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Introduction

We first recall the basic facts about selection principles in topological spaces.

Let A and B be collections of open covers of a topological space X.

The symbol S1(A,B) denotes the selection hypothesis that for each sequence
(Un | n ∈ N) of elements of A there exists a sequence (Un | n ∈ N) such that for
each n, Un ∈ Un and {Un | n ∈ N} ∈ B [16].

The symbol Sfin(A,B) denotes the selection hypothesis that for each se-
quence (Un | n ∈ N) of elements of A there is a sequence (Vn | n ∈ N) such that
for each n ∈ N, Vn is a finite subset of Un and

⋃
n∈N

Vn is an element of B [16].

If O denotes the collection of all open covers of a space X, then X is said to
have the Menger property [13], [7], [14], [9] (resp. the Rothberger property [15],
[14], [16] if the selection hypothesis Sfin(O,O) (resp. S1(O,O)) is true for X.

Our terminology and notation follow [4].

For a subset A of a space X and a collection P of subsets of X, St(A,P)
denotes the star of A with respect to P, that is the set ∪{P ∈ P | A ∩ P 6= ∅};
for A = {x}, x ∈ X, we write St(x,P) instead of St({x},P).

Let X be a space. If α and β are families of subsets of X we denote by α∧β
the set {A ∩ B | A ∈ α,B ∈ β}. α < β means that α is a refinement of β, i.e.
that for each A ∈ α there is a B ∈ β with A ⊂ B. If {St(A,α) | A ∈ α} < β we
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write α∗ < β and say that α is a star refinement of β or that α is star inscribed
in β.

Let us recall now three equivalent definitions of uniform spaces:

• using a family C of covers (see, for example, [17], [3]; also [4]);

• using a family U of entourages of the diagonal [4];

• using a family D of pseudometrics [5](see also [4]).

In this paper we shall use the first of these three approaches because it allows
us to define uniform selection principles in the standard manner as in general
topological case, and to see, after their characterizations, the right nature of
them. More precisely, we shall see that uniform selection principles are actually
a kind of star selection principles defined and studied in [10].

A uniformity on a nonempty setX is a family C of covers ofX which satisfies
the following conditions:

(C.1) if α ∈ C and if β is a cover of X such that α < β, then β ∈ C;

(C.2) if α1, α2 ∈ C, then there exists β ∈ C such that β∗ < α1 and β∗ < α2.

The covers from C are called uniform covers, and the pair (X,C) a uniform
space.

We assume that all spaces are infinite and consider only Hausdorff unifor-
mities satisfying also the condition

(C.3) for any two distinct points x and y in X there is an α ∈ C such that no
member of α contains both x and y.

The topology on X generated by C, denoted TC, is defined in such way that
{St(x, α) | x ∈ X,α ∈ C} is a base for TC.

Let us mention a basic fact regarding uniform spaces. For any uniformity C
on X and each α ∈ C there is a pseudometric d on X such that {Bd(x, 1) | x ∈
X} < {St(x, α) | x ∈ X}.

This fact (or the third approach for the definition of uniform structures)
gives a possibility to consider also measure-like properties in uniform spaces.
These properties often give characterizations of selection principles in metric
spaces. We do not consider such questions in this paper.
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1 The uniform Menger property

Let (X,C) be a uniform space. We say that X has the uniform Menger
property if for each sequence (αn : n ∈ N) of elements of C there is a sequence
(βn | n ∈ N) such that for each n ∈ N βn is a finite subset of αn and

⋃
n∈N

βn is
a cover of X.

So, in notation above the uniform Menger property is the Sfin(C, C) prop-
erty.

1 Theorem. For a uniform space (X,C) the following are equivalent:

(a) X has the uniform Menger property;

(b) for each sequence (αn | n ∈ N) ⊂ C there is a sequence (An | n ∈ N) of
finite subsets of X such that X =

⋃
n∈N

St(An, αn).

(c) for each sequence (αn | n ∈ N) ⊂ C there is a sequence (βn | n ∈ N) such
that for each n βn is a finite subset of αn and X =

⋃
n∈N

St(∪βn, αn).

Proof. (a) ⇒ (b): Let (αn | n ∈ N) be a sequence of covers from C. By
(a), for each n choose a finite subset βn of αn such that

⋃
n∈N

βn is a cover
of X. For each n and each B ∈ βn choose an element x(B,n) ∈ B and put
An = {x(B,n) | B ∈ βn}. Then each An is a finite subset of X and

X =
⋃

n∈N

∪βn ⊂
⋃

n∈N

St(An, αn),

i.e. (b) holds.

(b) ⇒ (c): It is evident.

(c) ⇒ (a): Let (αn | n ∈ N) ⊂ C be a sequence of uniform covers of X.
For each n let γn be a uniform cover of X which is star inscribed in αn. Apply
(c) to the sequence (γn | n ∈ N) and find a sequence (δn | n ∈ N) such that
each δn is a finite subset of γn and

⋃
n∈N

St(∪δn, γn) = X. For each n ∈ N
and each D ∈ δn pick a member AD ∈ αn such that St(D, γn) ⊂ AD and let
µn = {AD | D ∈ δn}. Then the sequence (µn | n ∈ N) witnesses for (αn | n ∈ N)
that X satisfies (a). QED

This theorem shows that the uniform Menger property is actually a kind of
star covering properties. In [10] we introduced star-Menger and strongly star-
Menger topological spaces just as spaces which satisfy conditions (c) and (b),
respectively, from the previous theorem, but with open covers instead of uni-
form ones. In notation we used there the conditions (b) and (c) of the previous
theorem can be written as SS∗

fin(C,O) and S∗
fin(C,O), respectively.
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2 Remark. In terms of entourages of the diagonal of X the uniform Menger
property is defined in this way:

A uniform space (X,U) is uniformly Menger if for each sequence (Un | n ∈
N) of entourages of the diagonal there is a sequence (An | n ∈ N) of finite
subsets of X such that

⋃
n∈N

Un[An] = X, where Un[An] = {y ∈ X | (x, y) ∈
Un for some x ∈ An}.

Recall that a uniform space (X,C) is said to be totally bounded or precompact
[4], [3] (resp. pre-Lindelöf or ω-bounded [3], [12]) if each α ∈ C has a finite (resp.
countable) subcover, or equivalently, if for each α ∈ C there exists a finite (resp.
countable) set A ⊂ X such that X = St(A,α).

Evidently that for a uniform space (X,C) we have:

1. If X is totally bounded, then it is uniformly Menger;

2. If X is uniformly Menger, then it is pre-Lindelöf;

3. If (X,TC) has the Menger property, then (X,C) is uniformly Menger.

3 Note. There is a uniform space (X,C) which is uniformly Menger, but
topological space (X,TC) has no the Menger property.

Any non-Lindelöf Tychonoff space serves as such an example. To see this
we have only to observe that each (Tychonoff) space with the Menger prop-
erty is Lindelöf and that, by 8.1.19 and 8.3.4 in [4], each Tychonoff space X
admits a uniformity C∗ which is totally bounded and thus uniformly Menger,
and generates the original topology on X.

4 Note. A regular topological space X has the Menger property if and only
if its fine uniformity has the uniform Menger property.

Let X be a regular topological space with the Menger property. Then X is
Lindelóf and thus paracompact. By a result of A.H. Stone (see 5.4.H.(d) in [4])
it follows that each open cover of X is normal. So, the collection of all open
covers of X is the base of a uniformity on X – the universal uniformity on X
(see 8.1.C in [4]).

5 Note. Any uniformity C on a Tychonoff space X such that (X,C) is
uniformly Menger is coarser or equal to the Shirota uniformity on X ([4]).

It follows from the fact that uniformly Menger uniform spaces are pre-
Lindelöf and 8.1.I in [4].

Uniform spaces having the uniform Menger property have some properties
which are similar to the corresponding properties of totally bounded uniform
spaces.
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6 Theorem. If a uniform space Y is a uniformly continuous image of a
uniformly Menger space X, then Y is also uniformly Menger.

7 Theorem. Every subspace of a uniformly Menger uniform space (X,C)
is uniformly Menger.

Proof. Let (Y,CY ) be a subspace of (X,C) and let (µn | n ∈ N) be a
sequence of elements of CY . For each n let αn be an element in C such that
µn = αn ∧ Y := {U ∩ Y | U ∈ αn} and let βn ∈ C be such that β∗

n < αn. Apply
to the sequence (βn | n ∈ N) the fact that (X,C) is uniformly Menger and find
finite sets An ⊂ X, n ∈ N, such that X =

⋃
n∈N

St(An, βn). For each n put

Bn = {a ∈ An | ∃ y ∈ Y with y ∈ St(a, βn)}

and for each b ∈ Bn choose an element yb ∈ Y with yb ∈ St(b, βn); put

Cn = {yb | b ∈ Bn}.

We claim that the sequence (Cn | n ∈ N) witnesses for (µn | n ∈ N) that (Y,CY )
is uniformly Menger.

Let y ∈ Y . There are n ∈ N and a ∈ An such that y ∈ St(a, βn). By definition
of Bn it means that a ∈ Bn and so there is ya ∈ Cn satisfying ya ∈ St(a, βn),
hence a ∈ St(ya, βn). Since y ∈ St(a, βn) and β∗

n < αn it follows y ∈ St(ya, αn).
This together with y ∈ Y gives y ∈ St(ya, µn), i.e. Y =

⋃
n∈N

St(Cn, µn). QED

The following theorem describes a property of uniform spaces which is close
to the Menger uniform property.

An open cover U of a space X is an ω-cover [6] if X does not belong to U
and every finite subset of X is contained in an element of U .

An open cover U of a space X is said to be weakly groupable [2] if it is a
union of countably many finite, pairwise disjoint subfamilies Un such that for
each finite set F ⊂ X there is an n with F ⊂ ∪Un.

8 Theorem. For a uniform space (X,C) the following are equivalent:

(1) For each sequence (αn | n ∈ N) ⊂ C there is a sequence (βn | n ∈ N) of
finite sets such that for each n, βn ⊂ αn and the set {St(∪βn, αn) | n ∈ N}
is an ω-cover of X;

(2) For each sequence (αn | n ∈ N) ⊂ C there is a sequence (βn | n ∈ N) such
that for each n βn is a finite subset of αn and {St(∪βn, αn) | n ∈ N} is
a weakly groupable cover of X.

(3) For each sequence (αn | n ∈ N) of uniform covers of X there is a sequence
(Fn | n ∈ N) of finite subsets of X such that {St(Fn, αn) | n ∈ N} is an
ω-cover of X;
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(4) For each sequence (αn | n ∈ N) of uniform covers of X there is a sequence
(Fn | n ∈ N) of finite subsets of X such that the set {St(Fn, αn) | n ∈ N}
is a weakly groupable cover of X.

Proof. (1) ⇒ (2): It follows from the fact that each ω-cover is weakly
groupable.

(2) ⇒ (3): Let (αn | n ∈ N) be a sequence of uniform covers of X and let for
each n ∈ N βn be a uniform cover of X such that β∗

n <
∧

i≤n αi. Apply (2) to the
sequence (βn | n ∈ N) and choose a sequence (γn | n ∈ N) such that each γn is
a finite subset of βn and the family {St(∪γn, βn) | n ∈ N} is a weakly groupable
cover of X. Therefore, there is a sequence n1 < n2 < · · · < nk < · · · of natural
numbers such that each finite subset F of X is contained in ∪{St(∪γi, βi) | nk ≤
i < nk+1} for some k ∈ N. For each n and each C ∈ γn let AC be an element of
αn with St(C, βn) ⊂ AC and let δn = {AC | C ∈ γn}. For each AC in δn pick a
point x(AC) ∈ AC , denote by Kn the set {x(AC) | C ∈ γn} and put

Mn = ∪{Ki | i < n1}, for n < n1,
Mn = ∪{Ki | nk ≤ i < nk+1}, for nk ≤ n < nk+1.

Then each Mn is a finite subset of X. Let us show that the set {St(Mn, αn) |
n ∈ N} is an ω-cover of X.

Let F be a finite subset of X. There is some k such that F ⊂ ∪{St(∪γi, βi) |
nk ≤ i < nk+1}. Then we have

F ⊂ ∪{St(∪γi, βi) | nk ≤ i < nk+1} = ∪nk≤i<nk+1
∪C∈γi

St(C, βi)
⊂ ∪nk≤i<nk+1

∪C∈γi
AC ⊂ St(Mn, αn)( for an n with nk ≤ n < nk+1).

It completes the proof of (2) ⇒ (3).

(3) ⇒ (4): As in (1) ⇒ (2) we use the fact that each ω-cover is weakly
groupable.

(4) ⇒ (2): If (αn | n ∈ N) is a sequence of uniform covers of X, then
according to (4) choose first a sequence (Fn | n ∈ N) of finite subsets of X
such that {St(Fn, αn) | n ∈ N} is a weakly groupable cover of X and then for
each point x ∈ Fn pick a set A(x, n) ∈ αn containing x. If for each n ∈ N we
define βn = {A(x, n) | n ∈ Fn}, then the sequence (βn | n ∈ N) witnesses for
(αn | n ∈ N) that X satisfies (2).

(2) ⇒ (1): Let (αn | n ∈ N) be a sequence of elements of C and let for
each n ξn be an element of C such that ξ∗n <

∧
i≤n αi. Choose now a sequence

(µn : n ∈ N) such that for each n µn is a finite subset of ξn and the set
{St(∪µn, ξn) | n ∈ N} is a weakly groupable cover of X. There is an increasing
sequence n1 < n2 < · · · in N such that for each finite set F in X one has
F ⊂ ∪{St(∪µi, ξi) | nk ≤ i < nk+1} for some k. Define now the sequence
(βn | n ∈ N) as follows:
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(i) for each n < n1 let βn =
⋃

i<n1
µi;

(ii) for each n with nk ≤ n < nk+1 let βn =
⋃

nk≤i<nk+1
µi.

Then for each n βn is a finite subset of αn. It is easily seen that we have: for each
finite set F in X there exists an n such that F ⊂ St(∪βn, αn), i.e. X satisfies
(1). QED

2 Uniform Hurewicz spaces

In 1925 in [7] (see also [8]), W. Hurewicz introduced a covering property for
a topological space X, called now the Hurewicz property, in this way:

For each sequence (Un | n ∈ N) of open covers of X there is a
sequence (Vn | n ∈ N) of finite sets such that for each n Vn ⊂ Un,
and for each x ∈ X, for all but finitely many n, x ∈ ∪Vn.

We define now the natural uniform analogue of this property.

A uniform space (X,C) is said to have the uniform Hurewicz property if
for each sequence (αn | n ∈ N) of uniform covers of X there is a sequence
(βn | n ∈ N) such that each βn is a finite subset of αn and for each x ∈ X we
have x ∈ ∪βn for all but finitely many n.

The following theorem gives a characterization of the uniform Hurewicz
property.

9 Theorem. For a uniform space (X,C) the following statements are equiv-
alent:

(1) X is uniformly Hurewicz;

(2) For each sequence (αn | n ∈ N) of uniform covers of X there is a sequence
(Fn | n ∈ N) of finite subsets of X such that each x ∈ X belongs to all but
finitely many sets St(Fn, αn);

(3) For each sequence (αn | n ∈ N) ⊂ C there is a sequence (βn | n ∈ N) such
that for each n βn is a finite subset of αn and each x ∈ X is contained
in all but finitely many sets St(∪βn, αn).

Proof. (1) ⇒ (2): It is evident.

(2) ⇒ (3): Let (αn | n ∈ N) be a sequence of covers from C. By (2) there
is a sequence (Fn | n ∈ N) of finite subsets of X such that each x ∈ X is an
element of St(Fn, αn) for all but finitely many n. For each n and each x ∈ Fn

take an element A(x, n) ∈ αn containing x and put βn = {A(x, n) | n ∈ Fn}. It
is easy to see that the sequence (βn | n ∈ N) guarantees that (3) is true for X.
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(3) ⇒ (1): Let (αn | n ∈ N) be a sequence of uniform covers of X. For each
n ∈ N choose a βn ∈ C with β∗

n < αn. Applying (3) to the sequence (βn | n ∈ N)
one may find a sequence (µn | n ∈ N) such that each µn is a finite subset of
βn and each x ∈ X is a member of St(∪µn, βn) for all but finitely many n. For
each M ∈ µn choose an element U(M) ∈ αn such that St(M,µn) ⊂ U(M) and
put νn = {U(M) |M ∈ µn}. Then for each n νn is a finite subset of αn and it
is routine to check that the sequence (νn | n ∈ N) shows for (αn | n ∈ N) that
X is uniformly Hurewicz. QED

10 Remark. When studying a uniform spaces using entourages of the di-
agonal we shall use the condition (2) of the previous theorem as an official
definition of the uniform Hurewicz property:

A uniform space(X,U) is uniformly Hurewicz if for each sequence (Un | n ∈
N) of entourages of the diagonal there is a sequence (Fn | n ∈ N) of finite subsets
of X such that each x ∈ X belongs to all but finitely many sets Un[Fn].

Notice the following simple facts. For a uniform space (X,C) we have:

1. If X is totally bounded, then it is uniformly Hurewicz;

2. If X is uniformly Hurewicz, then it is uniformly Menger;

3. If (X,TC) has the Hurewicz property, then (X,C) is uniformly Hurewicz.

Arguments similar to those in 3 and 4 give:

11 Note. There is a uniform space (X,C) which is uniformly Hurewicz, but
topological space (X,TC) has no the Hurewicz property.

12 Note. A regular topological space X has the Hurewicz property if and
only if its fine uniformity has the uniform Hurewicz property.

From 4 and 12 we conclude that the classes of uniformly Menger and uni-
formly Hurewicz spaces are different.

The following two results are similar to the corresponding results in Section
1.

13 Theorem. If a uniform space Y is a uniformly continuous image of a
uniformly Hurewicz space X, then Y is also uniformly Hurewicz.

14 Theorem. Every subspace of a uniformly Hurewicz uniform space (X,C)
is uniformly Hurewicz.

The next three results concerning the uniform Hurewicz property are varia-
tions on some properties of totally bounded uniform spaces.

15 Theorem. If a uniformly Hurewicz space (X,CX) is dense in a uniform
space (Y,C), then Y is also uniformly Hurewicz.
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Proof. Let (µn | n ∈ N) be a sequence in C and let for each n αn =
µn ∧X := {V ∩X | V ∈ µn}. Then (αn | n ∈ N) is a sequence in CX . Choose
for each n a member νn ∈ C for which ν∗n < µn and let βn = νn ∧X. Since X
is uniformly Hurewicz, there are finite sets An ⊂ X, n ∈ N, such that each x in
X belongs to all but finitely many St(An, βn)’s. Let us show that (An | n ∈ N)
witnesses for (µn | n ∈ N) that Y is uniformly Hurewicz.

Let y ∈ Y . Let n be big enough. Then there is x ∈ X∩ St(y, νn). Since X
is uniformly Hurewicz, x belongs to all but finitely many sets St(Ak, βk), i.e.
there is k0 such that for each k > k0 there exists ak ∈ Ak with x ∈ St(ak, βk) ⊂
St(ak, νk). But ν∗k < µk and so for all k > max{n, k0} we have y ∈ St(ak, µk).
This means that (Y,CY ) has indeed the uniform Hurewicz property. QED

16 Corollary. A uniform space X is uniformly Hurewicz if and only if its
completion X̃ is uniformly Hurewicz.

17 Theorem. The product (X×Y,CX×CY ) of uniformly Hurewicz uniform
spaces (X,CX) and (Y,CY ) is uniformly Hurewicz.

Proof. Let (γn | n ∈ N) be a sequence in CX × CY ; one may suppose
that all elements in each γn are of the form Un × Vn, with Un ∈ αn ∈ CX ,
Vn ∈ βn ∈ CY . For each n let µn ∈ CX and νn ∈ CY be such that µ∗n < αn and
ν∗n < βn. There is a sequence (An | n ∈ N) of finite subsets of X and a sequence
(Bn | n ∈ N) of finite subsets of Y such that each x ∈ X and each y ∈ Y one
has x ∈ St(An, µn) and y ∈ St(Bn, νn) for all but finitely many n. We prove
that the sets Cn = An ×Bn, n ∈ N, show that X × Y uniformly Hurewicz.

Let (x, y) ∈ X × Y . There is n0 ∈ N such that for each n > n0 we have
x ∈ St(An, µn) and y ∈ St(Bn, νn), i.e for some an ∈ An and some bn ∈ Bn we
have x ∈ St(an, µn), y ∈ St(bn, νn). Further, there is k0 such that for all k > k0

we have an ∈ St(Ak, µk) and bn ∈ St(Bk, νk). Since µ∗n < αn and ν∗n < βn it
follows that for n > max{n0, k0} we have x ∈ St(An, αn) and y ∈ St(Bn, βn),
i.e. (x, y) ∈ St(An ×Bn, γn). QED

Let us remark that in a similar way one can prove the following result.

18 Theorem. The product of a uniformly Menger space X and a uniformly
Hurewicz space Y is uniformly Menger.

We end this section showing a result related to the uniform Hurewicz prop-
erty. Before that we need the following notion [11].

An open cover U of a space X is called groupable if it can be expressed as
a countable union of finite, pairwise disjoint subfamilies Un, n ∈ N, such that
each x ∈ X belongs to ∪Un for all but finitely many n.

An open cover U of a space X is a γ-cover [6] if it is infinite and each x ∈ X
belongs to all but finitely many elements of U .
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19 Theorem. For a uniform space (X,C) the following statements are
equivalent:

(1) For each sequence (αn | n ∈ N) of uniform covers of X there is a sequence
(Fn | n ∈ N) of finite subsets of X such that {St(Fn, αn) | n ∈ N} is a
γ-cover of X;

(2) For each sequence (αn | n ∈ N) ⊂ C there is a sequence (βn | n ∈ N) such
that for each n βn is a finite subset of αn and the set {St(∪βn, αn) | n ∈
N} is a γ-cover of X;

(3) For each sequence (αn | n ∈ N) ⊂ C there is a sequence (βn | n ∈ N) such
that for each n βn is a finite subset of αn and {St(∪βn, αn) | n ∈ N} is
a groupable cover of X;

(4) For each sequence (αn | n ∈ N) ⊂ C there is a sequence (Fn | n ∈ N) of
finite subsets of X such that {St(Fn, αn) | n ∈ N} is a groupable cover of
X.

Proof. (1) ⇒ (2): Let (αn | n ∈ N) be a sequence of covers from C. By (2)
there is a sequence (Fn | n ∈ N) of finite subsets of X such that {St(Fn, αn) |
n ∈ N} is a γ-cover X. For each n and each x ∈ Fn take an element A(x, n) ∈ αn

containing x and then put βn = {A(x, n) | n ∈ Fn}. It is easy to see that the
sequence (βn | n ∈ N) guarantees that (3) is true for X.

(2) ⇒ (3): Because each γ-cover is groupable it follows that this implication
is true.

(3) ⇒ (4): Let (αn | n ∈ N) be a sequence of uniform covers of X. For each
n ∈ N choose a uniform cover βn which is star inscribed in αn. Applying (3) to
the sequence (βn | n ∈ N) one finds a sequence (µn | n ∈ N) such that each µn is
a finite subset of βn and the family {St(∪µn, βn) | n ∈ N} is a groupable cover of
X. This means that there is a sequence n1 < n2 < · · · < nk < · · · in N such that
each x ∈ X belongs to ∪{St(∪µi, βi) | nk ≤ i < nk+1} for all but finitely many
k. For each n ∈ N and each M ∈ µn pick a set AM in αn containing St(M,βn)
and then a point xM ∈ AM . If we put Fn = {xM | M ∈ µn} we obtain a
sequence (Fn | n ∈ N) of finite subsets of X such that {St(Fn, αn) | n ∈ N} is a
groupable cover for X; the sequence n1 < n2 < · · · < nk < · · · shows this fact.

(4) ⇒ (1): Let (αn | n ∈ N) be a sequence of covers from C. For each
n ∈ N choose a βn ∈ C such that β∗

n <
∧

i≤n αi. Apply now (4) to the sequence
(βn | n ∈ N) and for each n ∈ N choose a finite subset Fn of X such that
{St(Fn, βn) | n ∈ N} is a groupable cover of X, i.e. there is a sequence n1 <
n2 < · · · < nk < · · · of positive integers such that each x ∈ X belongs to
∪{St(Fi, βi) | nk ≤ i < nk+1} for all but finitely many k. Further, we define
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Φn =
⋃

i<n1
Fi, for each n < n1,

Φn =
⋃

nk≤i<nk+1
Fi, for each n with nk ≤ n < nk+1.

For each n Φn is a finite subset ofX. It is easily verified that the set {St(Φn, αn) |
n ∈ N} is a γ-cover of X, i.e. that (1) holds. QED

3 Rothberger’s property in uniform spaces

By analogy with the definition of the Rothberger property in topological
spaces we introduce the next notion.

A uniform space (X,C) has the uniform Rothberger property if for each
sequence (αn | n ∈ N) of elements of C there is a sequence (Un | n ∈ N) such
that for each n ∈ N Un ∈ αn and

⋃
n∈N

Un = X.

20 Theorem. For a uniform space (X,C) the following are equivalent:

(a) X has the uniform Rothberger property;

(b) For each sequence (αn | n ∈ N) ⊂ C there is a sequence (xn | n ∈ N) of
elements of X such that X =

⋃
n∈N

St(xn, αn).

(c) For each sequence (αn | n ∈ N) ⊂ C there is a sequence (An | n ∈ N) such
that for each n An ∈ αn and X =

⋃
n∈N

St(An, αn).

Proof. (a) ⇒ (b): Let (αn | n ∈ N) be a sequence of covers from C. By (a),
for each n choose a member Un in αn such that {Un | n ∈ N} is a cover of X.
For each n choose an element xn ∈ Un. Then

X =
⋃

n∈N

Un ⊂
⋃

n∈N

St(xn, αn),

i.e. (b) holds.

(b) ⇒ (c): It is clear.

(c) ⇒ (a): Let (αn | n ∈ N) be a sequence of uniform covers of X. Choose a
sequence (γn | n ∈ N) ⊂ C such that for each n γn is star inscribed in αn | γ∗n <
αn. Apply (c) to the sequence (γn | n ∈ N); there is a sequence (Gn | n ∈ N)
such that for each n Gn ∈ γn and

⋃
n∈N

St(Gn, γn) = X. Let for each n An be
an element of αn such that St(Gn, γn) ⊂ An. Then X =

⋃
n∈N

An. QED

Notice that each uniformly Rothberger uniform space is uniformly Menger
but these two classes of spaces are distinct. It follows from the fact (that can be
verified in a similar manner as in 4 and 12) that a regular topological space X
has the Rothberger property if and only if its fine uniformity has the uniform
Rothberger property.
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4 Uniform γ-sets

A topological space X is a γ-set [6] if for each sequence (Un | n ∈ N) of
ω-covers of X there is a sequence (Un | n ∈ N) such that for each n, Un ∈ Un

and the set {Un | n ∈ N} is a γ-cover of X.

We define uniform γ-sets in the following way.

A uniform space (X,C) is said to be a uniform γ-set if for each sequence
(αn | n ∈ N) of uniform covers of X there is a sequence (xn | n ∈ N) of elements
of X such that each x is contained in St(xn, αn) for all but finitely many n.

21 Theorem. For a uniform space (X,C) the following assertions are equiv-
alent:

(1) X is a uniform γ-set;

(2) For each sequence (αn | n ∈ N) of uniform covers of X there is a sequence
(An | n ∈ N) such that for each n An ∈ αn and the set {St(An, αn) | n ∈ N}
is a γ-cover of X.

Proof. To prove (1) implies (2) we need to argue as in the proof of (2)
implies (3) of Theorem 9. So, we have to prove only (2) ⇒ (1).

Let (αn | n ∈ N) be a sequence of uniform covers of X. For each n choose a
βn ∈ C such that β∗

n < αn. We apply (2) to the sequence (βn | n ∈ N) and select
for each n an element Bn ∈ βn such that the set {St(Bn, βn) | n ∈ N} is a γ-cover
of X. For each n ∈ N let An be a member of αn satisfying St(Bn, βn) ⊂ An.
For each n take a point xn ∈ An. Then we have the sequence (xn | n ∈ N)
witnessing for (αn | n ∈ N) that X is a uniform γ-set. QED

5 Closing remarks

To each selection principle for topological spaces it is naturally associated the
corresponding game and often selection principles can be characterized game-
theoretically (see [16]).

In uniform case to each uniform selection principle one can assign also the
corresponding game. For example, the game associated to the uniform Menger
property is defined in the following way. Two players, ONE and TWO, play
a round for each positive integer. In the n-th round ONE chooses a uniform
cover αn and TWO responds by choosing a finite set Fn ⊂ X. TWO wins
a play α1, F1;α2, F2, · · · if X =

⋃
n∈N

St(Fn, αn); otherwise ONE wins. The
other games corresponding to the uniform Hurewicz property and the uniform
Rothberger property are defined similarly. Evidently, if ONE does not have
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a winning strategy in these games, then the corresponding uniform selection
principle holds.

Find examples that show that no converse is true in each of these three
situations.
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[10] Lj. D. Kočinac: Star-Menger and related spaces, Publ. Math. Debrecen, 55, (1999),
421–431.
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