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Abstract. We present a result on the existence and the number of subgroups of any given
prime-power order containing an arbitrarily fixed subgroup in a finite group (see also [2]). Our
proof is an extension of Krull’s generalization ([1], 1961) of Sylow’s theorem, which leads us
to consider a new concept (the conditioned binomial coefficient) of independent combinatorial
interest.
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1 Prerequisites

All the groups considered in this paper are finite. The terminology and the
notations we use are standard, and can be found, e. g., in [2]. We recall, for
later reference, some elementary facts on the behaviour of a subset U of a finite
group acting on it by right-multiplication. Let G be a group. If U is a subgroup
of G and g ∈ G,

Ug = U ⇐⇒ g ∈ U.

If U is just a subset of G, neither implication is true. Thus we are naturally led
to define and study the set

R(U) := { g ∈ G | Ug = U }.

It is immediate to check that, for any U ⊆ G, R(U) is a subgroup of G; we call
it the stabilizer of U under right-multiplication by elements of G (or, briefly,
the right-stabilizer of U). Since U ·R(U) = U , U is union of left cosets of R(U)
whence |R(U)| divides |U |.
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1 Remark. Le G be a group. For any subset U of G such that 1G ∈ U , the
following statements are equivalent:

(i) U is a subgroup of G

(ii) R(U) = U

(iii) |R(U)| = |U |

2 Remark. Let G be a group. For any subset U of G, |{Ug | g ∈ G}| =
|G : R(U)| .

We will also need two results on binomial coefficients. The first one can be
obtained by straightforward computation, while the second one is proved in [1].

3 Remark. Let a,b be positive integers such that b divides a. Then
(
a

b

)
=
a

b
·
(
a− 1

b− 1

)

4 Remark. Let p be a prime, s a positive integer and g a positive integer
divisible by p s. Then (

g − 1

p s − 1

)
≡ 1 mod p

2 The main theorem

We want to prove

5 Theorem. Let G be a finite group, p a prime dividing |G|, H a p-subgroup
of G. Let |H| = p h and let k be a positive integer such that h < k and p k divides
|G|. Denote by SH(p k) the set of all the p-subgroups of G of order p k which
contain H. Then

|SH(p k)| ≡ 1 mod p.

We set some notation. Denote by FH(p k) the collection of all the subsets of
G having cardinality p k and containing exactly p k−h right cosets of H. For any
two subsets U1, U2 of G, define U1 ∼ U2 if and only if U2 = U1g for some g ∈ G.

Since G is a group, ∼ is an equivalence relation in any set of subsets of
G; in particular, ∼ is an equivalence relation in FH(p k), and thus FH(p k) is
partitioned into equivalence classes Θ1,Θ2, . . . ,Θt. Therefore we can write

|FH(p k)| = |Θ1| + |Θ2| + · · · + |Θt| (1)

We note that the subgroups of G which have order p k and contain H are
exactly the subgroups of G belonging to FH(p k). Indeed, let K be a subgroup
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belonging to FH(p k): then its order is p k and it contains p k−h right cosets of
H; these are a partition of K, so in particular 1G must belong to one of these
right cosets, which must be H itself, whence H ⊆ K. On the other hand, any
subgroup K of G of order p k containing H will contain exactly p k−h right cosets
of H, hence will belong to FH(p k).

6 Lemma. Let Θ ⊆ FH(p k) be an equivalence class of ∼ . Then

(a) For any U ∈ Θ, Θ = {Ug | g ∈ G }

(b) For any U ∈ Θ, |Θ| = |G : R(U)|

(c) For any U1,U2 ∈ Θ, R(U1) is conjugate to R(U2); in particular, |R(U1)| =
|R(U2)|

(d) There exists U0 ∈ Θ such that 1G ∈ U0

(e) For any U ∈ Θ, |Θ| = |G|
p k · p k

|R(U)| with |G|
p k and p k

|R(U)| integers.

(f) For any U ∈ Θ, p k

|R(U)| = 1 if and only if Θ contains a subgroup.

(g) If Θ contains a subgroup, it contains only one.

Proof. Statement (a) follows from the fact that |Ug| = |U |, so whenever
U ∈ FH(p k) then also Ug ∈ FH(p k). By Remark 2 and statement (a) there
follows (b).

To prove (c), let U2 = U1g with g ∈ G; then it is easy to check that R(U2) =
g−1R(U1)g.

To prove (d), take any U ∈ Θ and any g ∈ U and observe that 1G = gg−1 ∈
Ug−1 ∈ Θ.

To prove (e), note that p k divides |G| and p k = |U |, then remember that
|R(U)| divides |U |.

To prove (f), suppose at first that |R(U)| = p k and choose, by statement (d),
U0 ∈ Θ such that 1G ∈ U0: since, by statement (c), |R(U0)| = |R(U)| = p k =
|U0|, by Remark 1 U0 is a subgroup of G; conversely, suppose that Θ contains
a subgroup U0: since |R(U)| = |R(U0)| by statement (c), and |R(U0)| = |U0| (=
p k) by Remark 1, we conclude that p k = |R(U)|.

Finally, statement (g) is obvious because if Θ contains a subgroup L then
the elements of Θ are exactly the right cosets of L. This concludes the proof of
Lemma 6. QED

By statement (e) of Lemma 6, (1) can be rewritten as

|FH(p k)| =
|G|
p k

·
(

p k

|R(U1)|
+

p k

|R(U2)|
+ · · · + p k

|R(Ut)|

)
(2)
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where U1, U2, . . . , Ut are any representatives of the classes Θ1,Θ2, . . . ,Θt.
By statements (f) and (g) of Lemma 6, (2) can be rewritten as

|FH(p k)| =
|G|
p k

·
(
|SH(p k)| + p k

|R(Ui1)|
+

p k

|R(Ui2)|
+ · · · + p k

|R(Uiz)|

)
(3)

where SH(p k) is the number of subgroups of G of order p k containing H, the
sets Ui1 , Ui2 , . . . , Uiz are representatives of those classes which do not contain

subgroups, and the integers p k

|R(Uij
)| are different from 1.

We now examine the left side of (3). Since the right cosets ofH are a partition
of the set G into subsets all having cardinality p h, the number of subsets of G
of cardinality p k containing exactly p k−h components of the partition is equal
to the number of choices of p k−h components out of |G|/p h components. Thus,
by Remark 3,

|FH(p k)| =

( |G|
p h

p k−h

)
=

|G|
p k

·
( |G|

p h − 1

p k−h − 1

)

So (3) can be rewritten as

( |G|
p h − 1

p k−h − 1

)
= |SH(p k)| + p k

|R(Ui1)|
+

p k

|R(Ui2)|
+ · · · + p k

|R(Uiz)|
(4)

Now, the left side of (4) is congruent to 1 modulo p by Remark 4; all the
summands on the right side except SH(p k) (being divisors of p k different from
1) are congruent to 0 modulo p; so we can conclude that |SH(p k)| ≡ 1 mod p
and Theorem 5 is proved.

3 The conditioned binomial coefficient

In the proof of Theorem 5 we used the collection FH(p k) of all the subsets
of G having cardinality p k and containing exactly p k−h right cosets of H. It
seems equally natural to work with the family of the subsets of G which have
order p k and contain at least one right coset of H; one can also prove Theorem
5 using this family, provided he has the necessary knowledge of the arithmetical
properties of its cardinality. Thus we are led to make the following general
definition:
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7 Definition. Let a,b,c be positive integers such that a ≥ b ≥ c and a
a multiple of c. Let A be a set of cardinality a partitioned into subsets all of
cardinality c. We call Conditioned Binomial Coefficient determined by a,b and
c, and denote by




a
b
c




the number of subsets of A of cardinality b containing at least one component
of the partition.

8 Note (Open question). Let a,b,c be positive integers such that c divides
b and b divides a. Give a direct proof that

(1)




a
b
c


 =

a

b
m with m ∈ N.

(2) If b is a power of a prime p, then m ≡ 1 mod p .
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