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Abstract. In 1963, Levine [2] introduced the notion of semi-open sets which is weaker than
the notion of open sets in topological spaces. Since then several interesting generalized open
sets came to existence. In 1968, Velic̆ko [5] introduced δ-open sets, which are stronger than
open sets, in order to investigate the characterization of H-closed spaces. In 1997, Park et al.
[4] have offered a new notion called δ-semiopen sets which are stronger than semi-open sets but
weaker than δ-open sets. They also studied the relationships between these sets and several
other types of open sets.

It is the aim of this paper to offer some weak separation axioms by utilizing δ-semiopen
sets and the δ-semi-closure operator.
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Introduction and preliminaries

In what follows (X, τ) and (Y, σ) (or X and Y ) denote topological spaces.
Let A be a subset of X. We denote the interior and the closure of a set A by
Int(A) and Cl(A) respectively.
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Levine [2] defined semiopen sets which are weaker than open sets in topolog-
ical spaces. After Levines semiopen set, mathematicians gave in several papers
different and interesting new open sets as well as generalized open sets. In 1968,
Velic̆ko [5] introduced δ-open sets, which are stronger than open sets, in order to
investigate the characterization of H-closed spaces. In 1997, Park et al. [4] have
introduced the notion of δ-semiopen sets which are stronger than semiopen sets
but weaker than δ-open sets and investigated the relationships between several
types of these open sets. Also for the notions of δ-Ti spaces, i = 0, 1, 2, R0

spaces, weakly R0 spaces, δ-R0 spaces and weakly δ-R0 spaces see [1] and [3].

Let A be a subset of X. A point x ∈ X is called the δ-cluster point of A
if A ∩ Int(Cl(U)) 6= ∅ for every open set U of X containing x. The set of all
δ-cluster points of A is called the δ-closure of A, denoted by Clδ(A). A subset
A of X is called δ-closed if A = Clδ(A). The complement of a δ-closed set is
called δ-open.

A subset A of X is called semi-open if A ⊂ Cl(Int(A)). Also, a subset A
of a topological space X is said to be δ-semiopen set [4] if there exists a δ-open
set U of X such that U ⊂ A ⊂ Cl(U). The complement of a δ-semiopen set
is called a δ-semiclosed set. A point x ∈ X is called the δ-semicluster point
of A if A ∩ U 6= ∅ for every δ-semiopen set U of X containing x. The set
of all δ-semicluster points of A is called the δ-semiclosure of A, denoted by
sClδ(A). We denote the collection of all δ-semiopen (resp. δ-semiclosed) sets by
δSO(X, τ) (resp. δSC(X, τ)). We say that a set U in a topological space (X, τ)
is a δ-semineighborhood of a point x if U contains a δ-semiopen set to which x
belongs.

1 Lemma. The intersection of arbitrary collection of δ-semiclosed sets in
(X, τ) is δ-semiclosed

2 Corollary. Let A be a subset of a topological space (X, τ), sClδ(A) =
∩{F ∈ δSC(X, τ) | A ⊂ F }.

3 Corollary. sClδ(A) is δ-semiclosed, that is sClδ(sClδ(A)) = sClδ(A).

4 Lemma. For subsets A and Ai (i ∈ I) of a space (X, τ), the following
hold:

(1) A ⊂ sClδ(A).

(2) If A ⊂ B, then sClδ(A) ⊂ sClδ(B).

(3) sClδ(∩{Ai | i ∈ I }) ⊂ ∩{ sClδ(Ai) | i ∈ I }.
(4) sClδ(∪{Ai | i ∈ I }) = ∪{ sClδ(Ai) | i ∈ I }.
(5) A is δ-semiclosed if and only A = sClδ(A).

5 Example. Let (X, τ) be a topological space such that X = {a, b, c} and
τ = {∅, X, {a}, {b}, {a, b}}. Clearly the family of all δ-open sets is the family τ
and δSO(X, τ) = {∅, X, {a}, {b}, {a, b}, {b, c}, {a, c}}. Let A = {a, b} and B =
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{b, c}. Then, we have sClδ(A∩B) = {b} and sClδ(A)∩ sClδ(B) = X ∩{b, c} =
{b, c}. So sClδ(A ∩B) 6= sClδ(A) ∩ sClδ(B). Also sClδ(A) = X 6= A.

1 δ-semiD-sets and associated separation axioms

6 Definition. A subset A of a topological space X is called a δ-semiD-set
if there are two U, V ∈ δSO(X, τ) such that U 6= X and A=U \ V .

It is true that every δ-semiopen set U different from X is a δ-semiD-set if
A=U and V=∅.

7 Example. Let (X, τ) be a topological space such that X = {a, b, c}
and τ = {∅, X, {a}, {b}, {a, b}}. Then δSO(X, τ) = {∅, X, {a}, {b}, {a, b}, {b, c},
{a, c}} and the family of all δ-semiD-sets is the family {∅, {a}, {b}, {c}, {a, b},
{b, c}, {a, c}}. So, the set {c} is a δ-semiD-set which is not δ-semiopen.

8 Definition. A topological space (X, τ) is called δ-semiD0 if for any dis-
tinct pair of points x and y of X there exists a δ-semiD-set of X containing x
but not y or a δ-semiD-set of X containing y but not x.

9 Definition. A topological space (X, τ) is called δ-semiD1 if for any dis-
tinct pair of points x and y of X there exists a δ-semiD-set of X containing x
but not y and a δ-semiD-set of X containing y but not x.

10 Definition. A topological space (X, τ) is called δ-semiD2 if for any
distinct pair of points x and y of X there exists disjoint δ-semiD-sets G and E
of X containing x and y, respectively.

11 Definition. A topological space (X, τ) is called δ-semiT0 if for any dis-
tinct pair of points in X, there is a δ-semiopen set containing one of the points
but not the other.

12 Definition. A topological space (X, τ) is called δ-semiT1 if for any dis-
tinct pair of points x and y in X, there is a δ-semiopen U in X containing x
but not y and a δ-semiopen set V in X containing y but not x.

13 Definition. A topological space (X, τ) is called δ-semiT2 if for any dis-
tinct pair of points x and y in X, there exist δ-semiopen sets U and V in X
containing x and y, respectively, such that U ∩ V = ∅.

14 Remark. Obviously, we have:
(i) If (X, τ) is δ-semiTi , then it is δ-semiTi−1, i = 1, 2.
(ii) If (X, τ) is δ-semiTi , then it is δ-semiDi , i = 0, 1, 2.
(iii) If (X, τ) is δ-semiDi , then it is δ-semiDi−1 , i = 1, 2.

15 Example. Let (X, τ) be a topological space such that X = {a, b, c, d}
and τ = {∅, X, {a}, {b}, {a, b}}. Clearly the family of all δ-open sets is the fam-
ily τ , δSO(X, τ) = {{a}, {b}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {a, b, c}, {a, b, d},
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{a, c, d}, {b, c, d}, ∅, X} and the family of all δ-semiD-sets is the family {{a},
{b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d},
∅}. The space (X, τ) is not δ-Ti space and Ti space, i = 0, 1, 2. But the space
(X, τ) is δ-semiTi and δ-semiDi space, i = 0, 1, 2.

16 Theorem. For a topological space (X, τ) the following statements are
true:

(1) (X, τ) is δ-semiD0 if and only if it is δ-semiT0.

(2) (X, τ) is δ-semiD1 if and only if it is δ-semiD2.

Proof. (1) The sufficiency is Remark 14(ii). To prove necessity. Let (X, τ)
be δ-semiD0. Then for each distinct pair x, y ∈ X, at least one of x, y, say x,
belongs to a δ-semiD-set G but y /∈ G. Let G = U1 \ U2 where U1 6= X and
U1,U2 ∈ δSO(X, τ). Then x ∈ U1, and for y /∈ G we have two cases: (a) y /∈ U1

; (b) y ∈ U1 and y ∈ U2.

In case (a), U1 contains x but does not contain y ;

In case (b), U2 contains y but does not contain x. Hence X is δ-semiT0.

(2) Sufficiency. Remark 14(iii).

Necessity. Suppose X δ-semiD1. Then for each distinct pair x, y ∈ X, we
have δ-semiD-sets G1, G2 such that x ∈ G1, y /∈ G1 and y ∈ G2, x /∈ G2. Let
G1= U1\U2 and G2 = U3\U4. From x /∈ G2 we have either x /∈ U3 or x ∈ U3

and x ∈ U4. We discuss the two cases separately.

(1) x /∈ U3. From y /∈ G1 we have two subcases:

(a) y /∈ U1. From x ∈ U1\U2 we have x ∈ U1\ (U2∪ U3) and from y ∈ U3\U4

we have y ∈ U3\(U1∪U4). It is easy to see that (U1\(U2∪U3))∩(U3\(U1∪U4) = ∅.
(b) y ∈ U1 and y ∈ U2. We have x ∈ U1\U2, y ∈ U2. (U1\U2) ∩ U2 = ∅.
(2) x ∈ U3 and x ∈ U4. We have y ∈ U3\U4, x ∈ U4. (U3\U4) ∩ U4 = ∅.

From the discussion above we know that the space X is δ-semiD2. QED

17 Theorem. If (X, τ) is δ-semiD1, then it is δ-semiT0.

Proof. The proof of this theorem follows by Remark 14 and Theorem 16.
QED

Questions 1.

(i) Does there exist a space which is δ-semiD1 and it is not δ-semiT1?

(ii) Does there exist a space which is δ-semiD1 and it is not δ-semiT2?

(iii) Does there exist a space which is δ-semiT0 and it is not δ-semiD1?

18 Theorem. A topological space (X, τ) is δ-semiT0 if and only if for each
pair of distinct points x, y of X, sClδ({x}) 6= sClδ({y}).

Proof. Sufficiency: Suppose that x, y ∈ X, x 6= y and sClδ({x}) 6= sClδ({y}).
Let z is a point of X such that z ∈ sClδ({x}) but z /∈ sClδ({y}). We claim that
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x /∈ sClδ({y}). For, if x ∈ sClδ({y}) then sClδ({x}) ⊂ sClδ({y}). And this con-
tradicts the fact that z /∈ sClδ({y}). Consequently x belongs to the δ-semiopen
set [sClδ({y})]c to which y does not belong.

Necessity: Let (X, τ) be a δ-semiT0 space and x, y be any two distinct points
of X. There exists a δ-semiopen set G containing x or y, say x but not y. Then
Gc is a δ-semiclosed set which does not contain x but contains y. Since sClδ({y})
is the smallest δ-semiclosed set containing y (Corollary 2), sClδ({y}) ⊂ Gc, and
so x /∈ sClδ({y}). Consequently sClδ({x}) 6= sClδ({y}). QED

19 Theorem. A topological space (X, τ) is δ-semiT1 if and only if the sin-
gletons are δ-semiclosed sets.

Proof. Suppose (X, τ) is δ-semiT1 and x be any point of X. Let y ∈ {x}c.
Then x 6= y and so there exists a δ-semiopen set Uy such that y ∈ Uy but
x/∈ Uy. Consequently y ∈ Uy ⊂ {x}c i.e., {x}c =

⋃{Uy | y ∈ {x}c } which is
δ-semiopen.

Conversely. Suppose {p} is δ-semiclosed for every p ∈ X. Let x, y ∈ X with
x 6= y. Now x 6= y implies y ∈ {x}c. Hence {x}c is a δ-semiopen set containing
y but not containing x. Similarly {y}c is a δ-semiopen set containing x but not
containing y. Accordingly X is a δ-semiT1 space. QED

20 Definition. A point x ∈ X which has onlyX as the δ-semineighborhood
is called a δ-semineat point.

21 Theorem. For a δ-semiT0 topological space (X, τ) the following are
equivalent:

(1) (X, τ) is δ-semiD1;

(2) (X, τ) has no δ-semineat point.

Proof. (1) → (2). Since (X, τ) is δ-semiD1, so each point x of X is con-
tained in a δ-semiD-set O=U\V and thus in U . By definition U 6= X. This
implies that x is not a δ-semineat point.

(2) → (1). If X is δ-semiT0, then for each distinct pair of points x, y ∈ X, at
least one of them, x(say) has a δ-semineighborhood U containing x and not y.
Thus U which is different from X is a δ-semiD-set. If X has no δ-semineat
point, then y is not a δ-semineat point. This means that there exists a δ-
semineighborhood V of y such that V 6= X. Thus y ∈ (V \U) but not x and
V \U is a δ-semiD-set. Hence X is δ-semiD1. QED

22 Remark. It is clear that a δ-semiT0 topological space (X, τ) is not δ-
semiD1 if and only if there is a unique δ-semineat point in X. It is unique
because if x and y are both δ-semineat point in X, then at least one of them say
x has a δ-semineighborhood U containing x but not y. But this is a contradiction
since U 6= X.
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23 Definition. A topological space (X, τ) is δ-semisymmetric if for x and
y in X, x ∈ sClδ({y}) implies y ∈ sClδ({x}).

24 Definition. A subset A of a topological space (X, τ) is called a (δ, δ)-
semigeneralized-closed set (briefly (δ, δ)-sg-closed) if sClδ(A) ⊂ U whenever
A ⊂ U and U is δ-semiopen in (X, τ).

25 Lemma. Every δ-semiclosed set is (δ, δ)-sg-closed.

26 Theorem. A topological space (X, τ) is δ-semisymmetric if and only if
{x} is (δ, δ)-sg-closed for each x ∈ X.

Proof. Assume that x ∈ sClδ({y}) but y /∈ sClδ({x}). This means that
the complement of sClδ({x}) contains y. Therefore the set {y} is a subset of
the complement of sClδ({x}). This implies that sClδ({y}) is a subset of the
complement of sClδ({x}). Now the complement of sClδ({x}) contains x which
is a contradiction.

Conversely, suppose that {x} ⊂ E ∈ δSO(X, τ), but sClδ({x}) is not a
subset of E. This means that sClδ({x}) and the complement of E are not
disjoint. Let y belongs to their intersection. Now we have x ∈ sClδ({y}) which is
a subset of the complement of E and x /∈ E. But this is a contradiction. QED

27 Corollary. If a topological space (X, τ) is a δ-semiT1 space, then it is
δ-semisymmetric.

Proof. In a δ-semiT1 space singleton sets are δ-semiclosed (Theorem 19)
and therefore (δ, δ)-sg-closed (Lemma 25). By Theorem 26, the space is δ-
semisymmetric. QED

28 Corollary. For a topological space (X, τ) the following are equivalent:

(1) (X, τ) is δ-semisymmetric and δ-semiT0;

(2) (X, τ) is δ-semiT1.

Proof. By Corollary 27 and Remark 14 it suffices to prove only (1) → (2).
Let, then x 6= y and by δ-semiT0, we may assume that x ∈ G1 ⊂ {y}c for
some G1 ∈ δSO(X, τ). Then x /∈ sClδ({y}) and hence y /∈ sClδ({x}). There
exists a G2 ∈ δSO(X, τ) such that y ∈ G2 ⊂ {x}c and (X, τ) is a δ-semiT1

space. QED

29 Theorem. For a δ-semisymmetric topological space (X, τ) the following
are equivalent:

(1) (X, τ) is δ-semiT0;

(2) (X, τ) is δ-semiD1;

(3) (X, τ) is δ-semiT1.

Proof. (1) → (3) : Corollary 28.

(3) → (2) → (1) : Remark 14 and Theorems 16 and 17. QED
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30 Definition. A function f : (X, τ) → (Y, σ) is said to be δ-semicontinuous
if for each x ∈ X and each δ-semiopen set V containing f(x), there is a δ-
semiopen set U in X containing x such that f(U) ⊂ V .

31 Lemma. A function f : (X, τ) → (Y, σ) is δ-semicontinuous if and only
if the inverse image of each δ-semiopen set is δ-semiopen.

32 Definition. Let (X, τ) be a topological space, x ∈ X and {xs, s ∈ S}
be a net of X. We say that the net {xs, s ∈ S} δ-semiconverges to x if for each
δ-semiopen set U containing x there exists an element s0 ∈ S such that s ≥ s0
implies xs ∈ U .

33 Definition. A filterbase F is called δ-semiconvergent to a point x in X,
if for any δ-semiopen set U of X containing x, there exists B in F such that B
is a subset of U .

34 Theorem. For a function f : (X, τ) → (Y, σ), the following statements
are equivalent:

(1) f is δ-semicontinuous;

(2) For each x ∈ X and each filterbase F which δ-semiconverges to x, f(F)
δ-semiconverges to f(x).

(3) For each x ∈ X and each net {xs, s ∈ S} in X which δ-semiconverges
to x, we have that the net {f(xs), s ∈ S} of Y δ-semiconverges to f(x) ∈ Y .

Proof. Obvious. QED

35 Definition. A function f : (X, τ) → (Y, σ) is said to be δ-semiD-
continuous if for each x ∈ X and each δ-semiD-set V containing f(x), there
is a δ-semiD-set U in X containing x such that f(U) ⊂ V .

36 Lemma. function f : (X, τ) → (Y, σ) is δ-semiD-continuous if and only
if the inverse image of each δ-semiD-set is δ-semiD-set.

37 Definition. Let (X, τ) be a topological space, x ∈ X and {xs, s ∈ S} be
a net of X. We say that the net {xs, s ∈ S} δ-semiD-converges to x if for each
δ-semiD-set U containing x there exists an element s0 ∈ S such that s ≥ s0
implies xs ∈ U .

38 Definition. A filterbase F is called δ-semiD-convergent to a point x in
X, if for any δ-semiD-set U of X containing x, there exists B in F such that B
is a subset of U .

39 Theorem. For a function f : (X, τ) → (Y, σ), the following statements
are equivalent:

(1) f is δ-semiD-continuous;

(2) For each x ∈ X and each filterbase F which δ-semiD-converges to x,
f(F) δ-semiD-converges to f(x).
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(3) For each x ∈ X and each net {xs, s ∈ S} in X which δ-semiD-converges
to x, we have that the net {f(xs), s ∈ S} of Y δ-semiD-converges to f(x) ∈ Y .

Proof. Obvious. QED

40 Example. Let (X, τ) be a topological space such that X = {a, b, c} and
τ = {∅, X, {a}, {b}, {a, b}} and let f : X → X be a map such that f(a) = b,
f(b) = c and f(c) = a. Clearly the map f is not δ-semicontinuous. But the map
f is δ-semiD-continuous.

41 Theorem. If f : (X, τ) → (Y, σ) is a δ-semicontinuous surjective func-
tion and E is a δ semiD-set in Y, then the inverse image of E is a δ-semiD-set
in X.

Proof. Let E be a δ semiD-set in Y . Then there are δ-semiopen sets U1

and U2 in Y such that S = U1\U2 and U1 6= Y . By the δ-semicontinuity of f ,
f−1(U1) and f−1(U2) are δ-semiopen inX. Since U1 6= Y , we have f−1(U1) 6= X.
Hence f−1(E) = f−1(U1)\f−1(U2) is a δ-semiD-set. QED

42 Theorem. If (Y, σ) is δ-semiD1 and f : (X, τ) → (Y, σ) is δ-semicon-
tinuous and bijective, then (X, τ) is δ-semiD1.

Proof. Suppose that Y is a δ-semiD1 space. Let x and y be any pair of
distinct points in X. Since f is injective and Y is δ-semiD1, there exist δ-semiD-
sets Gx and Gy of Y containing f(x) and f(y) respectively, such that f(y) /∈ Gx

and f(x) /∈ Gy. By Theorem 41, f−1(Gx) and f−1(Gy) are δ-semiD-sets in X
containing x and y respectively. This implies thatX is a δ-semiD1 space. QED

43 Theorem. A topological space (X, τ) is δ-semiD1 if and only if for
each pair of distinct points x, y ∈ X, there exists a δ-semicontinuous surjective
function f : (X, τ) → (Y, σ), where Y is a δ-semiD1 space such that f(x) and
f(y) are distinct.

Proof. Necessity. For every pair of distinct points of X, it suffices to take
the identity function on X.

Sufficiency. Let x and y be any pair of distinct points in X. By hypoth-
esis, there exists a δ-semicontinuous, surjective function f of a space X onto
a δ-semiD1 space Y such that f(x) 6= f(y). Therefore, there exist disjoint δ-
semiD-sets Gx and Gy in Y such that f(x) ∈ Gx and f(y) ∈ Gy. Since f is
δ-semicontinuous and surjective, by Theorem 41, f−1(Gx) and f−1(Gy) are dis-
joint δ-semiD-sets in X containing x and y, respectively. Hence by Theorem 16,
X is δ-semiD1 space. QED
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2 Sober δ-semiR0 spaces

44 Definition. Let A be a subset of a space X. The δ-semikernel of A,
denoted by sKerδ(A), is defined to be the set sKerδ(A) = ∩{O ∈ δSO(X, τ) :
A ⊂ O}.

45 Lemma. Let (X, τ) be a topological space and x ∈ X. Then
sKerδ(A) = {x ∈ X : sClδ({x}) ∩A 6= ∅}.

Proof. Let x ∈ sKerδ(A) and suppose sClδ({x}) ∩ A = ∅. Hence x /∈
X\sClδ({x}) which is a δ-semiopen set containing A. This is absurd, since x ∈
sKerδ(A). Consequently, sClδ({x}) ∩A 6= ∅. Next, let x such that sClδ({x}) ∩
A 6= ∅ and suppose that x /∈ sKerδ(A). Then, there exists a δ-semiopen
set D containing A and x /∈ D. Let y ∈ sClδ({x}) ∩ A. Hence, D is a δ-
semineighborhood of y which does not containing x. By this contradiction
x ∈ sKerδ(A) and the claim. QED

46 Definition. A topological space (X, τ) is said to be sober δ-semiR0 if

∩x∈XsClδ({x}) = ∅.

47 Example. Let (X, τ) be a topological space such that X = {a, b, c} and
τ = {∅, X, {a}, {b}, {a, b}}. Clearly the space X is not weakly R0 and weakly
δ-R0. Also ∩x∈XsClδ({x}) = ∅. Thus the space X is sober δ-semiR0.

48 Theorem. A topological space (X, τ) is sober δ-semiR0 if and only if
sKerδ({x}) 6= X for every x ∈ X.

Proof. Suppose that the space (X, τ) be sober δ-semiR0. Assume that
there is a point y in X such that sKerδ({y}) = X. Then y /∈ O which O is some
proper δ-semiopen subset of X. This implies that y ∈ ∩x∈XsClδ({x}). But this
is a contradiction.

Now assume that sKerδ({x}) 6= X for every x ∈ X. If there exists a point
y in X such that y ∈ ∩x∈XsClδ({x}), then every δ-semiopen set containing y
must contain every point of X. This implies that the space X is the unique
δ-semiopen set containing y. Hence sKerδ({y}) = X which is a contradiction.
Therefore (X, τ) is sober δ-semiR0. QED

49 Theorem. If the topological space X is sober δ-semiR0 and Y is any
topological space, then the product X × Y is sober δ-semiR0.

Proof. By showing that ∩(x,y)∈X×Y sClδ({x, y}) = ∅ we are done. We have:

∩(x,y)∈X×Y sClδ({x, y}) ⊂ ∩(x,y)∈X×Y (sClδ({x}) × sClδ({y}))
= ∩x∈X sClδ({x}) × ∩y∈Y sClδ({y}) ⊂ ∅ × Y = ∅.

QED
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3 δ-semiR0 and δ-semiR1 spaces

50 Definition. A topological space (X, τ) is said to be a δ-semiR0 space if
every δ-semiopen set contains the δ-semiclosure of each of its singletons.

51 Definition. A topological space (X, τ) is said to be δ-semiR1 if for x, y
in X with sClδ({x}) 6= sClδ({y}), there exist disjoint δ-semiopen sets U and V
such that sClδ({x}) is a subset of U and sClδ({y}) is a subset of V .

52 Example. Let (X, τ) be a topological space such that X = {a, b, c} and
τ = {∅, X, {a}, {b}, {a, b}}. Clearly the space X is not R0, δ-R0, R1 and δ-R1

space. Also the space (X, τ) is δ-semiR0 and δ-semiR1.

53 Lemma. Let (X, τ) be a topological space and x ∈ X. Then

y ∈ sKerδ({x}) if and only if x ∈ sClδ({y}).

Proof. Suppose that y /∈ sKerδ({x}). Then there exists a δ-semiopen set
V containing x such that y /∈ V . Therefore we have x /∈ sClδ({y}). The converse
is similarly shown. QED

54 Lemma. The following statements are equivalent for any points x and
y in a topological space (X, τ) :
(1) sKerδ({x}) 6= sKerδ({y});
(2) sClδ({x}) 6= sClδ({y}).

Proof. (1) → (2) : Suppose that sKerδ({x}) 6= sKerδ({y}), then there
exists a point z in X such that z ∈ sKerδ({x}) and z /∈ sKerδ({y}). From z ∈
sKerδ({x}) it follows that {x}∩sClδ({z}) 6= ∅ which implies x ∈ sClδ({z}). By
z /∈ sKerδ({y}), we have {y}∩sClδ({z}) = ∅. Since x ∈ sClδ({z}), sClδ({x}) ⊂
sClδ({z}) and {y} ∩ sClδ({z}) = ∅. Therefore it follows that sClδ({x}) 6=
sClδ({y}). Now sKerδ({x}) 6= sKerδ({y}) implies that sClδ({x}) 6= sClδ({y}).
(2) → (1) : Suppose that sClδ({x}) 6= sClδ({y}). Then there exists a point z
in X such that z ∈ sClδ({x}) and z /∈ sClδ({y}). It follows that there exists a
δ-semiopen set containing z and therefore x but not y, namely, y /∈ sKerδ({x})
and thus sKerδ({x}) 6= sKerδ({y}). QED

55 Theorem. If (X, τ) is δ-semiR1, then (X, τ) is δ-semiR0.

Proof. Let U be δ-semiopen and x ∈ U . If y /∈ U , then since x /∈ sClδ({y}),
sClδ({x}) 6= sClδ({y}). Hence, there exists a δ-semiopen Vy such that sClδ({y})
⊂ Vy and x /∈ Vy, which implies y /∈ sClδ({x}). Thus sClδ({x}) ⊂ U . Therefore
(X, τ) is δ-semiR0. QED

Question 2. Does there exist a space which is δ-semiR0 and it is not δ-
semiR1?
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56 Theorem. A topological space (X, τ) is δ-semiR1 if and only if for x, y ∈
X, sKerδ({x}) 6= sKerδ({y}), there exist disjoint δ-semiopen sets U and V such
that sClδ({x}) ⊂ U and sClδ({y}) ⊂ V .

Proof. It follows from Lemma 54. QED

57 Theorem. A topological space (X, τ) is a δ-semiR0 space if and only for
any x and y in X, sClδ({x}) 6= sClδ({y}) implies sClδ({x}) ∩ sClδ({y}) = ∅.

Proof. Neces. Assume (X, τ) δ-semiR0 and x, y ∈ X such that sClδ({x})
6= sClδ({y}). Then, there exist z ∈ sClδ({x}) such that z /∈ sClδ({y}) (or
z ∈ sClδ({y}) such that z /∈ sClδ({x})). There exists V ∈ δSO(X, τ) such
that y /∈ V and z ∈ V ; hence x ∈ V . Therefore, we have x /∈ sClδ({y}). Thus
x ∈ X\sClδ({y}) ∈ δSO(X, τ), which implies sClδ({x}) ⊂ X\sClδ({y}) and
sClδ({x}) ∩ sClδ({y}) = ∅. The proof for otherwise is similar.

Sufficiency. Let V ∈ δSO(X, τ) and let x ∈ V . We will show that sClδ({x})
⊂ V . Really, let y /∈ V , i.e., y ∈ X\V . Then x 6= y and x /∈ sClδ({y}). This
shows that sClδ({x}) 6= sClδ({y}). By assumption, sClδ({x}) ∩ sClδ({y}) = ∅.
Hence y /∈ sClδ({x}). Therefore sClδ({x}) ⊂ V . QED

58 Theorem. A topological space (X, τ) is a δ-semiR0 space if and only if
for any points x and y in X, sKerδ({x}) 6= sKerδ({y}) implies sKerδ({x}) ∩
sKerδ({y}) = ∅.

Proof. Suppose that (X, τ) is a δ-semiR0 space. Thus by Lemma 54,
for any points x and y in X if sKerδ({x}) 6= sKerδ({y}) then sClδ({x}) 6=
sClδ({y}). Now we prove that sKerδ({x}) ∩ sKerδ({y}) = ∅. Assume that
z ∈ sKerδ({x})∩sKerδ({y}). By z ∈ sKerδ({x}) and Lemma 53, it follows that
x ∈ sClδ({z}). Since x ∈ sClδ({x}), by Theorem 57 sClδ({x}) = sClδ({z}).
Similarly, we have sClδ({y}) = sClδ({z}) = sClδ({x}). This is a contradiction.
Therefore, we have sKerδ({x}) ∩ sKerδ({y}) = ∅.

Conversely , let (X, τ) be a topological space such that for any points x and
y in X, sKerδ({x}) 6= sKerδ({y}) implies sKerδ({x}) ∩ sKerδ({y}) = ∅. If
sClδ({x}) 6= sClδ({y}), then by Lemma 54, sKerδ({x}) 6= sKerδ({y}). There-
fore sKerδ({x}) ∩ sKerδ({y}) = ∅ which implies sClδ({x}) ∩ sClδ({y}) = ∅.
Because z ∈ sClδ({x}) implies that x ∈ sKerδ({z}) and therefore sKerδ({x})∩
sKerδ({z}) 6= ∅. By hypothesis, we therefore have sKerδ({x}) = sKerδ({z}).
Then z ∈ sClδ({x}) ∩ sClδ({y}) implies that sKerδ({x}) = sKerδ({z}) =
sKerδ({y}). This is a contradiction. Therefore, sClδ({x}) ∩ sClδ({y}) = ∅ and
by Theorem 57 (X, τ) is a δ-semiR0 space. QED

59 Theorem. For a topological space (X, τ), the following properties are
equivalent:
(1) (X, τ) is a δ-semiR0 space;
(2) For any nonempty set A and G ∈ δSO(X, τ) such that A ∩ G 6= ∅, there
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exists F ∈ δSC(X, τ) such that A ∩ F 6= ∅ and F ⊂ G;
(3) Any G ∈ δSO(X, τ), G = ∪{F ∈ δSC(X, τ) | F ⊂ G };
(4) Any F ∈ δSC(X, τ), F = ∩{G ∈ δSO(X, τ) | F ⊂ G };
(5) For any x ∈ X, sClδ({x}) ⊂ sKerδ({x}).

Proof. (1) → (2) : Let A be a nonempty set of X and G ∈ δSO(X, τ) such
that A∩G 6= ∅. There exists x ∈ A∩G. Since x ∈ G ∈ δSO(X, τ), sClδ({x}) ⊂
G. Set F = sClδ({x}), then F ∈ δSC(X, τ), F ⊂ G and A ∩ F 6= ∅.
(2) → (3) : Let G ∈ δSO(X, τ), then G ⊃ ∪{F ∈ δSC(X, τ) : F ⊂ G}.
Let x be any point of G. There exists F ∈ δSC(X, τ) such that x ∈ F and
F ⊂ G. Therefore, we have x ∈ F ⊂ ∪{F ∈ δSC(X, τ) | F ⊂ G } and hence
G = ∪{F ∈ δSC(X, τ) | F ⊂ G }.
(3) → (4) : This is obvious.
(4) → (5) : Let x be any point of X and y /∈ sKerδ({x}). There exists V ∈
δSO(X, τ) such that x ∈ V and y /∈ V ; hence sClδ({y})∩V = ∅. By (4) (∩{G ∈
δSO(X, τ) | sClδ({y}) ⊂ G })∩V = ∅ and there exists G ∈ δSO(X, τ) such that
x /∈ G and sClδ({y}) ⊂ G. Therefore, sClδ({x}) ∩ G = ∅ and y /∈ sClδ({x}).
Consequently, we obtain sClδ({x}) ⊂ sKerδ({x}).
(5) → (1) : Let G ∈ δSO(X, τ) and x ∈ G. Let y ∈ sKerδ({x}), then x ∈
sClδ({y}) and y ∈ G. This implies that sKerδ({x}) ⊂ G. Therefore, we obtain
x ∈ sClδ({x}) ⊂ sKerδ({x}) ⊂ G. This shows that (X, τ) is a δ-semiR0 space.

QED

60 Corollary. For a topological space (X, τ), the following properties are
equivalent:
(1) (X, τ) is a δ-semiR0 space;
(2) sClδ({x}) = sKerδ({x}) for all x ∈ X.

Proof. (1) → (2) : Suppose that (X, τ) is a δ-semiR0 space. By Theorem
59, sClδ({x}) ⊂ sKerδ({x}) for each x ∈ X. Let y ∈ sKerδ({x}), then x ∈
sClδ({y}) and by Theorem 57 sClδ({x}) = sClδ({y}). Therefore, y ∈ sClδ({x})
and hence sKerδ({x}) ⊂ sClδ({x}). This shows that sClδ({x}) = sKerδ({x}).
(2) → (1) : This is obvious by Theorem 59. QED

61 Theorem. For a topological space (X, τ), the following properties are
equivalent:
(1) (X, τ) is a δ-semiR0 space;
(2) x ∈ sClδ({y}) if and only if y ∈ sClδ({x}).

Proof. (1) → (2) : Assume X is δ-semiR0. Let x ∈ sClδ({y}) and D be
any δ-semiopen set such that y ∈ D. Now by hypothesis, x ∈ D. Therefore,
every δ-semiopen set which contains y contains x. Hence y ∈ Clδ({x}).
(2) → (1) : Let U be a δ-semiopen set and x ∈ U . If y /∈ U , then x /∈ sClδ({y})
and hence y /∈ sClδ({x}). This implies that sClδ({x}) ⊂ U . Hence (X, τ) is
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δ-semiR0.
QED

By Theorem 61 and Definition 23, we have:

62 Remark. For a topological space (X, τ), the following properties are
equivalent:
(1) (X, τ) is a δ-semiR0 space;
(2) (X, τ) is a δ-semisymmetric.

63 Theorem. For a topological space (X, τ), the following properties are
equivalent:
(1) (X, τ) is a δ-semiR0 space;
(2) If F is δ-semiclosed, then F = sKerδ(F );
(3) If F is δ-semiclosed and x ∈ F , then sKerδ({x}) ⊂ F ;
(4) If x ∈ X, then sKerδ({x}) ⊂ sClδ({x}).

Proof. (1) → (2) : This obviously follows from Theorem 59.
(2) → (3) : In general, A ⊂ B implies sKerδ(A) ⊂ sKerδ(B). Therefore, it
follows from (2) that sKerδ({x}) ⊂ sKerδ(F ) = F .
(3) → (4) : Since x ∈ sClδ({x}) and sClδ({x}) is δ-semiclosed, by (3) sKerδ({x})
⊂ sClδ({x}).
(4) → (1) : We show the implication by using Theorem 61. Let x ∈ sClδ({y}).
Then by Lemma 53 y ∈ sKerδ({x}). Since x ∈ sClδ({x}) and sClδ({x})
is δ-semiclosed, by (4) we obtain y ∈ sKerδ({x}) ⊂ sClδ({x}). Therefore
x ∈ sClδ({y}) implies y ∈ sClδ({x}). The converse is obvious and (X, τ) is
δ-semiR0. QED

64 Lemma. Let (X, τ) be a topological space and let x and y be any two
points in X such that every net in X δ-semiconverging to y δ-semiconverges to
x. Then x ∈ sClδ({y}).

Proof. Suppose that xn = y for each n ∈ N. Then {xn}n∈N is a net
in sClδ({y}). By the fact that {xn}n∈N δ-semiconverges to y, then {xn}n∈N

δ-semiconverges to x and this means that x ∈ sClδ({y}). QED

65 Theorem. For a topological space (X, τ), the following statements are
equivalent :
(1) (X, τ) is a δ-semiR0 space;
(2) If x, y ∈ X, then y ∈ sClδ({x}) if and only if every net in X δ-semiconverg-
ing to y δ-semiconverges to x.

Proof. (1) → (2) : Let x, y ∈ X such that y ∈ sClδ({x}). Let {xα}α∈Λ

be a net in X such that {xα}α∈Λ δ-semiconverges to y. Since y ∈ sClδ({x}),
by Theorem 57 we have sClδ({x}) = sClδ({y}). Therefore x ∈ sClδ({y}). This
means that {xα}α∈Λ δ-semiconverges to x. Conversely, let x, y ∈ X such that
every net in X δ-semiconverging to y δ-semiconverges to x. Then x ∈ sClδ({y})
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by Lemma 64. By Theorem 57, we have sClδ({x}) = sClδ({y}). Therefore
y ∈ sClδ({x}).
(2) → (1) : Assume that x and y are any two points of X such that sClδ({x})∩
sClδ({y}) 6= ∅. Let z ∈ sClδ({x})∩ sClδ({y}). So there exists a net {xα}α∈Λ in
sClδ({x}) such that {xα}α∈Λ δ-semiconverges to z. Since z ∈ sClδ({y}), then
{xα}α∈Λ δ-semiconverges to y. It follows that y ∈ sClδ({x}). By the same token
we obtain x ∈ sClδ({y}). Therefore sClδ({x}) = sClδ({y}) and by Theorem 57
(X, τ) is δ-semiR0. QED
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