Sylow’s Theorem and the arithmetic of binomial coefficients

Marco Barlotti
Dipartimento di Matematica per le Decisioni, Università di Firenze
marco.barlotti@dmd.unifi.it

Virgilio Pannone
Dipartimento di Matematica “U. Dini”, Università di Firenze
pannone@math.unifi.it

Received: 23/6/2003; accepted: 23/6/2003.

Abstract. We present a result on the existence and the number of subgroups of any given prime-power order containing an arbitrarily fixed subgroup in a finite group (see also [2]). Our proof is an extension of Krull’s generalization ([1], 1961) of Sylow’s theorem, which leads us to consider a new concept (the conditioned binomial coefficient) of independent combinatorial interest.

Keywords: Sylow’s Theorem, Binomial Coefficients.

dedicated to prof. Adriano Barlotti on the occasion of his 80th birthday

1 Prerequisites

All the groups considered in this paper are finite. The terminology and the notations we use are standard, and can be found, e. g., in [2]. We recall, for later reference, some elementary facts on the behaviour of a subset U of a finite group acting on it by right-multiplication. Let G be a group. If U is a subgroup of G and $g \in G$,

$$Ug = U \iff g \in U.$$

If U is just a subset of G, neither implication is true. Thus we are naturally led to define and study the set

$$R(U) := \{ g \in G \mid Ug = U \}.$$

It is immediate to check that, for any $U \subseteq G$, $R(U)$ is a subgroup of G; we call it the stabilizer of U under right-multiplication by elements of G (or, briefly, the right-stabilizer of U). Since $U \cdot R(U) = U$, U is union of left cosets of $R(U)$ whence $|R(U)|$ divides $|U|$.
1 Remark. Let G be a group. For any subset U of G such that $1_G \in U$, the following statements are equivalent:

(i) U is a subgroup of G
(ii) $R(U) = U$
(iii) $|R(U)| = |U|$

2 Remark. Let G be a group. For any subset U of G, $|\{Ug \mid g \in G\}| = |G : R(U)|$.

We will also need two results on binomial coefficients. The first one can be obtained by straightforward computation, while the second one is proved in [1].

3 Remark. Let a, b be positive integers such that b divides a. Then

$$\binom{a}{b} = \frac{a}{b} \binom{a-1}{b-1}$$

4 Remark. Let p be a prime, s a positive integer and g a positive integer divisible by p^s. Then

$$\binom{g-1}{p^s-1} \equiv 1 \mod p$$

2 The main theorem

We want to prove

5 Theorem. Let G be a finite group, p a prime dividing $|G|$, H a p-subgroup of G. Let $|H| = p^h$ and let k be a positive integer such that $h < k$ and p^k divides $|G|$. Denote by $S_H(p^k)$ the set of all the p-subgroups of G of order p^k which contain H. Then

$$|S_H(p^k)| \equiv 1 \mod p.$$

We set some notation. Denote by $F_H(p^k)$ the collection of all the subsets of G having cardinality p^k and containing exactly p^{k-h} right cosets of H. For any two subsets U_1, U_2 of G, define $U_1 \sim U_2$ if and only if $U_2 = U_1 g$ for some $g \in G$.

Since G is a group, \sim is an equivalence relation in any set of subsets of G; in particular, \sim is an equivalence relation in $F_H(p^k)$, and thus $F_H(p^k)$ is partitioned into equivalence classes $\Theta_1, \Theta_2, \ldots, \Theta_t$. Therefore we can write

$$|F_H(p^k)| = |\Theta_1| + |\Theta_2| + \cdots + |\Theta_t|$$ \hspace{1cm} (1)

We note that the subgroups of G which have order p^k and contain H are exactly the subgroups of G belonging to $F_H(p^k)$. Indeed, let K be a subgroup
belonging to \(F_H(p^k) \): then its order is \(p^k \) and it contains \(p^{k-h} \) right cosets of \(H \); these are a partition of \(K \), so in particular \(1_G \) must belong to one of these right cosets, which must be \(H \) itself, whence \(H \subseteq K \). On the other hand, any subgroup \(K \) of \(G \) of order \(p^k \) containing \(H \) will contain exactly \(p^{k-h} \) right cosets of \(H \), hence will belong to \(F_H(p^k) \).

6 Lemma. Let \(\Theta \subseteq F_H(p^k) \) be an equivalence class of \(\sim \). Then

(a) For any \(U \in \Theta \), \(\Theta = \{ Ug \mid g \in G \} \)

(b) For any \(U \in \Theta \), \(|\Theta| = |G : R(U)| \)

(c) For any \(U_1, U_2 \in \Theta \), \(R(U_1) \) is conjugate to \(R(U_2) \); in particular, \(|R(U_1)| = |R(U_2)| \)

(d) There exists \(U_0 \in \Theta \) such that \(1_G \in U_0 \)

(e) For any \(U \in \Theta \), \(|\Theta| = \frac{|G|}{p^k} \cdot \frac{p^k}{|R(U)|} \) with \(\frac{|G|}{p^k} \) and \(\frac{p^k}{|R(U)|} \) integers.

(f) For any \(U \in \Theta \), \(\frac{p^k}{|R(U)|} = 1 \) if and only if \(\Theta \) contains a subgroup.

(g) If \(\Theta \) contains a subgroup, it contains only one.

Proof. Statement (a) follows from the fact that \(|Ug| = |U| \), so whenever \(U \in F_H(p^k) \) then also \(Ug \in F_H(p^k) \). By Remark 2 and statement (a) there follows (b).

To prove (c), let \(U_2 = U_1g \) with \(g \in G \); then it is easy to check that \(R(U_2) = g^{-1}R(U_1)g \).

To prove (d), take any \(U \in \Theta \) and any \(g \in U \) and observe that \(1_G = gg^{-1} \in Ug^{-1} \in \Theta \).

To prove (e), note that \(p^k \) divides \(|G| \) and \(p^k = |U| \), then remember that \(|R(U)| \) divides \(|U| \).

To prove (f), suppose at first that \(|R(U)| = p^k \) and choose, by statement (d), \(U_0 \in \Theta \) such that \(1_G \in U_0 \); since, by statement (c), \(|R(U_0)| = |R(U)| = p^k = |U_0| \), by Remark 1 \(U_0 \) is a subgroup of \(G \); conversely, suppose that \(\Theta \) contains a subgroup \(U_0 \); since \(|R(U)| = |R(U_0)| \) by statement (c), and \(|R(U_0)| = |U_0| = p^k \) by Remark 1, we conclude that \(p^k = |R(U)| \).

Finally, statement (g) is obvious because if \(\Theta \) contains a subgroup \(L \) then the elements of \(\Theta \) are exactly the right cosets of \(L \). This concludes the proof of Lemma 6.

By statement (e) of Lemma 6, (1) can be rewritten as

\[
|F_H(p^k)| = \frac{|G|}{p^k} \cdot \left(\frac{p^k}{|R(U_1)|} + \frac{p^k}{|R(U_2)|} + \cdots + \frac{p^k}{|R(U_i)|} \right)
\] (2)
where U_1, U_2, \ldots, U_t are any representatives of the classes $\Theta_1, \Theta_2, \ldots, \Theta_t$. By statements (f) and (g) of Lemma 6, (2) can be rewritten as

$$|F_H(p^k)| = \frac{|G|}{p^k} \cdot \left(|S_H(p^k)| + \frac{p^k}{|R(U_{i_1})|} + \frac{p^k}{|R(U_{i_2})|} + \cdots + \frac{p^k}{|R(U_{i_z})|} \right)$$

(3)

where $S_H(p^k)$ is the number of subgroups of G of order p^k containing H, the sets $U_{i_1}, U_{i_2}, \ldots, U_{i_z}$ are representatives of those classes which do not contain subgroups, and the integers $\frac{p^k}{|R(U_{i_j})|}$ are different from 1.

We now examine the left side of (3). Since the right cosets of H are a partition of the set G into subsets all having cardinality p^h, the number of subsets of G of cardinality p^k containing exactly p^{k-h} components of the partition is equal to the number of choices of p^{k-h} components out of $|G|/p^h$ components. Thus, by Remark 3,

$$|F_H(p^k)| = \left(\frac{|G|}{p^h} \right)^{p^{k-h}} = \frac{|G|}{p^k} \cdot \left(\frac{|G|}{p^h} - 1 \right)$$

So (3) can be rewritten as

$$\left(\frac{|G|}{p^h} - 1 \right) = |S_H(p^k)| + \frac{p^k}{|R(U_{i_1})|} + \frac{p^k}{|R(U_{i_2})|} + \cdots + \frac{p^k}{|R(U_{i_z})|}$$

(4)

Now, the left side of (4) is congruent to 1 modulo p by Remark 4; all the summands on the right side except $S_H(p^k)$ (being divisors of p^k different from 1) are congruent to 0 modulo p; so we can conclude that $|S_H(p^k)| \equiv 1 \mod p$ and Theorem 5 is proved.

3 The conditioned binomial coefficient

In the proof of Theorem 5 we used the collection $F_H(p^k)$ of all the subsets of G having cardinality p^k and containing exactly p^{k-h} right cosets of H. It seems equally natural to work with the family of the subsets of G which have order p^k and contain at least one right coset of H; one can also prove Theorem 5 using this family, provided he has the necessary knowledge of the arithmetical properties of its cardinality. Thus we are led to make the following general definition:
Sylow’s Theorem and the arithmetic of binomial coefficients

7 Definition. Let \(a, b, c \) be positive integers such that \(a \geq b \geq c \) and \(a \) a multiple of \(c \). Let \(A \) be a set of cardinality \(a \) partitioned into subsets all of cardinality \(c \). We call Conditioned Binomial Coefficient determined by \(a, b \) and \(c \), and denote by

\[
\binom{a}{b} \binom{b}{c}
\]

the number of subsets of \(A \) of cardinality \(b \) containing at least one component of the partition.

8 Note (Open question). Let \(a, b, c \) be positive integers such that \(c \) divides \(b \) and \(b \) divides \(a \). Give a direct proof that

\[
(1) \quad \binom{a}{b} \binom{b}{c} = \frac{a}{b} m \quad \text{with } m \in \mathbb{N}.
\]

(2) If \(b \) is a power of a prime \(p \), then \(m \equiv 1 \mod p \).

References

