. We use Scheepers’ notation, but take a very minor variant
of his definitions which allows more simple definitions and does not make a dif-
ference in any of the theorems proved in the literature (since we always consider
covers which do not contain finite subcovers).

Let ξ be γ, τ , or ω. A cover U of X is ξ-groupable if there is a partition of U
into finite sets, U =

⋃
n∈N

Fn, such that {∪Fn}n∈N is a ξ-cover of X. Denote the
collection of ξ-groupable open covers ofX by Oξ-gp. Then Oγ-gp ⊆ Oτ-gp ⊆ Oω-gp.
Observe that we must require in the definitions that the elements Fn are disjoint,
as otherwise any cover of X would be γ-groupable.

Recall that Ufin(Γ,O) ⇔ Sfin(Ω,O). In [27] it is proved that Ufin(Γ,Γ) ⇔
Sfin(Ω,Oγ-gp), and in [2] it is proved that Ufin(Γ,Ω) ⇔ Sfin(Ω,Oω-gp).

19 Problem. Is Ufin(Γ,T) equivalent to Sfin(Ω,Oτ-gp)?

In [62] it was pointed out that S1(Ω,Oω-gp) is strictly stronger than S1(Ω,O)
(which is the same as S1(O,O)). The following problem remains open.

20 Problem ([2, Problem 4]). Is S1(Ω,Ω) equivalent to S1(Ω,Oω-gp)?

If all powers of sets in S1(Ω,Oω-gp) satisfy S1(O,O), then we get a positive
answer to Problem 20. In [62] it is shown that S1(Ω,Oω-gp) ⇔ Ufin(Γ,Ω) ∩
S1(O,O), so the question can be stated in classical terms.

21 Problem. Is S1(Ω,Ω) equivalent to Ufin(Γ,Ω) ∩ S1(O,O)?

Surprisingly, it turns out that Ufin(Γ,Γ) ⇔
(

Λ
Oγ-gp

)
[63].

22 Problem. (1) Is Ufin(Γ,Ω) equivalent to
(

Λ
Oω-gp

)
?

(2) Is Ufin(Γ,T) equivalent to
(

Λ
Oτ-gp

)
?

It is often the case that properties of the form Π(Ω,V) where Ω ⊆ V are
equivalent to Π(Λ,V) [37, 24, 27, 2, 62]. But we do not know the answer to the
following simple question.

23 Problem. Is
(

Ω
Oγ-gp

)
equivalent to

(
Λ

Oγ-gp
)
?

Let U be a family of covers of X. Following [27], we say that a cover U of
X is U-groupable if there is a partition of U into finite sets, U =

⋃
n∈N

Fn, such
that for each infinite subset A of N, {∪Fn}n∈A ∈ U. Let Ugp be the family of
U-groupable elements of U. Observe that Λgp = Ogp = Oγ-gp.

In [27] it is proved that X satisfies Sfin(Ω,Ωgp) if, and only if, all finite

powers of X satisfy Ufin(Γ,Γ), which we now know is the same as
(

Λ
Λgp

)
.

24 Problem ([60, Problem 8]). Is Sfin(Ω,Ωgp) equivalent to
(

Ω
Ωgp

)
?

In [32, 27] it is proved that S1(Ω,Λ
gp) ⇔ Ufin(Γ,Γ) ∩ S1(O,O), and is the

same as the Gerlits-Nagy (∗) property. Clearly, S1(Ω,T) implies S1(Ω,O), which
is the same as S1(O,O). Thus, a positive solution to Problem 15 would imply
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that the property S1(Ω,T) lies between the S1(Ω,Γ) (γ-property) and S1(Ω,Λ
gp)

((∗) property).

These notions of groupable covers are new and were not completely classified
yet. Some partial results appear in [26, 27, 2, 63].

5 Project. Classify the selection properties involving groupable covers.

The studies of preservation of these properties under set theoretic operations
are also far from being complete. Some of the known results are quoted in [48].

11 Splittability

The following discussion is based on [58]. Assume that U and V are collec-
tions of covers of a space X. The following property was introduced in [37].

Split(U,V): Every cover U ∈ U can be split into two disjoint subcovers V and W which
contain elements of V.

This property is useful in the Ramsey theory of thick covers. Several results
about these properties (where U,V are collections of thick covers) are scattered
in the literature. Some results relate these properties to classical properties. For
example, it is known that the Hurewicz property and Rothberger’s property each
implies Split(Λ,Λ), and that the Sakai property (asserting that each finite power
of X has Rothberger’s property) implies Split(Ω,Ω) [37]. It is also known that
if all finite powers of X have the Hurewicz property, then X satisfies Split(Ω,Ω)
[27]. Let CΩ denote the collection of all clopen ω-covers of X. By a recent
characterization of the Reznichenko (or: weak Fréchet-Urysohn) property of
Cp(X) in terms of covering properties of X [36], the Reznichenko property for
Cp(X) implies that X satisfies Split(CΩ, CΩ).
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11.1 Classification

If we consider this prototype with U,V ∈ {Λ,Ω,T,Γ} we obtain the following
16 properties.

Split(Λ,Λ) // Split(Ω,Λ) // Split(T,Λ) // Split(Γ,Λ)

Split(Λ,Ω) //

OO

Split(Ω,Ω) //

OO

Split(T,Ω) //

OO

Split(Γ,Ω)

OO

Split(Λ,T) //

OO

Split(Ω,T) //

OO

Split(T,T) //

OO

Split(Γ,T)

OO

Split(Λ,Γ) //

OO

Split(Ω,Γ) //

OO

Split(T,Γ) //

OO

Split(Γ,Γ)

OO

But all properties in the last column are trivial in the sense that all sets of
reals satisfy them. On the other hand, all properties but the top one in the first
column imply

(
Λ
Ω

)
and are therefore trivial in the sense that no infinite set of

reals satisfies any of them. Moreover, the properties Split(T,T), Split(T,Ω), and
Split(T,Λ) are equivalent. It is also easy to see that Split(Ω,Γ) ⇔

(
Ω
Γ

)
, therefore

Split(Ω,Γ) implies Split(Λ,Λ). In [58] it is proved that no implication can be
added to the diagram in the following problem, except perhaps the dotted ones.

25 Problem ([58, Problem 5.9]). Is the dotted implication (1) (and
therefore (2) and (3)) in the following diagram true? If not, then is the dotted
implication (3) true?

Split(Λ,Λ) // Split(Ω,Λ) // Split(T,T)

Split(Ω,Ω)

OO

Split(Ω,T)

OO

(1)

''

(2)

||

(3)

__

Split(Ω,Γ)

OO

77ooooooooooo
// Split(T,Γ)

OO

A positive answer to Problem 13 would imply a positive answer to this
problem.
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11.2 Preservation of properties

We list briefly the only remaining problems concerning preservation of the
splittability properties mentioned in the last section under set theoretic opera-
tions. All problems below are settled for the properties which do not appear in
them.

26 Problem ([58, Problem 6.8]). Is Split(Λ,Λ) additive?

27 Problem ([58, Problem 7.5]). Is any of the properties Split(BΩ,BΛ),
Split(BΩ,BΩ), Split(BT,BT), and Split(BT,BΓ) hereditary?

28 Conjecture ([58, Conjecture 8.7]). None of the classes Split(T,T)
and

(
T
Γ

)
is provably closed under taking finite products.

29 Problem ([58, Problem 8.8]). Is any of the properties Split(Ω,Ω),
Split(Ω,T), or Split(T,T) preserved under taking finite powers?

12 Ultrafilter-covers

12.1 The δ-property

The following problem is classical by now, but it is related to the problems
which follow. For a sequence {Xn}n∈N of subsets of X, define lim infXn =⋃

m

⋂
n≥mXn. For a family F of subsets of X, L(F) denotes its closure under

the operation lim inf. The following definition appears in the celebrated paper
[22] just after that of the γ-property: X is a δ-set (or: has the δ-property) if for
each ω-cover U of X, X ∈ L(U). Observe that if {Un}n∈N is a γ-cover of X,
then X = lim inf Un. Thus, the γ-property implies the δ-property. Surprisingly,
the converse is still open.

30 Problem ([22, p. 160]). Is the δ-property equivalent to the γ-property?

The δ-property implies Gerlits-Nagy (∗) property [22], which is the same as
Ufin(Γ,Γ)∩S1(O,O) (or S1(Ω,Λ

gp)) and implies S1(Ω,Ω) [32]. Miller (personal
communication) suggested that if we could construct an increasing sequence
{Xn}n∈N of γ-sets whose union is not a γ-set, then the union of these sets
would be a δ-set which is not a γ-set.

For a sequence {Xn}n∈N of subsets of X, define p- limXn =
⋃

A∈p

⋂
n∈AXn.

For a family F of subsets of X, Lp(F) denotes its closure under the operation
p- lim. A space X satisfies the δM property if for each open ω-cover U of X,
there exists p ∈ M such that X ∈ Sp(U). When M = {p}, we write δp instead
of δ{p}.

The following problem is analogous to Problem 30.
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31 Problem ([21, Problem 3.14]). Assume that X satisfies δp for each
ultrafilter p. Must X satisfy γp for each ultrafilter p?

12.2 Sequential spaces

A space Y is sequential if for each non-closed A ⊆ Y there exists y ∈ Y \A
and a sequence {an}n∈N in A such that lim an = y. This notion has a natural
generalization.

An ultrafilter on N is a family p of subsets of N that is closed under taking
supersets, is closed under finite intersections, does not contain the empty set as
an element, and for each A ⊆ N, either A ∈ p or N\A ∈ p. An ultrafilter p on N
is nonprincipal if it is not of the form {A ⊆ N : n ∈ A} for any n. In the sequel,
by ultrafilter we always mean a nonprincipal ultrafilter on N.

For an ultrafilter p, Op denotes the collection of open γp-covers of X, that
is, open covers U that can be enumerated as {Un}n∈N where {n : x ∈ Un} ∈ p
for all x ∈ X. The property

(
Ω
Op

)
is called the γp-property in [21].

32 Problem ([19, Question 2.4]). Is the property
(

Ω
Op

)
additive for each

ultrafilter p?

33 Problem ([21, Problem 3.14(2)]). Assume that X satisfies
(

Ω
Op

)
for

each ultrafilter p. Must X satisfy
(
Ω
Γ

)
?

In [21, Theorem 3.13] it is shown that the answer to this problem is positive
under an additional set theoretic hypothesis.

For an ultrafilter p, we write x = p- limxn when for each neighborhood U of
x, {n : xn ∈ U} ∈ p. A space Y is p-sequential if we replace lim by p- lim in the
definition of sequential.

34 Problem ([20], [21, Problem 0.10]). Assume that Cp(X) is p-sequen-
tial. Must X satisfy

(
Ω
Op

)
?

Kombarov [25] introduced the following two generalizations of p-sequential-
ity: Let M be a collection of ultrafilters. Y is weakly M -sequential if for each
non-closed A ⊆ Y there exists y ∈ Y \A and a sequence {an}n∈N in A such that
p- liman = y for some p ∈M . Y is strongly M -sequential if some is replaced by
for all in the last definition.

35 Problem ([21, Problem 0.6 (reformulated)]). Assume that X sat-
isfies the δM property. Must Cp(X) be weakly M -sequential?

Part 3: Applications
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13 Infinite game Theory

Each selection principle has a naturally associated game. In the game G1(U,V)
ONE chooses in the nth inning an element Un of U and then TWO responds by
choosing Un ∈ Un. They play an inning per natural number. A play

(U0, U0,U1, U1 . . . )

is won by TWO if {Un}n∈N ∈ V; otherwise ONE wins. The game Gfin(U,V) is
played similarly, where TWO responds with finite subsets Fn ⊆ Un and wins if⋃

n∈N
Fn ∈ V.

Observe that if ONE does not have a winning strategy in G1(U,V) (respec-
tively, Gfin(U,V)), then S1(U,V) (respectively, Sfin(U,V)) holds. The converse
is not always true; when it is true, the game is a powerful tool for studying the
combinatorial properties of U and V – see, e.g., [27], [2], and references therein.

Let D denote the collection of all families U of open sets in X such that
∪U is dense in X. In [8], Berner and Juhász introduce the open-point game,
which by [44] is equivalent to G1(D,D) in the sense that a player has a winning
strategy in the open-point game on X if, and only if, the other player has a
winning strategy in G1(D,D).

36 Problem ([8, Question 4.2], [42, footnote 1]). Does there exist in
ZFC a space in which G1(D,D) is undetermined?

DΩ is the collection of all U ∈ D such that for each U ∈ U , X 6⊆ U , and
for each finite collection F of open sets, there exists U ∈ U which intersects all
members of F .

Problem 37 is not a game theoretical one, but it is related to Problem 38
which is a game theoretic problem. If all finite powers of X satisfy S1(D,D) (re-
spectively, Sfin(D,D)), thenX satisfies S1(DΩ,DΩ) (respectively, Sfin(DΩ,DΩ))
[43]. If the other direction also holds, then the answer to the following is positive.

37 Problem ([43]). Are the properties S1(DΩ,DΩ) or Sfin(DΩ,DΩ) pre-
served under taking finite powers?

The answer is “Yes” for a nontrivial family of spaces – see [43]. A positive
answer for this problem implies a positive answer to the following one. If each
finite power of X satisfies S1(D,D) (respectively, Sfin(D,D)), then ONE has no
winning strategy in G1(DΩ,DΩ) (respectively, Gfin(DΩ,DΩ)) [43].

38 Problem ([43, Problem 3]). Is any of the properties S1(DΩ,DΩ) or
Sfin(DΩ,DΩ) equivalent to ONE not having a winning strategy in the corre-
sponding game?

Let K denote the families U ∈ D such that {U : U ∈ U} is a cover of X.
In [50] Tkachuk shows that the Continuum Hypothesis implies that ONE has
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a winning strategy in G1(K,D) on any space of uncountable cellularity. In [39],
Scheepers defines j as the minimal cardinal κ such that ONE has a winning
strategy in G1(K,D) on each Tychonoff space with cellularity at least κ, and
shows that cov(M) ≤ j ≤ non(SMZ).

39 Problem ([39, Problem 1]). Is j equal to any standard cardinal char-
acteristic of the continuum?

Scheepers conjectures that j is not provably equal to cov(M), and not to
non(SMZ) either.

13.1 Strong selection principles and games

The following prototype of selection hypotheses is described in [62]. Assume
that {Un}n∈N is a sequence of collections of covers of a space X, and that V is
a collection of covers of X. Define the following selection hypothesis.

S1({Un}n∈N,V): For each sequence {Un}n∈N where Un ∈ Un for each n, there is a sequence
{Un}n∈N such that Un ∈ Un for each n, and {Un}n∈N ∈ V.

Similarly, define Sfin({Un}n∈N,V). A cover U of a space X is an n-cover if
each n-element subset of X is contained in some member of U . For each n
denote by On the collection of all open n-covers of a space X. Then X is a
strong γ-set according to the definition of Galvin-Miller [18] if, and only if,
X satisfies S1({On}n∈N,Γ) [62]. It is well known that the strong γ-property
is strictly stronger than the γ-property, and is therefore not equivalent to any
of the classical properties. However, for almost any other pair ({Un}n∈N,V),
S1({Un}n∈N,V) and Sfin({Un}n∈N,V) turns out equivalent to some classical
property [62]. The only remaining problem is the following.

40 Conjecture ([62, Conjecture 1]). S1({On}n∈N,T) is strictly stronger
than S1(Ω,T).

If this conjecture is false, then we get a negative answer to Problem 13 of
[61].

As in the classical selection principles, there exist game-theoretical coun-
terparts of the new prototypes of selection principles [62]. Define the following
games between two players, ONE and TWO, which have an inning per natural
number. G1({Un}n∈N,V): In the nth inning, ONE chooses an element Un ∈ Un,
and TWO responds with an element Un ∈ Un. TWO wins if {Un}n∈N ∈ V;
otherwise ONE wins. Gfin({Un}n∈N,V): In the nth inning, ONE chooses an el-
ement Un ∈ Un, and TWO responds with a finite subset Fn of Un. TWO wins
if

⋃
n∈N

Fn ∈ V; otherwise ONE wins.
In [62] it is proved that for V ∈ {Λ,Oω-gp,Oγ-gp}, ONE does not have a

winning strategy in Gfin({On}n∈N,V) if, and only if, Sfin(Ω,V) holds, and the
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analogous result is proved for G1 and S1. In the case of G1 and S1, the assertion
also holds for V ∈ {Ω,Ωgp}.

41 Problem. Assume that V ∈ {Ω,Ωgp}. Is it true that ONE does not
have a winning strategy in Gfin({On}n∈N,V) if, and only if, Sfin(Ω,V) holds?

The most interesting problem with regards to these games seems to be the
following.

42 Problem ([62, Problem 5.16]). Is it true that X is a strong γ-set
(i.e., satisfies S1({On}n∈N,Γ)) if, and only if, ONE has no winning strategy in
the game G1({On}n∈N,Γ)?

A positive answer would give the first game-theoretic characterization of the
strong γ-property.

14 Ramsey Theory

14.1 Luzin sets

Recall that K is the collection of families U of open sets such that {U : U ∈
U} is a cover of X. Let KΩ be the collection of all U ∈ K such that no element
of U is dense in X, and for each finite F ⊆ X, there exists U ∈ U such that
F ⊆ U . In [40] it is proved that X satisfies KΩ → (K)22, then X is a Luzin set.

43 Problem ([40, Problem 4]). Does the partition relation KΩ → (K)22
characterize Luzin sets?

14.2 Polarized partition relations

The symbol (
U1

U2

)
→

[
V1

V2

]

k/<`

denotes the property that for each U1 ∈ U1, U2 ∈ U2, and k-coloring f : U1×U2 →
{1, . . . , k} there are V1 ⊆ U1, V2 ⊆ U2 such that V1 ∈ V1 and V2 ∈ V2, and a
set of less than ` colors J such that f [V1 × V2] ⊆ J .

S1(Ω,Ω) implies
„

Ω
Ω

«

→

»

Ω
Ω

–

k/<3

, which in turn implies Sfin(Ω,Ω) as well as

Split(Ω,Ω) (see Section 11 for the definition of the last property). Consequently,
the critical cardinality of this partition relation lies between cov(M) and min{d,
u} [46].

44 Problem ([46, Problem 1]). Is
„

Ω
Ω

«

→

»

Ω
Ω

–

k/<3

equivalent to S1(Ω,Ω)?

And if not, is its critical cardinality equal to that of S1(Ω,Ω) (namely, to
cov(M))?
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15 Function spaces and Arkhangel’skǐi duality the-
ory

The set of all real-valued functions on X, denoted RX , is considered as a
power of the real line and is endowed with the Tychonoff product topology.
Cp(X) is the subspace of RX consisting of the continuous real-valued functions
on X. The topology of Cp(X) is known as the topology of pointwise convergence.
The constant zero element of Cp(X) is denoted 0.

15.1 s1 spaces and sequence selection properties

In a manner similar to the observation made in Section 3 of [41], a positive
solution to Problem 11 should imply a positive solution to the following problem.
For subset A ⊂ X we denote

s0(A) = A, sξ(A) = { lim
n→∞

xn : xn ∈
⋃

η<ξ

sη(A) for each n ∈ N},

σ(A) = min{ξ : sξ(A) = sξ+1(A)}.

Let Σ(X) = sup{σ(A) : A ⊆ X}. Fremlin [16] proved that Σ(Cp(X)) must be
0, 1, or ω1. If Σ(Cp(X)) = 1 then we say that X is an s1-space.

45 Problem (Fremlin [16, Problem 15(c)]). Is the union of less than b

many s1-spaces an s1-space?

A sequence {fn}n∈N ⊆ Cp(X) converges quasi-normally to a function f on
X [11] if there exists a sequence of positive reals {εn}n∈N converging to 0 such
that for each x ∈ X |fn(x) − f(x)| < εn for all but finitely many n. X is a
wQN-space [13] if each sequence in Cp(X) which converges to 0, contains a
quasi-normally convergent subsequence.

Finally, Cp(X) has the sequence selection property (SSP) if for each sequence
{{fn

k }k∈N}n∈N of sequences in Cp(X), where each of them converges to 0, there
exists a sequence {kn}n∈N such that {fn

kn
}n∈N converges to 0. This is equivalent

to Arkhangel’skǐi’s α2 property of Cp(X).

In [41, 17] it is shown that s1 (for X), wQN (for X), and SSP (for Cp(X)) are
all equivalent. This and other reasons lead to suspecting that all these equivalent
properties are equivalent to a standard selection hypothesis. In [41], Scheepers
shows that S1(Γ,Γ) implies being an wQN-space.

46 Conjecture (Scheepers [41, Conjecture 1]). For sets of reals, wQN

implies S1(Γ,Γ).

If this conjecture is true, then Problems 11 and 45 coincide.
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A space has countable fan tightness if for each x ∈ X, if {An}n∈N is a
sequence of subsets ofX such that for each n x ∈ An, then there are finite subsets
FN ⊆ An, n ∈ N, such that x ∈ ⋃

n Fn. This property is due to Arkhangeĺskǐi,
who proved in [1] that Cp(X) has countable fan tightness if, and only if, every
finite power of X satisfies Ufin(Γ,O) (this is the same as Sfin(Ω,Ω)).

The weak sequence selection property for Cp(X) [38] is defined as the SSP

with the difference that we only require that 0 ∈ {fn
kn

: n ∈ N}.
47 Problem ([38, Problem 1]). Does countable fan tightness of Cp(X)

imply the weak sequence selection property?

The monotonic sequence selection property is defined like the SSP with the
additional assumption that for each n the sequence {fn

k }k∈N converges pointwise
monotonically to 0.

48 Problem ([38, Problem 2]). Does the monotonic sequence selection
property of Cp(X) imply the weak sequence selection property?

16 The weak Fréchet-Urysohn property and Pytkeev
spaces

Recall that a topological space Y has the Fréchet-Urysohn property if for
each subset A of Y and each y ∈ A, there exists a sequence {an}n∈N of elements
of A which converges to y. If y 6∈ A then we may assume that the elements an,
n ∈ N, are distinct. The following natural generalization of this property was
introduced by Reznichenko [28]: Y satisfies the weak Fréchet-Urysohn property
if for each subset A of Y and each element y in A \A, there exists a countably
infinite pairwise disjoint collection F of finite subsets of A such that for each
neighborhood U of y, U ∩ F 6= ∅ for all but finitely many F ∈ F . In several
works [26, 27, 36] this property appears as the Reznichenko property.

In [27] it is shown that Cp(X) has countable fan tightness as well as Rezni-
chenko’s property if, and only if, each finite power of X has the Hurewicz cover-
ing property. Recently, Sakai found an exact dual of the Reznichenko property:
An open ω-cover U of X is ω-shrinkable if for each U ∈ U there exists a closed
subset CU ⊆ U such that {CU : U ∈ U} is an ω-cover of X. Then Cp(X) has
the Reznichenko property if, and only if, each ω-shrinkable open ω-cover of X
is ω-groupable [36]. Thus if X satisfies

(
Ω

Ωgp

)
, then Cp(X) has the Reznichenko

property. The other direction is not clear.

49 Problem ([36, Question 3.5]). Is it true that Cp(X) has the Rezni-
chenko property if, and only if, X satisfies

(
Ω

Ωgp

)
?

Another simply stated but still open problem is the following.
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50 Problem ([36, Question 3.6], [60]). Does Cp(
NN) have the Rezni-

chenko property?

For a nonprincipal filter F on N and a finite-to-one function f : N → N,
f(F) := {A ⊆ N : f−1[A] ∈ F} is again a nonprincipal filter on N. A filter F
on N is feeble if there exists a finite-to-one function f such that f(F) consists
of only the cofinite sets. By Sakai’s Theorem, if Cp(X) has the Reznichenko

property then X satisfies
(CΩ

Cgp

Ω

)
. In [60] it is shown that

(CΩ

Cgp

Ω

)
is equivalent to

the property that no continous image of X in the Rothberger space P∞(N) is a
subbbase for a non-feeble filter. Thus, if a subbase for a non-feeble filter cannot
be a continuous image of NN, then the answer to Problem 50 is negative.

A family P of subsets of of a space Y is a π-network at y ∈ Y if every
neighborhood of y contains some element of P. Y is a Pytkeev space if for each
y ∈ Y and A ⊆ Y such that y ∈ A \ A, there exists a countable π-network at
y which consists of infinite subsets of A. In [36] it is proved that Cp(X) is a
Pytkeev space if, and only if, for each ω-shrinkable open ω-cover U of X there
exist subfamilies Un ⊆ U , n ∈ N, such that

⋂
n∈N

Un is an ω-cover of X.

51 Problem ([36, Question 2.8]). Can the term “ω-shrinkable” be re-
moved from Sakai’s characterization of the Pytkeev property of Cp(X)?

If all finite powers of X satisfy Ufin(Γ,Γ), then every open ω-cover of X is
ω-shrinkable [36], thus a positive solution to the following problem would suffice.

52 Problem ([36, Question 2.9]). Assume that Cp(X) is a Pytkeev space.
Is it true that all finite powers of X satisfy Ufin(Γ,Γ)?

Let I = [0, 1] be the closed unit interval in R. As all finite powers of I are
compact, and Cp(I) is not a Pytkeev space [36], the converse of Problem 52 is
false.

Notes added in proof. Zdomsky, in a series of recent works, settled (or
partially settled) some of the problems mentioned in the paper, the answers
being: “Yes” for Problem 2, “No” for Problem 10, and “Consistently yes” for
Problem 26.

Sakai showed that the answer for Problem 24 is “No”, in the following strong
sense: in his paper Weak Fréchet-Urysohn property in function spaces, it is
proved that that every analytic set of reals (and, in particular, the Baire space
NN) satisfies

(BΩ

Bgp

Ω

)
. But we know that NN does not even satisfy Menger’s property

Ufin(O,O). This also answers Problem 50 in the affirmative.

The paper: H. Mildenberger, S. Shelah, and B. Tsaban, The combinatorics
of τ -covers ( http://arxiv.org/abs/math.GN/0409068 ) contains new results
simplifying some problems. Project 3 is almost completely settled (4 out of the
6 cardinals are found, the two remaining ones are equal but still unknown).
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Consequently, 21 out of the 76 potential implications in Project 4 are ruled out.
Finally, the preset author’s paper Some new directions in infinite-combina-

torial topology ( http://arxiv.org/abs/math.GN/0409069 ) contains a light
introduction to the field and several problems not appearing in the current
survey.
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