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Introduction

In this article we give an analytic proof of Pappus’ theorem and an analytic
proof of Desargues’ theorem over a not necessarily commutative field. Both are
listed as exercises in [4, p. 76 and p. 78]. The original version of Pappus’ theorem
appeared in Pappus’ Συναγωγή or Collection (see, e.g., [2, pp. 270–273]). The
original version of Desargues’ theorem appeared in A. Bosse’s “La Perspective de
Mr. Desargues” (Paris 1648, p. 340) as the First Geometrical Proposition (see
also [1, Chapter VIII]). We refer to [3] for an excellent comprehensive historical
survey of these two theorems.

1 An Analytic Proof of Pappus’ Theorem

For the terminology and fundamental facts used in our proof we refer to [4].

Let K be a commutative field. Then the projective plane P2 (K) is defined
as the quotient of K3 \ {0} by the equivalence relation

∼ : X,Y ∈ K3 \ {0} , X ∼ Y if ∃λ 6= 0 in K such that Y = λX.

Let π : K3 \ {0} → P2 (K) denote the canonical projection, then a point P =

π





x
y
z




 ∈ P2 (K) is represented by the vector



x
y
z


 in three-space, not all
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x, y, z = 0, and for λ 6= 0 the vector



λx
λy
λz


 represents the same point P . By

abuse of language we identify P with



x
y
z


 and write P =



x
y
z


 if there is

no possible confusion. We also call x, y, z the homogeneous coordinates of P .
Since an equation of a plane P in K3 passing through the origin is of the form

ax+ by + cz = 0, not all a, b, c = 0,

we say that π (P \ {0}) is a line in P2 (K). Thus a line l in P2 (K) is the equiv-
alence class of the row

[
a b c

]
and for λ 6= 0 the row

[
λa λb λc

]
repre-

sents the same line l. We again identify the line l with the row
[
a b c

]
and

call a, b, c the homogeneous coordinates of l. We see that a point P ∈ P2 (K)
lies on a line l ∈ P2 (K) if and only if

[
a b c

]


x
y
z


 = ax+ by + cz = 0.

It can easily be shown that every line is incident with at least three points. Also
since we can find two triples of numbers [a, b, c], [x, y, z] such that ax+by+cz 6=
0, we are assured that there exist a point and a line not incident. Further, using
the theory of sets of linear homogeneous equations, we can prove that any two
points are incident with one and only one line. Then, appealing to the duality
of the definitions of point and line, it can be shown that any two distinct lines
intersect in a unique point.

The following Lemma 3 is an immediate consequence of the following two
theorems on pages 73 and 74 of [4].

1 Theorem. If P



x1

x2

x3


, P



y1

y2

y3


 are distinct points, then for any λ the

numbers xi + λyi, i = 1, 2, 3, are not all = 0, and P



x1 + λy1

x2 + λy2

x3 + λy3


 is collinear

with the first two points.

2 Theorem. If X, Y , Z are coordinates of three distinct collinear points,
then there exist λ, µ such that Z = λX + µY .

3 Lemma. Three distinct points P1, P2, P3 ∈ P2 (K) are collinear if and
only if for any one of these points, say P3, there exist nonzero scalars λ, µ ∈ K
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such that P3 = λP1 + µP2. It follows that P1, P2, P3 are collinear if and only
if [P1, P2, P3] = 0, where [P1, P2, P3] denotes the determinant formed by their
coordinates.

4 Lemma. Let P1, P2, P3 be noncollinear points of P2 (K). If Q = a1P1 +
a2P2 + a3P3, R = b1P1 + b2P2 + b3P3, and S = c1P1 + c2P2 + c3P3 are points of
P2 (K), then Q, R, S are collinear if and only if

∣∣∣∣∣∣

a1 a2 a3

b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
= 0.

Proof. Let xi, yi, zi denote the homogeneous coordinates of Pi, i = 1, 2, 3.
We have

[Q,R, S] = [a1P1 + a2P2 + a3P3, b1P1 + b2P2 + b3P3, c1P1 + c2P2 + c3P3]

= [a1P1, b2P2, c3P3] + [a1P1, b3P3, c2P2]

+ [a2P2, b1P1, c3P3] + [a2P2, b3P3, c1P1]

+ [a3P3, b1P1, c2P2] + [a3P3, b2P2, c1P1]

= (a1b2c3 − a1b3c2 − a2b1c3 + a2b3c1 + a3b1c2 − a3b2c1) [P1, P2, P3]

=

∣∣∣∣∣∣

a1 a2 a3

b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
[P1, P2, P3] .

The lemma follows from Lemma 3 and the assumption that P1, P2, P3 are
noncollinear. QED

5 Theorem. (Pappus) Let l and l′ be two distinct lines of P2 (K), inter-
secting at a point O. Let A, B, E be three distinct points on l and C, D, F
three distinct points on l′ such that each of these six points is different from O.
Let P be the intersection of the lines AD and CB, Q the intersection of AF
and CE, and R the intersection of BF and DE. Then P , Q, R are collinear.

O C
D

F

A

B

E

P

Q

R

(Figure 1)
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Proof. In drawing Pappus’ configuration, we represent the points A, B,
and E as vectors in three-space (using homogeneous coordinates). We use the
same letters A, B, and E to represent the vectors. By Lemma 3, for A, B, and
E to be collinear it is necessary and sufficient that there exist nonzero scalars
s and t such that E = sA + tB. Since we are free to represent the point A by
any nonzero scalar multiple of the vector A, we choose to represent it by sA,
and similarly we represent the point B by tB. Now we rename the vector sA
as A and the vector tB as B. Thus we have the vector equation E = A + B
in this notation. By the same reasoning there exist vectors C and D, such that
C represents the point C, D represents the point D, and C +D represents the
point F .

Since A, B, O are distinct collinear points, and C, D, O are also distinct
collinear points, there exist by Lemma 3 nonzero scalars a, b, c, d such that

O = aA+ bB = cC + dD. (1)

Since E is different from O we must have a 6= b, and since F is different from
O we must have c 6= d. From (1) we get the relation

aA− dD = cC − bB. (2)

By Lemma 3, (2) represents a point which is on both the lines AD and BC,
and this intersection is named P . From (1) we also get

(a− b)A− d (C +D) = (c− d)C − b (A+B) , (3)

which is equivalent to the equation

(a− b)A− dF = (c− d)C − bE. (3)′

Since a − b, c − d, d, and b are nonzero scalars, Lemma 3 implies that (3)′

represents a point which is on both the lines AF and EC. This intersection is
named Q. From (1) it follows that

(b− a)B − c (C +D) = (d− c)D − a (A+B) (4)

which is equivalent to the equation

(b− a)B − cF = (d− c)D − aE. (4)′

Lemma 3 implies that (4)′ represents a point that is on both the lines BF and
DE. This intersection is named R.

By multiplying (1) by the nonzero scalar b we obtain

abA+ b2B − bcC − bdD = 0. (5)
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Using the right-hand side of (3), we may represent Q by −bA− bB + (c− d)C
which is equivalent to −abA − abB + (ac− ad)C since a is different from 0.
Adding the zero vector given by (5) to this representation of Q, we obtain the
following representation of Q.

Q :
(
b2 − ab

)
B + (ac− ad− bc)C − (bd)D. (6)

To prove that P , Q, and R are collinear we use (2), (6), and (4) to obtain the
following representations:





P : −bB + cC,
Q :

(
b2 − ab

)
B + (ac− ad− bc)C − (bd)D,

R : (b− a)B − cC − cD.
(7)

Since B, C, and D are noncollinear points of P2 (K), Lemma 4 implies that a
necessary and sufficient condition for the points P , Q, and R to be collinear is
that the determinant

∣∣∣∣∣∣

−b c 0
b2 − ab ac− ad− bc −bd
b− a −c −c

∣∣∣∣∣∣
= 0.

An easy calculation confirms that this determinant is zero. QED

It is well known that Pappus’ theorem implies the commutativity of the
multiplication in the field K of segment arithmetic (see the discussion in [3]
and a proof of this fact in [4, pp. 76–86], for example). It is also well known
(see [5]) that Pappus’ theorem implies Desargues’ theorem, but the converse is
not true when the field K is not commutative. In [4, p. 75], Seidenberg gave
a simple analytic proof of Desargues’ theorem when K is commutative; in the
next section we adapt his proof to the case where the field K is not necessarily
commutative.

2 Desargues’ Theorem over a Not Necessarily Com-
mutative Field

For terminology, definitions, and basic facts, we refer to [4, Chapter III]. Let
K be a not necessarily commutative field, i.e., we do not assume the rule ab = ba
for all a, b ∈ K (if ab 6= ba for some a, b ∈ K then K is called a noncommutative,
or skew, field). If K is a not necessarily commutative field then the following
hold:

— There is one and only one element e ∈ K such that ae = ea for all a ∈ K.
Such an element e is called the multiplicative neutral element of K.
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— For every a 6= 0 in K there exists one and only one element a−1 ∈ K such
that aa−1 = a−1a = e. This element is called the inverse of a.

— The equation ax = b, a 6= 0, has one and only one solution, namely
x = a−1b. Similarly, the equation xa = b, a 6= 0, has one and only one
solution, namely x = ba−1.

We now define the projective plane P2 (K) by representing a point P ∈

P2 (K) by a column vector



x
y
z


, not all x, y, z = 0 in K, and such that for

λ 6= 0 in K,



xλ
yλ
zλ


 ≡



x
y
z


λ represents the same point P .

We identify P with



x
y
z


. Similarly we represent a line l of P2 (K) by a

row vector
[
a b c

]
, not all a, b, c = 0 in K, and such that for µ 6= 0 in K,

µ
[
a b c

]
≡
[
µa µb µc

]
represents the same line l. Again we identify

the line l with the vector
[
a b c

]
. Then we see that P lies on l if and only

if for λ, µ 6= 0

µ
[
a b c

]


x
y
z


λ = µaxλ+ µbyλ+ µczλ = µ (ax+ by + cz)λ = 0.

6 Lemma. If P1 =



x1

y1

z1


 and P2 =



x2

y2

z2


 are distinct points of P2 (K)

then for λ1, λ2 not both zero scalars, the point P1λ1 + P2λ2 lies on the line
through P2 and P2.

Proof. Obvious. QED

7 Lemma. If P1, P2, and P3 are three distinct collinear points of P2 (K),
then for any one of these points, say P3, there exist nonzero scalars λ, µ ∈ K
such that P3 = P1λ+ P2µ.

Proof. Let xi, yi, zi be homogeneous coordinates of Pi, i = 1, 2, 3. Since
not all x1, y1, z1 equal zero we may assume without loss of generality that
x1 6= 0. Let l

(
a b c

)
be the line passing through P1, P2, and P3. Then we

have the system 



ax1 + by1 + cz1 = 0,
ax2 + by2 + cz2 = 0,
ax3 + by3 + cz3 = 0.

(8)
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The equations x2 = x1

(
x−1

1 x2

)
, y2 = y1

(
x−1

1 x2

)
, and z2 = z1

(
x−1

1 x2

)
cannot

be all possible, for if x2 = 0 then y2 = z2 = 0 which is excluded, and if x2 6= 0
then x−1

1 x2 6= 0 and this would imply that P1 and P2 coincide, contradicting
our hypothesis. Since obviously x2 = x1

(
x−1

1 x2

)
, we may assume without loss

of generality that y2 6= y1

(
x−1

1 x2

)
. Now let us consider the system of linear

equations with unknowns λ and µ

{
x1λ+ x2µ = x3,
y1λ+ y2µ = y3.

(9)

Multiplying (to the left) the first equation of (9) by y1x
−1
1 and subtracting

the result from the second, we get
(
y2 − y1x

−1
1 x2

)
µ = y3 − y1x

−1
1 x3. Since

y2 − y1x
−1
1 x2 6= 0 we get µ =

(
y2 − y1x

−1
1 x2

)−1 (
y3 − y1x

−1
1 x3

)
. From the

first equation of (9) we get x1λ = x3 − x2µ. Since x1 6= 0 we obtain λ =
x−1

1 (x3 − x2µ). Thus the system (9) can be solved for λ and µ. Multiplying
(to the right) the first equation of the system (8) by λ, the second by µ, and
subtracting their sum from the last, we get

a [x3 − (x1λ+ x2µ)] + b [y3 − (y1λ+ y2µ)] + c [z3 − (z1λ+ z2µ)] = 0.

Since λ and µ are solutions of the system (9), the latter is reduced to

c [z3 − (z1λ+ z2µ)] = 0.

Assuming that c 6= 0, we then obtain the equation z1λ+z2µ = z3, which together
with the system (9) implies that P3 = P1λ + P2µ. And since by hypothesis P3

is distinct from P1 and P2, λ and µ must be different from 0. Thus it remains
to show that c 6= 0 to achieve the proof of the lemma. But if c = 0 then the
system (8) is reduced to 




ax1 + by1 = 0,
ax2 + by2 = 0,
ax3 + by3 = 0.

(10)

Multiplying (to the right) the first equation of the system (10) by x−1
1 x2 and

subtracting the result from the second, we get b
(
y2 − y1x

−1
1 x2

)
= 0. Since

y2−y1x
−1
1 x2 6= 0, we get b = 0. But then the system (10) is reduced to ax1 = 0,

ax2 = 0, and ax3 = 0. Since x1 6= 0, we get a = 0. Thus a = b = c = 0, which is
not possible by the definition of the line l. QED

8 Theorem. (Desargues) If two triangles ABC and A′B′C ′ are in perspec-
tive from a point O distinct from the six points A, B, C, A′, B′, C ′ (i.e., the
joins of A and A′, B and B′, C and C ′ intersect at O) then the intersections
P : AB ∩A′B′, Q : AC ∩A′C ′, and R : BC ∩B′C ′ lie on a line.
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O R

P

B
B′

C ′

C

A A′

Q

(Figure 2)

Proof. It follows from the hypothesis and Lemma 7 that

O = Aa+A′a′ = Bb+B′b′ = Cc+ C ′c′, (11)

for some nonzero scalars a, a′, b, b′, c, c′ ∈ K. From (11) we deduce that




Aa−Bb = −A′a′ +B′b′,
Aa− Cc = −A′a′ + C ′c′,
Bb− Cc = −B′b′ + C ′c′.

(12)

Since −xy = x (−y) for all x, y ∈ K, (12) is equivalent to




Aa+B (−b) = A′ (−a′) +B′b′,
Aa+ C (−c) = A′ (−a′) + C ′c′,
Bb+ C (−c) = B′ (−b′) + C ′c′.

(12)′

It follows from Lemmas 6 and 7 that the first equation of (12)′ represents the
intersection P of AB and A′B′, the second representsQ, and the third represents
R. But then we obviously have Q = P + R, and by Lemma 6, P , Q, R are
collinear. QED
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