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Abstract. The Hausdorff dimension of a product X x Y can be strictly greater than that of
Y, even when the Hausdorff dimension of X is zero. But when X is countable, the Hausdorff
dimensions of Y and X X Y are the same. Diagonalizations of covers define a natural hierarchy
of properties which are weaker than “being countable” and stronger than “having Hausdorff
dimension zero”. Fremlin asked whether it is enough for X to have the strongest property in
this hierarchy (namely, being a v-set) in order to assure that the Hausdorfl dimensions of Y
and X x Y are the same.

We give a negative answer: Assuming the Continuum Hypothesis, there exists a ~y-set
X C R and a set Y C R with Hausdorff dimension zero, such that the Hausdorff dimension
of X +Y (a Lipschitz image of X X Y) is maximal, that is, 1. However, we show that for the
notion of a strong y-set the answer is positive. Some related problems remain open.
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Introduction

The Hausdorff dimension of a subset of R* is a derivative of the notion of
Hausdorff measures [4]. However, for our purposes it will be more convenient to
use the following equivalent definition. Denote the diameter of a subset A of R¥
by diam(A). The Hausdorff dimension of a set X C R¥, dim(X), is the infimum
of all positive ¢ such that for each positive e there exists a cover {I,, }nen of X
with

Z diam(1,,)° < e.

From the many properties of Hausdorff dimension, we will need the following
easy ones.

1 Lemma.
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(1) If X CY CR*, then dim(X) < dim(Y).

(2) Assume that X1, Xa,... are subsets of R¥ such that dim(X,,) = & for each
n. Then dim(|J,, X) = 6.

(3) Assume that X C R* and Y C R™ is such that there exists a Lipschitz
surjection ¢ : X — Y. Then dim(X) > dim(Y").

(4) For each X CR* and Y CR™, dim(X x Y) > dim(X) + dim(Y).

Equality need not hold in item (4) of the last lemma. In particular, one
can construct a set X with Hausdorff dimension zero and a set Y such that
dim(X xY) > dim(Y). On the other hand, when X is countable, X x Y is a

union of countably many copies of Y, and therefore
dim(X x Y) = dim(Y"). (1)

Having Hausdorff dimension zero can be thought of as a notion of smallness.
Being countable is another notion of smallness, and we know that the first notion
is not enough restrictive in order to have Equation 1 hold, but the second is.
Notions of smallness for sets of real numbers have a long history and many
applications — see, e.g., [11]. We will consider some notions which are weaker
than being countable and stronger than having Hausdorff dimension zero.
According to Borel [3], a set X C R* has strong measure zero if for each
sequence of positive reals {€, },en, there exists a cover {I, },en of X such that
diam(7,) < €, for all n. Clearly strong measure zero implies Hausdorff dimension
zero. It does not require any special assumptions in order to see that the converse
is false. A perfect set can be mapped onto the unit interval by a uniformly
continuous function and therefore cannot have strong measure zero.

2 Proposition (folklore). There exists a perfect set of reals X with Haus-
dorff dimension zero.

PROOF. For 0 < A\ < 1, denote by C'(\) the Cantor set obtained by starting
with the unit interval, and at each step removing from the middle of each interval
a subinterval of size A times the size of the interval (So that C(1/3) is the
canonical middle-third Cantor set, which has Hausdorff dimension log2/log3.)
It is easy to see that if A\,, /" 1, then dim(C'(A,)) \, 0.

Thus, define a special Cantor set C({\,}nen) by starting with the unit
interval, and at step n removing from the middle of each interval a subinterval
of size A, times the size of the interval. For each n, C'({\,}nen) is contained
in a union of 2" (shrunk) copies of C'(\,,), and therefore dim(C({ A\, }nen)) <
dim(C(\,)).
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As every countable set has strong measure zero, the latter notion can be
thought of an “approximation” of countability. In fact, Borel conjectured in [3]
that every strong measure zero set is countable, and it turns out that the usual
axioms of mathematics (ZFC) are not strong enough to prove or disprove this
conjecture: Assuming the Continuum Hypothesis there exists an uncountable
strong measure zero set (namely, a Luzin set), but Laver [10] proved that one
cannot prove the existence of such an object from the usual axioms of mathe-
matics.

The property of strong measure zero (which depends on the metric) has a
natural topological counterpart. A topological space X has Rothberger’s property
C" [13] if for each sequence {Uy, },en of covers of X there is a sequence {Uy, }nen
such that for each n U,, € U,,, and {Uy, }ren is a cover of X. Using Scheepers’
notation [15], this property is a particular instance of the following selection
hypothesis (where $ and U are any collections of covers of X):

S1(4,0): For each sequence {U,}neny of members of 4, there is a sequence
{Up }nen such that U, € U,, for each n, and {U, },en € D.

Let O denote the collection of all open covers of X. Then the property considered
by Rothberger is S1(O, O). Fremlin and Miller [5] proved that a set X C R*
satisfies S1(O, O) if, and only if, X has strong measure zero with respect to each
metric which generates the standard topology on RF.

But even Rothberger’s property for X is not strong enough to have Equa-
tion 1 hold: It is well-known that every Luzin set satisfies Rothberger’s property
(and, in particular, has Hausdorff dimension zero).

3 Lemma. The mapping (x,y) — x + vy from R? to R is Lipschitz.

PROOF. Observe that for nonnegative reals a and b, (a —b)? > 0 and there-
fore a? + b? > 2ab. Consequently,

a+b=1/a%+2ab+ b2 < \/2(a% 4 b2) = V2V a2 + b2,

Thus,

[(@14y1)—(@2+12)| < V2/ (21 — 22)2 + (y1 — y2)2 for all (z1,y1), (z2,y2) € R2,

QED

Assuming the Continuum Hypothesis, there exists a Luzin set L C R such
that L + L, a Lipschitz image of L x L, is equal to R [9].

We therefore consider some stronger properties. An open cover U of X is
an w-cover of X if each finite subset of X is contained in some member of the
cover, but X is not contained in any member of U.
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U is a ~y-cover of X if it is infinite, and each element of X belongs to all
but finitely many members of U. Let €2 and I' denote the collections of open
w-covers and ~-covers of X, respectively. Then I' C 2 C O, and these three
classes of covers introduce 9 properties of the form S; (U, 0). If we remove the
trivial ones and check for equivalences [9, 20], then it turns out that only six
of these properties are really distinct, and only three of them imply Hausdorff
dimension zero:

Sl(Q,F) — Sl(Q,Q) — 51(0, O)

The properties S1(€2,I") and S;1(£2,9) were also studied before. S1(€2,Q) was
studied by Sakai [14], and S;(Q2,T") was studied by Gerlits and Nagy in [8]: A
topological space X is a ~y-set if each w-cover of X contains a ~y-cover of X.
Gerlits and Nagy proved that X is a «-set if, and only if, X satisfies S1(Q,T"). It
is not difficult to see that every countable space is a y-set. But this property is
not trivial: Assuming the Continuum Hypothesis, there exist uncountable y-sets
[7].

S1(£2,9) is closed under taking finite powers [9], thus the Luzin set we used
to see that Equation 1 need not hold when X satisfies S1(O, O) does not rule out
that possibility that this Equation holds when X satisfies S1(€2, 2). However, in
[2] it is shown that assuming the Continuum Hypothesis, there exist Luzin sets
Lo and L; satisfying S1(2, 2), such that Lo+ L; = R. Thus, the only remaining
candidate for a nontrivial property of X where Equation 1 holds is S1(Q2,T)
(v-sets). Fremlin (personal communication) asked whether Equation 1 is indeed
provable in this case. We give a negative answer, but show that for a yet stricter
(but nontrivial) property which was considered in the literature, the answer is
positive.

The notion of a strong ~y-set was introduced in [7]. However, we will adopt
the following simple characterization from [20] as our formal definition. Assume
that {, },en is a sequence of collections of covers of a space X, and that U is
a collection of covers of X. Define the following selection hypothesis.

S1({¢y nen, V): For each sequence {Uy, }nen where U, € 4L, for each n, there is
a sequence {Up, }nen such that U, € U, for each n, and {U, },en € V.

A cover U of a space X is an n-cover if each n-element subset of X is con-
tained in some member of U. For each n denote by O,, the collection of all open
n-covers of a space X. Then X is a strong v-set if X satisfies S1({O), }nen, ).

In most cases S1({On }nen, V) is equivalent to S1(£2, ) [20], but not in the
case ¥ = I': It is known that for a strong y-set G C {0, 1} and each A C {0, 1}
of measure zero, G & A has measure zero too [7]; this can be contrasted with
Theorem 5 below. In Section 2 we show that Equation 1 is provable in the case
that X is a strong ~y-set, establishing another difference between the notions
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of ~-sets and strong -sets, and giving a positive answer to Fremlin’s question
under a stronger assumption on X.

1 The product of a v-set and a set of Hausdorff di-
mension zero

4 Theorem. Assuming the Continuum Hypothesis (or just p = c¢), there
exist a y-set X C R and a set Y C R with Hausdorff dimension zero such that
the Hausdorff dimension of the algebraic sum

X+Y={z+y:zeX,yeY}
(a Lipschitz image of X XY inR) is 1. In particular, dim(X x Y) > 1.

Our theorem will follow from the following related theorem. This theorem
involves the Cantor space {0,1}" of infinite binary sequences. The Cantor space
is equipped with the product topology and with the product measure.

5 Theorem (Bartoszyniski and Recltaw [1]). Assume the Continuum
Hypothesis (or just p = ¢). Fiz an increasing sequence {kn}nen of natural num-
bers, and for each n define

An ={f € {0, 13" f [ [kn, kns1) = 0}

A= U

meNn>m

If the set

has measure zero, then there exists a y-set G C {0, 1} such that the algebraic
sum G @ A is equal to {0, 1}N (where where ® denotes the modulo 2 coordinate-
wise addition).

Observe that the assumption in Theorem 5 holds whenever > 2~ (knt1=kn)
converges.

6 Lemma. There exists an increasing sequence of natural numbers {ky }nen
such that ), 2~ (knt1=kn) converges, and such that for the sequence {By}nen
defined by

B, = {Z gz(—a cfe{=1,0,1}N and f | [kn, kns1) = 0}

1€EN

for each n, the set

v-nUn

mew n>m

has Hausdorff dimension zero.
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Proor. Fix a sequence p, of positive reals which converges to 0. Let kg = 0.
Given k,, find k,; satisfying
1 1

k
(N
3 2pn(kn+1*2) 2”

Clearly, every B, is contained in a union of 3*» intervals such that each of the
intervals has diameter 1/ 2kn+1=2 For each positive § and €, choose m such that
Y n>m 1/2" < € and such that p, < ¢ for all n > m. Now, Y is a subset of

Uan B,,, and

g (L ’ g (L )" 1
> ) < > ) < > o <€

n>m n>m n>m
Thus, the Hausdorff dimension of Y is zero.
The following lemma concludes the proof of Theorem 4.

7 Lemma. There exists a v-set X C R and a set Y C R with Hausdorff
dimension zero such that X +Y = R. In particular, dim(X +Y) = 1.

PRrROOF. Choose a sequence {ky}nen and a set Y as in Lemma 6. Then
Yom 2~ (knt1=kn) converges, and the corresponding set A defined in Theorem 5
has measure zero. Thus, there exists a y-set G such that G® A = {0, 1}V. Define

®:{0,1}N - R by
Z 21+1

€N

As @ is continuous, X = ®[G] is a y-set of reals. Assume that z is a member of
the interval [0, 1], let f € {0, 1} be such that z = >, f(i)/2"!. Then f = g®a
for appropriate ¢ € G and a € A. Define h € {—1,0,1} by h(i) = f(i) —
g(i). For infinitely many n, a [ [kn, kn+1) = 0 and therefore f 1 knykng1) =

g | [kn,kn+1), that is, h | [kn, kne1) = 0 for infinitely many n. Thus, y =
Z h(i)/2T € Y, and for x = (I>(g),

T+Hy= gfj)l Z 2z+1 Z o 2z+1 Z 21+1 =

€N ieEN €N €N

This shows that [0,1] € X +Y. Consequently, X + (Y +Q) = (X+Y)+Q =R.
Now, observe that Y 4+ QQ has Hausdorff dimension zero since Y has. QED

2 The product of a strong v-set and a set of Haus-
dorff dimension zero

8 Theorem. Assume that X C R¥ is a strong y-set. Then for each Y C R!,
dim(X x Y) = dim(Y).
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PROOF. The proof for this is similar to that of Theorem 7 in [7]. It is enough
to show that dim(X xY) < dim(Y).

9 Lemma. Assume that Y C R! is such that dim(Y) < 6. Then for each
positive € there exists a large cover {I,}nen of Y (i.e., such that each y €Y is
a member of infinitely many sets I,,) such that Y, diam(1,)° < e.

PROOF. For each m choose a cover {I"},cn of Y such that ), diam (1)’ <
e/2™. Then {I;' : m,n € N} is a large cover of Y, and >_ diam(I™)° <
Yo €/2M = OED

10 Lemma. Assume that Y C R! is such that dim(Y) < §. Then for
each sequence {€nen of positive reals there exists a large cover {An}nen of

Y such that for each n Ay is a union of finitely many sets, IT',... I}, , such
: n\0
that > ; diam(I7')° < ey.
PROOF. Assume that {e, },cn is a sequence of positive reals. By Lemma 9,

there exists a large cover {I,},en of Y such that >, diam(I,)’ < €. For each
n let k, = min{m : .. diam(I;)° < €,}. Take

j>m

nt+1—1

k
A, = U I;.

J=kn
QED

Fix 6 > dim(Y) and € > 0. Choose a sequence {€;,}nen of positive reals
such that ), 2ne, < €, and use Lemma 10 to get the corresponding large cover

{An}nEN .
For each n we define an n-cover U,, of X as follows. Let F' be an n-element
subset of X. For each x € F, find an open interval I, such that z € I, and

> diam(I, x I7')° < 2¢,.
j=1
Let Ur = U, ecp L. Set

U, = {Up : F is an n-element subset of X }.

As X is a strong v-set, there exist elements Up, € Uy, n € N, such that {Ur, }nen
is a vy-cover of X. Consequently,

xxyc|Jwrx4a)clJ U @Ixxly

neN neNzeF,, j=1
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and

Z Z %diam(lx X IJ’-L)‘s < Zn 2, < €.

neNzeF, j=1 n

QED

3 Open problems

There are ways to strengthen the notion of ~-sets other than moving to
strong v-sets. Let Bg and Br denote the collections of countable Borel w-covers
and y-covers of X, respectively. As every open w-cover of a set of reals contains a
countable w-subcover [9], we have that Q C Bg and therefore S; (Bgq, Br) implies
S1(,T). The converse is not true [17].

11 Problem. Assume that X C R satisfies S1(Bgq, Br). Is it true that for
each Y CR, dim(X x Y) =dim(Y)?

We conjecture that assuming the Continuum Hypothesis, the answer to this
problem is negative. We therefore introduce the following problem. For infinite
sets of natural numbers A, B, we write A C* B if A\ B is finite. Assume that
F is a family of infinite sets of natural numbers. A set P is a pseudointersection
of F if it is infinite, and for each B € F, A C* B. F is centered if each
finite subcollection of F has a pseudointersection. Let p denote the minimal
cardinality of a centered family which does not have a pseudointersection. In
[17] it is proved that p is also the minimal cardinality of a set of reals which
does not satisty Sy (Bq, Br).

12 Problem. Assume that the cardinality of X is smaller than p. Is it true
that for each Y C R, dim(X x Y) = dim(Y)?

Another interesting open problem involves the following notion [18, 19]. A
cover U of X is a 7-cover of X if it is a large cover, and for each x,y € X, one
of thesets {UeceU :x €U andyg U} or {U el :y e U and x ¢ U} is finite.
Let T denote the collection of open 7-covers of X. Then I' C T C €, therefore
S1({On}nen, I') implies S1({O), }nen, T).

13 Problem. Assume that X C R satisfies S;({O), }nen, T). Is it true that
for each Y C R, dim(X x Y) = dim(Y)?

It is conjectured that S;({Op tnen, T) is strictly stronger than S;(£2, T) [20].
If this conjecture is false, then the results in this paper imply a negative answer
to Problem 13.

Another type of problems is the following: We have seen that the assumption
that X is a v-set and Y has Hausdorff dimension zero is not enough in order to
prove that X xY has Hausdorff dimension zero. We also saw that if X satisfies a
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stronger property (strong ~y-set), then dim(X xY') = dim(Y") for all Y. Another
approach to get a positive answer would be to strengthen the assumption on Y
rather than X.

If we assume that Y has strong measure zero, then a positive answer follows
from a result of Scheepers [16] (see also [21]), asserting that if X is a strong
measure zero metric space which also has the Hurewicz property, then for each
strong measure zero metric space Y, X X Y has strong measure zero. Indeed, if
X is a y-set then it has the required properties.

Finally, the following question of Krawczyk remains open.

14 Problem. Is it consistent (relative to ZFC) that there are uncountable
~v-sets but for each v-set X and each set YV, dim(X x V) = dim(Y)?
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