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Introduction

Topological extensions are closely related to nearness structures of various
kinds.

For example, the Smirnov compactification [14] of a proximity space X is
a compact Hausdorff space Y which contains X as a dense subspace and for
which it is true that a pair of subsets of X is near iff their closures in Y meet.
Lodato generalized this result to weaker conditions for the proximity and the
space Y using “bunches” for the characterization of the extension. Ivanova and
Ivanov studied contiguity spaces and bicompact extensions.

Herrlich found a useful generalization of contiguity spaces by introducing
nearness spaces, and Bentley [2] showed that those nearness spaces which can
be extended to topological ones have a neat internal characterization.

Doitchinov introduced the notion of supertopological spaces in order to con-
struct a unified theory of topological, proximity and uniform spaces, and he
proved a certain relationship of some special classes of supertopologies – called
b-supertopologies – with compactly determined extensions.

Now, to study unification and extensions in a more general setting, we de-
fine the category SN of supernear spaces and related maps and consider its
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important subcategory of clump-determined supernear spaces.

1 Definition. For a set X, a subset ξ ⊆ P(PX) (where PX denotes the
set of all subsets of X) is called a nearness structure on X, and the pair (X, ξ)
is called a nearness space, if the following axioms are satisfied

(N1) N2 << N1 ∈ ξ implies N2 ∈ ξ; where N2 << N1 ∈ ξ (N2 corefines N1) iff
for each F2 ∈ N2 there exists F1 ∈ N1 such that F2 ⊇ F1;

(N2)
⋂

N 6= ∅ implies N ∈ ξ;

(N3) ∅ ∈ ξ and {∅} /∈ ξ;

(N4) N2 ∪ N1 ∈ ξ implies N1 ∈ ξ or N2 ∈ ξ; where N2 ∪ N1 := {F1 ∪ F2 | F1 ∈
N1, F2 ∈ N2 };

(N5) { clξ(F ) | F ∈ N } ∈ ξ implies N ∈ ξ; where clξ(F ) := {x ∈ X | {{x}, F} ∈
ξ }.

Elements of ξ are called near collections. Given a pair of nearness spaces
(X, ξ), (Y, η), a function f : X // Y is called a near map or shortly n-map iff

(n) N ∈ ξ implies { f [F ] | F ∈ N } ∈ η.

We denote by NEAR the corresponding category.

2 Remark. Note that the closure operator clξ as defined above is always
topological, moreover it is symmetric in the following sense:

(s) x, y ∈ X and x ∈ clξ({y}) imply y ∈ clξ({x}).

As Herrlich shows, it is possible to embed both the category R0TOP of
symmetrical topological spaces and continuous maps and the category UNIF

of uniform spaces and related maps into NEAR as bireflective and bicoreflective
subcategories, respectively.

3 Definition. A supertopology on a set X is a pair (M,Θ), where M is a
subset of the power PX and Θ is a map Θ : M // FIL(X) to the set of all
filters on X, such that:

(ST1) M contains ϑX := {∅} ∪ { {x} | x ∈ X };

(ST2) A2 ⊆ A1 ∈ M implies A2 ∈ M;

(ST3) Θ(∅) = PX;

(ST4) A ∈ M and U ∈ Θ(A) imply U ⊇ A;

(ST5) A2 ⊆ A1 ∈ M implies Θ(A1) ⊆ Θ(A2);
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(ST6) A ∈ M and U ∈ Θ(A) imply there exists a set V ∈ Θ(A) such that always
U ∈ Θ(B) for each B ∈ M with B ⊆ V .

Then, the triple (X,M,Θ) is called a supertopological space. For each A ∈ M, a
set U ∈ Θ(A) is called a neighborhood of A, and Θ(A) is called the neighborhood-
system of A with respect to Θ.

For supertopological spaces (X,MX ,ΘX), (Y,MY ,ΘY ), a function f : X →
Y is called continuous iff

(i) { f [A] |A ∈ MX } ⊆ MY ;

(ii) A ∈ MX and V ∈ ΘY (f [A]) imply f−1[V ] ∈ ΘX(A), where f−1 denotes
the inverse image under f .

We denote by STOP the corresponding category.

4 Remark. Doitchinov embedded TOP , the category of topological spaces,
and PROX , the category of proximity spaces into STOP by restricting M to
ϑX and to PX, respectively.

5 Remark. Every supertopology (M,Θ) on X induces a generalized prox-
imity relation pΘ from M to PX by setting

ApΘB iff B ∈ secΘ(A),

where secΘ(A) := {B ⊆ X | ∀U ∈ Θ(A). B ∩ U 6= ∅ }.
In terms of the generalized proximity pΘ the axioms of Definition 3 may be

reformulated. The first two concerning M do not change. In addition we have

(SP1) A ∈ M and B ⊆ X imply ApΘ ∅ and ∅ pΘB, which means that the empty
set is not in relation to A, nor is it in relation to B;

(SP2) ApΘ (B ∪ C) iff ApΘB or ApΘC, for A ∈ M and subsets B,C ⊆ X;

(SP3) A ∈ M, B ⊆ X and A ∩B 6= ∅ imply ApΘB;

(SP4) If ApΘB and A ⊆ A′ ∈ M then A′ pΘB;

(SP5) ApΘB implies there is a set V ⊆ X such that ApΘX \ V and C pΘB for
each C ∈ M with C ⊆ V .

If we relax (SP5) to the following condition

(SP5’) ApΘB and B ⊆ clpΘ(C) imply ApΘC, where clpΘ(C) := {x ∈ X |
{x} pΘC },

then we obtain a superproximity, which reduces to a proximity in the sense of
Leader, provided we set M = PX and require additivity, i.e.,
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(Add) (B ∪ C) pΘA iff B pΘA or C pΘA with B ∪ C ∈ M.

Hence it is possible to describe Leader proximity spaces or topological spaces
as special superproximity spaces.

Now, to study unifications and extensions in a more general setting, we
define the category SN of supernear spaces and related maps and analyze its
relationship to “symmetrical” extensions.

6 Definition. For a set X, a subset BX is called a prebornology, or shortly
B-structure or B-set, on X, and its elements are called bounded sets, if the
following axioms are satisfied:

(B1) B′ ⊆ B ∈ BX implies B′ ∈ BX ;

(B2) ∅ ∈ BX ;

(B3) x ∈ X implies {x} ∈ BX .

Given a pair of B-structures BX , BY on sets X and Y , respectively, a map
f : X // Y is called bounded iff

(b) { f [B] |B ∈ BX } ⊆ BY .

7 Remark. The category BOUND , whose objects are pairs (X,BX),
where X is a set and BX is a B-structure, and whose morphisms are bounded
maps is topological, cartesian closed and has universal one-point extensions,
hence BOUND is a topological universe!

8 Definition. For a B-set BX on X, a function N : BX // P(P(PX)) is
called a supernear operator or a supernearness on BX , and the pair (BX , N) is
called a supernear space (supernearness space), iff

(SN1) B ∈ BX and H2 << H1 ∈ N(B) imply H2 ∈ N(B);

(SN2) N(∅) = {∅} and BX /∈ N(B) for each B ∈ BX ;

(SN3) B′ ⊆ B ∈ BX implies N(B′) ⊆ N(B);

(SN4) x ∈ X implies { {x}} ∈ N({x});

(SN5) B ∈ BX and H1 ∪ H2 ∈ N(B) imply H1 ∈ N(B) or H2 ∈ N(B);

(SN6) B ∈ BX and { clN (F ) | F ∈ H } ∈ N(B) for some H ⊆ P(PX) imply
H ∈ N(B), where clN (F ) := {x ∈ X | {{x}, F} ∈ N({x}) }.

Elements ofN(B) are called B-near collections. Given a pair of supernear spaces
(BX , NX), (BY , NY ), a bounded map f : BX // BY is called a supernear map
or shortly sn-map, iff
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(sn) B ∈ BX and H ∈ NX(B) imply { f [F ] | F ∈ H } ∈ NY (f [B]).

A map will also be referred to as a supernear map by saying it preserves B-near
collections in the above sense. We denote by SN the corresponding category.

1 Example. (i) Given a superproximity p on BX , we obtain a supernear
operator if for B ∈ BX we set Np(B) := {H | H ⊆ p(B) }, where p(B) :=
{F ⊆ X |B pF };

(ii) Given a nearness space (X, ξ), we obtain a supernear operator on BX :=
PX by setting

Nξ(B) :=

{
{∅} if B = ∅;
{H | {B} ∪ H ∈ ξ } otherwise.

(iii) EXT denotes the category whose objects are triples (e,BX , Y ) – called
extensions – where X = (X, clX), Y = (Y, clY ) are topological spaces
(given by closure operators), BX is a B-set on X and e : X // Y is a
function satisfying the following conditions:

(E1) A ∈ PX implies clX(A) = e−1[clY (e[A])];

(E2) clY (e[X]) = Y , which means that the image of X under e is dense in
Y .

Morphisms in EXT have the form (f, g) : (e,BX , Y ) // (e′,BX′
, Y ′),

where f : X // X ′, g : Y // Y ′ are continuous maps such that f is also
bounded, and the following diagram commutes:

X
e //

f
��

Y

g

��
X ′

e′
// Y ′

One can composed EXT -morphisms (f, g) : (e,BX , Y ) // (e′,BX′
, Y ′)

and (f ′, g′) : (e′,BX′
, Y ′) // (e′′,BX′′

, Y ′′) according to the rule (f ′, g′) ◦
(f, g) := (f ′ ◦ f, g′ ◦ g) : (e,BX , Y ) // (e′′,BX′′

, Y ′′), where “◦” denotes
the composition of maps.

Now, for each B ∈ BX we put

N
(1)

EXT (B) :=

{
{∅} if B = ∅;
{H | e[B] ∩ ⋂{ clY (e[F ]) | F ∈ H } 6= ∅ } otherwise.

N
(2)

EXT (B) := {H | e[B] ∈ sec{ clY (e[F ]) | F ∈ H } }.
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(iv) SEXT denotes the full subcategory of EXT whose objects are the sym-
metric extensions, that means its objects in addition satisfy the axiom

(SYM) x ∈ X and y ∈ clY ({e(x)}) imply e(x) ∈ clY ({y}).
Now, for each B ∈ BX we put

N
(1)

SEXT
(B) :=

{
{∅} if B = ∅;
{H | ⋂{ clY (e[F ]) | F ∈ H ∪ {B} } 6= ∅ otherwise.

N
(2)

SEXT
(B) := {H | clY (e[B]) ∈ sec{ clY (e[F ]) | F ∈ H } }.

9 Remark. Observe that axiom (E1) in the definition of an extension is
automatically satisfied, if e : X // Y is a topological embedding with respect to
the topologies determined by the closure operators clX and clY . Note also that
in general no symmetry or separation axiom is needed! Additionally, ordinary
prebornologies on X are allowed, which need not coincide with the power PX.
More specifically, we recall that an extension is called T1 (T1-extension) iff

(T1) x ∈ X and y ∈ clY ({e(x)}) imply y = e(x).

This axiom strengthens the symmetry axiom. Moreover, if e is injective, then
we have a topological embedding of X into Y .

Finally, we mention that an extension is called strict iff

(STR) { clY (e[A]) |A ⊆ X } is a base for the closed subsets of Y .

On the other hand, we recall that each symmetric topology “cl” on a given
set defines a compatible Lodato proximity (=symmetrical Leader proximity) on
the set by setting

B pA iff cl(B) ∩ cl(A) 6= ∅.
In addition, we obtain a compatible nearness structure by setting

A ∈ ξ iff
⋂

{ cl(F ) | F ∈ A } 6= ∅.

Analogously – with respect to the above definitions – each symmetric exten-
sion gives rise to a functorial relationship between SEXT and SN (see also
Example 1(iv)).

10 Theorem. The category SUPPROX whose objects are the superprox-
imity spaces is isomorphic to a full subcategory of SN .

Proof. With respect to Example 1(i) every superproximity p on BX defines
in this natural way a supernear operator N on BX , which is endoformic, i.e.,

(e) B ∈ BX implies
⋃{H |H ∈ N(B) } ∈ N(B), where

⋃{H |H ∈ N(B) } :=
{F ⊆ X | ∃H ∈ N(B)F ∈ H }.
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Moreover, N is grill-determined, which means

(g) B ∈ BX \ {∅} and H ∈ N(B) imply there exists a grill G ∈ N(B) such
that H ⊆ G.

We recall that a grill G is a non-empty subset of the power PX such that

(g1) ∅ /∈ G;

(g2) stack G ⊆ G;

(g3) G1 ∪G2 ∈ G implies G1 ∈ G or G2 ∈ G.

By setting B qM A iff {A} ∈M(B) for a given endoformic and grilldetermined
supernear operator M , we get a bijection between the set of all superproximities
and of all so-defined supernear operators on BX . With respect to the corre-
sponding morphisms this yields an isomorphism between the above-mentioned
categories. QED

11 Theorem. The category NEAR is isomorphic to a full subcategory of
SN .

Proof. With respect to Example 1(ii) every nearness ξ on X defines a
supernear operator N on PX that in addition is

(sa) strongly additive, which means B1 ∪ B2 ∈ BX implies N(B1 ∪ B2) ⊆
N(B1) ∪N(B2);

(ss) strongly symmetric, which means B ∈ BX \ {∅} and H ∈ N(B) imply
{B} ∪ H ∈ ⋂{N(F ) | F ∈ (H ∩ BX) ∪ {B} }, and

(ci) closure-isotonic, which means clN (B) ∈ BX implies N(clN (B)) ⊆ N(B).

By setting A ∈ ηM iff A ∈ ⋂{M(A) |A ∈ A } for a given supernear operator M
on PX which satisfies the axioms (sa), (ss) and (ci), we get a bijection between
the set of all nearness structures and of all so-defined supernear operators on
PX. With respect to the corresponding morphisms this yields an isomorphism
between the above-mentioned categories. QED

12 Remark. We pointed out that N
(1)

SEXT
, as defined in Example 1(iv), is

grill-determined and also satisfies the axioms (sa), (ss) and (ci), but is is not
necessarily specified on PX, nor is it endoformic.

Moreover we note that Np, as defined in Example 1(i), in general satisfies
none of the above-mentioned axioms in brackets. However, if the relation p is ad-
ditive (see Remark 5) or symmetric, then Np is additive respectively symmetric
as well, which means
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(a) B1 ∪B2 ∈ BX and H ∈ N(B1 ∪B2) imply {F} ∈ N(B1)∪N(B2) for each
F ∈ H;

(s) B ∈ BX \ {∅} and H ∈ N(B) imply {B} ∈ ⋂{N(F ) | F ∈ H ∩ BX }.

Note that a supernear operator that is strongly additive, respectively strongly
symmetric, is additive, respectively symmetric, as well. Additionally we mention
that each symmetric and endoformic supernear operator on PX is automati-
cally closure-isotonic! Moreover, we can state that in general Nξ, as defined in
Example 1(ii), is not necessarily grill-determined nor is it endoformic. Further-
more we note that N

(2)

SEXT
, as defined in Example 1(iv), satisfies the axioms (a),

(s), (ci), (e) and (g).

Finally, N
(1)

EXT
, as defined in Example 1(iii), is grill-determined and also

pointed, i.e.,

(p) B ∈ BX \ {∅} implies N(B) =
⋃{N({x}) | x ∈ B }.

But in general N
(1)

EXT
satisfies none of the above mentioned axioms (s), (ci), and

(e). However, each pointed supernear operator is strongly additive!

1 Resumé. Since Leader proximity spaces as well as nearness spaces essen-
tially can be described by corresponding “special” supernear spaces (see also
Remark 5 and Theorem 11, respectively), our new concept of “supernearness
spaces” is a common generalization of topological spaces, proximity spaces and
uniform spaces (see also Herrlich’s paper [8]). Moreover, supertopological spaces
are subsumed by supernearness spaces as well.

1 Special extensions and related supernear operators

Well known “topological extensions” in the literature are the Smirnov-com-
pactification of an Efremovic proximity space, or the T1-extension related to
Lodato proximity spaces, or, more generally, the “Herrlich-Bentley”-extension
of the so-called “bunch-determined” nearness spaces.

All the above-mentioned constructions on a nearness structure can be viewed
as special cases of a more general theory of symmetric extensions and their
related supernear operators.

13 Definition. An extension E := (e,BX , Y ) is called a power-extension
iff

(pow) BX = PX.
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14 Lemma. For a symmetric power extension E let NE be defined by set-
ting for each B ∈ PX

NE(B) :=

{
{∅} if B = ∅
{H | ⋂{ clY (e[F ]) | F ∈ H ∪ {B} } 6= ∅ } otherwise

and

ξE := {A |
⋂

{ clY (e[A]) |A ∈ A } 6= ∅}.

Then the operators NE and NξE coincide (see also Example 1(ii)).

Proof. Straightforward. QED

15 Remark. With respect to Theorem 11 the induced nearness ξE essen-
tially coincides with the special supernear operator NE . Hence it is also possible
to describe the “Herrlich-Bentley extension process” by corresponding supern-
ear operators on PX.

16 Lemma. For a symmetric power extension E let NE be defined by set-
ting for each B ∈ PX

NE(B) := {H | clY (e[B]) ∈ sec{ clY (e[F ]) | F ∈ H } }

and let δE be given by

B δE A :⇐⇒ clY (e[B]) ∩ clY (e[A]) 6= ∅.

Then the operators NE and NδE coincide (see also Example 1(i)).

Proof. Straightforward. QED

17 Remark. With respect to Remark 5 and Theorem 10, the induced
Lodato proximity δE (where BX is restricted to PX) essentially coincides with
the special supernear operator NE . Hence it is also possible to describe the
“Lodato-extension process” by means of supernear operators on PX.

18 Definition. A power-extension E = (e,PX,Y ) is called compactly de-
termined (see also Doitchinov’s paper [5]), iff

(1) e : X // Y is injective;

(2) for any y ∈ Y there exists a set A ⊆ X such that y ∈ clY (e[A]) and
clY (e[A]) is compact.

If, moreover, (Y, clY ) is a T2-space, we call E a compactly determined Haus-
dorff-extension.



102 D. Leseberg

19 Remark. Doitchinov showed in his paper (see also [5]) that the com-
pactly generated Hausdorff-extensions are closely connected with a class of su-
pertopologies on X, which he called b-supertopologies. With respect to Defini-
tion 3 and Remark 5, b-supertopologies can be described by special superproxi-
mities. But these last mentioned structures are also a special case of correspond-
ing supernear operators. Hence, Doitchinov’s “extension process” are closely
related to some special kind of supernear operators as well.

20 Definition. For an extension E = (e,BX , Y ) a supernear operator N :
BX // P3X is called E-compatible iff

(EC) clN = clX .

2 Example. (i) For an arbitrary extension E, the supernear operators
N

(1)

EXT
and N

(2)

EXT
, as defined in Example 1(iii), are E-compatible.

(ii) For any symmetric extension E, the supernear operators N
(1)

SEXT
and

N
(2)

SEXT
, as defined in Example 1(iv), are E-compatible.

21 Definition. Let (BX , N) be a supernear space. A grill G ⊆ PX is called
N -compressed iff

(NC) clN (F ) ∈ G implies F ∈ G.

22 Theorem. For an extension E := (e,BX , Y ), let N be an E-compatible
supernear operator. If X̂ denotes the set of all N -compressed grills on X and

πX(x) := {x}
πY (y) := {y}
bX(B) := {T ⊆ X |B ∩ clN (T ) 6= ∅ }
eX(x) := {T ⊆ X | x ∈ clN (T ) }
t(y) := {T ⊆ X | y ∈ clY (e[T ]) }
c(D) := {T ⊆ X |D ∩ clY (e[T ]) 6= ∅ }

for each x ∈ X ;

for each y ∈ Y ;

for each B ∈ BX \ {∅} ;

for each x ∈ X ;

for each y ∈ Y ;

for each D ∈ PY \ {∅}

then the following diagram commutes

BX \ {∅}

bX

**UUUUUUUUUUUUUUUUUUUU
X

πXoo e //

eX

��>
>>

>>
>>

> Y
πY //

t

����
��

��
��

PY \ {∅}

c

ttiiiiiiiiiiiiiiiiiiii

X̂

Proof. Straightforward. QED
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23 Remark. We also note that for each superproximity space (BX , p) and
for each B ∈ BX \ {∅} the grill

Lp(B) := {T ⊆ X |B ∩ clNp(T ) 6= ∅ }

is Np-compressed. Furthermore, p(B) is Np-compressed (see also Example 1(i)).
In addition, for each nearness space (X, ξ) every ξ-bunch G is Nξ-compressed.

24 Definition. Let (BX , N) be a supernear space. For B ∈ BX \{∅} a grill
G ⊆ PX is called

(i) B-absorbed iff B ∈ G;

(ii) a B-neargrill iff G ∈ N(B);

(iii) a B-clump iff it is an N -compressed B-absorbed B-neargrill.

3 Example. (i) Let (X, ξ) be a nearness space. Then each ξ-bunch is an
X-clump with respect to Nξ (see also Remark 23).

(ii) Let (X, δ) be a Lodato proximity space and let σ be a bunch over X. Then
σ is an X-clump with respect to Nδ (see also Example 1(i)).

(iii) In connection with Remark 23 we have that Lp(B) and p(B), respectively,
are also B-clumps with respect to Np.

(iv) In general, bX(B) is an N -compressed grill that is B-absorbed (see also
Theorem 22).

(v) t(y) as well as c(D) are N -compressed grills.

(vi) eX(x) is an {x}-clump; moreover, it is a maximal element in the set
N({x}) \ {∅}, ordered by the natural inclusion “⊆”.

Proof. We only show some parts of (vi). It is easy to see that eX(x) is an
{x}-absorbed N -compressed grill. In proving that is an {x}-neargrill as well, we
have that { clN (T ) |T ∈ eX(x) } corefines {{x}} ∈ N({x}) (cf. (SN4)). Hence by
(SN1) { clN (T )|T ∈ eX(x) } ∈ N({x}), which by (SN6) implies eX(x) ∈ N({x}).
It remains to establish the maximality of eX(x). To this end, let H ∈ N({x})
be nonempty and suppose eX(x) ⊆ H. By assumption we have {x} ∈ H. For
F ∈ H we then get {{x}, F} << H. By (SN1) this implies {{x}, F} ∈ N({x}),
and hence x ∈ clN (F ). This means F ∈ eX(x). Therefore eX(x) = H, which
proves the maximality of eX(x). QED
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2 Symmetric extensions and related supernear oper-
ators

25 Theorem. We obtain a functor F : SEXT // SN by setting

(a) F (E) := (BX , N
(1)

SEXT
) for a SEXT -object E := (e,BX , Y );

(b) F (f, g) := f for a SEXT -morphism (f, g) : E := (e,BX , Y ) // E′ :=
(e′,BX′

, Y ′).

Proof. In view of Example 1(iv) and Remark 12 we already know that
F (E) is an object of SN that is strongly additive, strongly symmetric and
closure-isotonic. Moreover, in connection with Example 2(ii) we will show that
N

(1)

SEXT
is also E-compatible.

We have to verify the equality of the closure operators clX and clN
(1)

SEXT
.

So consider A ∈ PX and x ∈ clX(A). Then, by (E1), e(x) ∈ clY (e[A]) ∩
clY ({e(x)}), hence {{x}, A} ∈ N

(1)

SEXT
({x}). Thus x ∈ clN

(1)

SEXT
(A). Conversely,

let x ∈ clN
(1)

SEXT
(A). Then {{x}, A} ∈ N

(1)

SEXT
({x}), which implies y ∈ clY (e[A])∩

clY ({e(x)}) for some y ∈ Y . As a consequence of (SYM) we get e(x) ∈ clY ({y}),
hence e(x) ∈ clY (clY (e[A])) ⊆ clY (e[A]) follows. In view of (E1) we have x ∈
e−1[clY (e[A])] = clX(A), which was to be shown.

Now, let (f, g) : E := (e,BX , Y ) // E′ := (e′,BX′
, Y ′) be a SEXT -mor-

phism. It has to be shown that f preseves the near-collections from F (E) =
(BX , N

(1)

SEXT
) to F (E′) = (BX′

, N ′
(1)

SEXT ). Without loss of generality, let B ∈
BX \ {∅} and H ∈ N

(1)

SEXT
(B). By definition,

⋂{ clY (e[F ]) |F ∈ H∪ {B} } 6= ∅,
hence y ∈ ⋂{ clY (e[F ]) | F ∈ H } for some y ∈ clY (e[B]). Or goal is to verify
that

⋂{ clY ′(e′[f [F ]]) | F ∈ H ∪ {B} } 6= ∅. By hypothesis, we have g(y) ∈
g[clY (e[B])] and therefore g(y) ∈ clY ′(g[e[B]]) = clY ′(e′[f [B]]), since (f, g) is a
SEXT -morphism. Now consider some F ∈ H. Because y ∈ clY (e[F ]), we have
g(y) ∈ clY ′(e′[f [F ]]), which results in { f [F ] | F ∈ H } ∈ N

(1)

SEXT
(f [B]). QED

3 Supernear operators and related symmetric exten-
sions

In the previous section we have defined a functor from SEXT to SN . Now
we are going to introduce a related functor in the opposite direction.

26 Lemma. Let (BX , N) be a supernear space. We put

X̂ := {C ⊆ PX | ∃B ∈ BX \ {∅}C is a B-clump }
and for each Â ⊆ X̂ we set

clX̂(Â) := {C ∈ X̂ |
⋂
Â ⊆ C } ,
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where
⋂
Â := {F ⊆ X | ∀C ∈ Â F ∈ C } (so that, by convention,

⋂
Â = PX if

Â = ∅). Then clX̂ is a topological closure operator on X̂.

Proof. Since according to (g1) ∅ /∈ C for each C ∈ X̂, we first note that
C /∈ clX̂(∅). Let Â be a subset of X̂ and consider C ∈ Â. Then F ∈ ⋂

Â implies

F ∈ C, hence Â ⊆ clX̂(Â). Now consider Â1 ⊆ Â2 ⊆ X̂. Then
⋂
Â2 ⊆ ⋂

Â1,

which implies clX̂(Â1) ⊆ clX̂(Â2). Now let Â1 ⊆ Â2 be arbitrary subsets of X̂

and consider an element C ∈ X̂ such that C /∈ clX̂(Â1) ∪ clX̂(Â2). Then we

have
⋂
Â1 * C and

⋂
Â2 * C. Choose F1 ∈ ⋂

Â1 with F1 /∈ C and F2 ∈ ⋂
Â2

with F2 /∈ C. By (g3) we get F1 ∪ F2 /∈ C. On the other hand, by (g2) we have
F1 ∪ F2 ∈

(⋂
Â1

)
∪

(⋂
Â2

)
=

⋂(
Â1 ∪ Â2

)
, hence C /∈ clX̂(Â1 ∪ Â2). At last, let

C be an element of clX̂(clX̂(Â)) and suppose C /∈ clX̂(Â). Choose F ∈ ⋂
Â with

F /∈ C. By assumption, we have
⋂

clX̂(Â) ⊆ C, hence F /∈ ⋂
clX̂(Â). Choose

D ∈ clX̂(Â) satisfying F /∈ D. Then
⋂
Â ⊆ D. Hence F ∈ D, which leads us to

a contradiction. QED

27 Theorem. For supernear spaces (BX , N1) and (BY , N2) let f : X // Y
be an sn-map. Define a function f̂ : X̂ // Ŷ by setting for each C ∈ X̂:

f̂(C) := {D ⊆ Y | f−1[clN2(D)] ∈ C }.

Then the following statements are valid:

(1) f̂ is a continuous map from (X, clX̂) to (Y, clŶ ).

(2) The composites f̂ ◦ eX and eY ◦ f coincide, where eX : X // X̂ denotes
the function which assigns the {x}-clump eX(x) to each x ∈ X (see also
Theorem 22 or Example 3(vi)).

(3) fC ⊆ f̂(C) for each C ∈ X̂, where fC := { f [F ] | f ∈ C }.

(4)
⋂
eX [B] :=

⋂{ eX(x) | x ∈ B } = {F ⊆ X | B ⊆ clN1(F ) } for every
B ⊆ X.

Proof. First, let C be a B-clump with respect to N1. We must show that
f̂(C) is an f [B]-clump with respect to N2. It is easy to show that f̂(C) is an N2-
compressed grill. In order to establish that f̂(C) is an f [B]-neargrill, we observe
that C ∈ N(B) by hypothesis. We will verify that

{ clN2(D) |D ∈ f̂(C) } << fC ∈ N2(f [B]).

(Note that f is an sn-map.) For any D ∈ f̂(C) we have f−1[clN2(D)] ∈ C and
hence clN2(D) ⊇ f [f−1[clN2(D)]] ∈ fC. Since C is B-absorbed, we get B ∈ C

and B ⊆ f−1[f [B]] ⊆ f−1[clN2(f [B])], and therefore f−1[clN2(f [B])] ∈ C, which
shows that f̂(C) is f [B]-absorbed. Consequently, f̂(C) ∈ Ŷ .



106 D. Leseberg

(1) Let Â ⊆ X̂, C ∈ clX̂(Â) and suppose f̂(C) /∈ clŶ (f̂ [Â]). Then
⋂
f̂ [Â] *

f̂(C), hence F /∈ f̂(C) for some F ∈ ⋂
f̂ [Â], which means f−1[clN2(F )] /∈ C.

Since
⋂
Â ⊆ C, we have f−1[clN2(F )] /∈ D for some D ∈ Â. Therefore

F /∈ f̂(D), which leads us to a contradiction, because F ∈ ⋂
f̂ [Â].

(2) Let x be an element of X. We will prove the validity of f̂(eX(x)) =
eY (f(x)). To this end, let F ∈ eY (f(x)). Then f(x) ∈ clN2(F ), hence
x ∈ f−1[clN2(F )], and consequently f−1[clN2(F )] ∈ eX(x). Thus F ∈
f̂(eX(x)), proving the inclusion eY (f(x)) ⊆ f̂(eX(x)). Since eY (f(x)) is
maximal with respect to (N2({f(x)}) \ {∅},⊆) – see Example 3(vi) and
also note that { clN2(D) |D ∈ f̂(eX(x)) } << f eX(x), since by hypothesis
f is an sn-map – we obtain the desired equality.

(3) Let C be an element of X̂ and D := f [F ] for some F ∈ C. Then, according
to (g2), F ⊆ f−1[D] ⊆ f−1[clN2 [D]] ∈ C, which yields D ∈ f̂(C).

(4) Straightforward.

QED

1 Remark. In view of Theorem 11 and Remark 12 we summarize that the
supernear operators Nξ and N

(1)

SEXT
both satisfy the axioms (sa), (ss) and (ci).

28 Definition. A supernear operator on a B-set, and also the correspond-
ing space, is called strong, if the above-mentioned axioms for the operator are
satisfied. Moreover, we denote by SSN the corresponding full subcategory of
SN .

29 Theorem. We obain a functor G : SSN // SEXT by setting

(a) G(BX , N) := (eX ,B
X , X̂) for any strong supernear space (BX , N) with

X = (X, clN ) and X̂ = (X̂, clX̂);

(b) G(f) := (f, f̂) for any sn-map f : (BX , N) // (BY , N ′).

Proof. In view of (SN6) it is straightforward to verify that clN is a topolog-
ical closure operator on X. By Lemma 26, we also have the topological closure
operator clX̂ on X̂. Therefore we obtain topological spaces with B-structure

BX , and eX : X // X̂ is a continuous map according to Theorem 27.
To establish (E1), let A be a subset of X and suppose x ∈ clN (A). Then,

by Theorem 27(4), the inclusion
⋂
eX [A] ⊆ eX(x) follows. This means that

eX(x) ∈ clX̂(eX [A]), hence x ∈ e−1
X [clX̂(eX [A])]. Conversely, let x be an ele-

ment of e−1
X [clX̂(eX [A])]. Then by definition we have eX(x) ∈ clX̂(eX [A]), and

consequently
⋂
eX [A] ⊆ eX(x). By Theorem 27(4) we obtain A ∈ eX(x), which

means x ∈ clN (A).
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To establish (E2), let C ∈ X̂ and suppose C /∈ clX̂(eX [X]). By definition
we get

⋂
eX [X] * C, so that there exists a set F ∈ ⋂

eX [X] with F /∈ C. By
Theorem 27(4) the inclusion X ⊆ clN (F ) holds. Since C 6= ∅ and in view of
axiom (g2), we get clN (F ) ∈ C, hence F ∈ C, because C is N -compressed. But
this is a contradiction, which shows C ∈ clX̂(eX [X]).

To establish (SYM), let x be an element of X such that C ∈ clX̂({eX(x)}).
We must show eX(x) ∈ clX̂({C}). By hypothesis we have eX(x) ⊆ C and
moreover C ∈ N(B) for some B ∈ BX \ {∅}. Since {x} ∈ C and since N is
strongly symmetric, we get {B} ∪ C ∈ N({x}) with C << {B} ∪ C. According
to (SN1) we then get C ∈ N({x}), and since eX(x) is maximal with respect to
(N({x}) \ {∅},⊆) (see also Example 3(vi)), C coincides with eX(x).

By hypothesis f : (BX , N) // (BY , N ′) is an sn-map so that f is continuous
and bounded from (BX , clN )to (BY , clN ′). It remains to prove that the following
diagram commutes:

X
eX //

f

��

X̂

f̂
��

Y eY

// Ŷ

To this end let x be an element of X. We must show (f̂ ◦ eX)(x) = (eY ◦ f)(x).
“⊆”: D ∈ (f̂ ◦ eX)(x) implies D ∈ f̂(eX(x)), which means f−1[clN ′(D)] ∈

eX(x), hence x ∈ clN (f−1[clN ′(D)]). Especially, since f is continuous, we have
f(x) ∈ clN ′(f [f−1[clN ′(D)]]). But now clN ′(clN ′(D)) ⊆ clN ′(D) implies D ∈
eY (f(x)).

“⊇”: D ∈ eY (f(x)) implies f(x) ∈ clN ′(D), hence x ∈ f−1[clN ′(D)]) and
consequently x ∈ clN (f−1[clN ′(D)]). This implies f−1[clN ′(D)] ∈ eX(x), which
means D ∈ f̂(eX(x)). Finally, this establishes that the composition of sn-maps
is preserved by G. QED

2 Remark. We denote by STREXT the full subcategory of EXT whose
objects are those triples (e,BX , Y ) for which { clY (e[A]) |A ⊆ X } is a base for
the closed subsets of Y . (Banaschewski has called these extensions strict, see
also Remark 9.)

30 Theorem. Let G : SSN // SEXT be the functor of Theorem 29. Then
the image of G is contained in STREXT .

Proof. For a strong supernear space (BX , N) setG(BX , N) := (eX ,B
X , X̂).

To show that (eX ,B
X , X̂) is strict, consider C ∈ X̂ and let Â be closed in X̂

with C /∈ Â. Then C /∈ clX̂(Â) and so
⋂
Â * C. There exists F ∈ ⋂

Â such that

F /∈ C. Now for each D ∈ Â we have F ∈ D, which implies
⋂
eX [F ] ⊆ D, and

therefore we conclude D ∈ clX̂(eX [F ]). Since F /∈ C we have
⋂
eX [F ] * C and

so C /∈ clX̂(eX [F ]). QED
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4 Clump-determined strong supernear spaces

31 Theorem. Let F : SEXT // SN and G : SSN // SEXT be the
functors given in Theorems 25 and 29. For each object (BX , N) of SSN let
t(BX , N) denote the identity map t(BX , N) = idX : F (G(BX , N)) // (BX , N).
Then t : F ◦G // 1SSN is a natural transformation from F ◦G to the identity
functor 1SSN , i.e., idX : F (G(BX , N)) // (BX , N) is an sn-map for each object
(BX , N), and the following diagram commutes for each sn-map f : (BX , N1) →
(BY , N2):

F (G(BX , N1))
idX //

F (G(f))

��

(BX , N1)

f

��
F (G(BY , N2)) idY

// (BY , N2)

Proof. The commutativity of the diagram is obvious, because F (G(f)) =
f . It remains to prove that idX : F (G(BX , N)) // (BX , N) is an sn-map for
each object (BX , N) of SSN .

To fix the notation, let N be such that F (G(BX , N1)) = F (eX ,B
X , X̂) =

(BX , N). It suffices to show that for each B ∈ BX \{∅} we have N(B) ⊆ N1(B).
To this end, assume H ∈ N(B). Then

⋂{ clX̂(eX [F ])|F ∈ H∪{B} } 6= ∅. Choose
C ∈ clX̂(eX [B]) such that C ∈ ⋂{ clX̂(eX [F ]) | F ∈ H }, hence

⋂
eX [B] ⊆ C. In

view of Theorem 27(4) we get B ∈ C and C ∈ N1(B
′) for some B′ ∈ BX \ {∅}

(note in particular that C is a B ′-neargrill for some bounded set B ′). Since N1

is strongly symmetric, we get {B ′} ∪ C ∈ N1(B) and C << {B′} ∪ C, hence
C ∈ N1(B), according to (SN1).

We will now show H ⊆ C. Any element F of H satisfies C ∈ clX̂(eX [F ]),
hence

⋂
eX [F ] ⊆ C. Since by Theorem 27(4) F ∈ ⋂

eX [F ], we have F ∈ C,
which concludes the proof.

QED

To capture the whole “extension process”, we only need to characterize those
strong supernear spaces, for which t is a natural equivalence.

32 Definition. A strong supernear space (BX , N), and also the supernear
operator N , are called clump-determined, if B ∈ BX \{∅} and H ∈ N(B) imply
the existence of a B-clump C such that H ⊆ C.

33 Example. In view of Example 1(iii) we point out that N
(1)

SEXT
automat-

ically is clump-determined. This can easily be seen as follows.

Proof. Let B ∈ BX \ {∅} and consider an element H of N
(1)

SEXT
(B). Then

by definition
⋂{ clY (e[F ] | F ∈ H ∪ {B} } 6= ∅. Choose y ∈ clY (e[B]) such

that y ∈ ⋂{ clY (e[F ]) | F ∈ H }. In view of Example 3(v) we have t(y) is
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an N
(1)

SEXT
-compressed grill (see also Remark 12), and by hypothesis it is B-

absorbed. Moreover, by definition, t(y) ∈ N
(1)

SEXT
(B), hence t(y) is a B-clump.

Finally, for F ∈ H we have y ∈ clY (e[F ]), hence F ∈ t(y), which concludes the
proof. QED

34 Lemma. Let CSSN denote the full subcategory of SSN , whose objects
are the clump-determined strong supernear spaces. Let F and G be the functors
as defined above, and for each object (BX , N) of CSSN let t(BX , N) be given
in the same way as in Theorem 31. If G and F are restricted, respectively,
corestricted to CSSN , then t : F ◦ G // 1CSSN is a natural equivalence from
F ◦G to the identity functor 1CSSN

Proof. In view of Theorem 31 and Example 33, it remains to show that
for each B ∈ BX \ {∅} we have N1(B) ⊆ N(B). For a non-empty bounded set
B ∈ BX consider H ∈ N1(B). Since N1 in particular is clump-determined, we
can choose a B-clump C such that H ⊆ C. In order to show H ∈ N(B), we need
to verify C ∈ ⋂{ clX̂(eX [F ]) | F ∈ H ∪ {B} }. Therefore it suffices to prove the
following claims

(1) C ∈ clX̂(eX [B]), and

(2) F ∈ H implies C ∈ clX̂(eX [F ]).

(1): By definition of clX̂ , it suffices to establish
⋂
eX [B] ⊆ C. So let D be an

element of
⋂
eX [B], which means B ⊆ clN1(D). Since C is B-absorbed, we get

clN1(D) ∈ C. But C is also N1-compressed, consequently we get D ∈ C.
(2): Let F be an element of H and let D be an element of

⋂
eX [F ], which

means F ⊆ clN1(D). Since F ∈ C by hypothesis, we get clN1(D) ∈ C, and
analogously as above we infer D ∈ C, which concludes the proof. QED

Now we are able to formulate the main theorem of this paper, which is a
consequence of the preceding Lemmata and Theorems, respectively.

35 Theorem. Let (BX , N) be a strong supernear space. Then the following
are equivalent:

(i) (BX , N) is clump-determined;

(ii) there exists a SEXT -object (e,BX , Y ) that is strict in the sense that
for each B ∈ BX \ {∅} the elements H ∈ N(B) are characterized by⋂{ clY (e[F ]) | F ∈ H ∪ {B} } 6= ∅;

(iii) there exists a topological space (Y, clY ) and a map f : X // Y that satisfies

– clN (A) = f−1[clY (f [A]) for each A ⊆ X ;

– f [X] is dense in Y ;
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– { clY (e[A]) |A ⊆ X } forms a base for the closed subsets of Y ; and

– for each B ∈ BX \ {∅} the elements H ∈ N(B) are characterized by⋂{ clY (e[F ]) | F ∈ H ∪ {B} } 6= ∅.

36 Remark. It seems to be of interest to study the question, which special
supernear operators are obtained by given compact (Hausdorff) extensions.

Moreover, can it be shown that the functors constructed above are adjoints,
and, if not, which additional conditions are needed to guarantee this?
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