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Abstract. We present a result on the existence and the number of subgroups of any given
prime-power order containing an arbitrarily fixed subgroup in a finite group (see also [2]). Our
proof is an extension of Krull’s generalization ([1], 1961) of Sylow’s theorem, which leads us
to consider a new concept (the conditioned binomial coefficient) of independent combinatorial
interest.
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1 Prerequisites

All the groups considered in this paper are finite. The terminology and the
notations we use are standard, and can be found, e. g., in [2]. We recall, for
later reference, some elementary facts on the behaviour of a subset U of a finite
group acting on it by right-multiplication. Let G be a group. If U is a subgroup
of G and g € G,

Ug=U<+= gcU.

If U is just a subset of G, neither implication is true. Thus we are naturally led
to define and study the set

RU):={9geG|Ug=U}.

It is immediate to check that, for any U C G, R(U) is a subgroup of G; we call
it the stabilizer of U under right-multiplication by elements of G (or, briefly,
the right-stabilizer of U). Since U - R(U) = U, U is union of left cosets of R(U)
whence |R(U)| divides |U].
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1 Remark. Le G be a group. For any subset U of G such that 14 € U, the
following statements are equivalent:

(i) U is a subgroup of G
(i) R(U)=U
(iii) [R(U)| = [U]
2 Remark. Let G be a group. For any subset U of G, |{Ug | g € G}| =
|G : R(U)|.
We will also need two results on binomial coefficients. The first one can be

obtained by straightforward computation, while the second one is proved in [1].

3 Remark. Let a,b be positive integers such that b divides a. Then

a\ a a—1
b) b b—1
4 Remark. Let p be a prime, s a positive integer and g a positive integer

divisible by p®. Then
-1
<g > =1 modp
ps—1

2 The main theorem

We want to prove

5 Theorem. Let G be a finite group, p a prime dividing |G|, H a p-subgroup
of G. Let |[H| = p" and let k be a positive integer such that h < k and p* divides
|G|. Denote by Sg(p*) the set of all the p-subgroups of G of order p* which
contain H. Then

1Se(p*)| =1 mod p.

We set some notation. Denote by Fr(p*) the collection of all the subsets of
G having cardinality p* and containing exactly p*~" right cosets of H. For any
two subsets Uy, Us of G, define Uy ~ Us if and only if Uy = Uy g for some g € G.

Since G is a group, ~ is an equivalence relation in any set of subsets of
G; in particular, ~ is an equivalence relation in Fy(p*), and thus Fy(p*) is
partitioned into equivalence classes ©1, 9, ..., 0. Therefore we can write

|Fr(p®)| = [01] + |©2] + -+ + 6] (1)

We note that the subgroups of G which have order p* and contain H are
exactly the subgroups of G belonging to F(p*). Indeed, let K be a subgroup
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belonging to Fg(p*): then its order is p* and it contains p*~" right cosets of
H; these are a partition of K, so in particular 15 must belong to one of these
right cosets, which must be H itself, whence H C K. On the other hand, any
subgroup K of G of order p* containing H will contain exactly p*~" right cosets
of H, hence will belong to F(p*).

6 Lemma. Let © C Fy(p*) be an equivalence class of ~. Then
(a) ForanyU € ©®, ©={Ug|ge G}
(b) For any U € ©, |0 =|G: R(U)|

(¢c) For any Uy,Us € ©, R(Uy) is conjugate to R(Us); in particular, |R(Uy)| =
[R(U2)]

(d) There exists Uy € © such that 1g € Uy

k

G . G k .
(e) For any U € O, |0| = |p—k| : |RIE—U)| with |p—k| and IRIE—U)I integers.

(f) For any U € O, |Rp(7[k])| =1 if and only if © contains a subgroup.
(9) If © contains a subgroup, it contains only one.

PROOF. Statement (a) follows from the fact that |Ug| = |U|, so whenever
U € Fy(p*) then also Ug € Fy(p*). By Remark 2 and statement (a) there
follows (b).

To prove (c), let Uy = Uy g with g € G; then it is easy to check that R(Us) =
9~ 'R(Un)g.

To prove (d), take any U € © and any g € U and observe that 1¢ = gg~! €
Ug~!eco.

To prove (e), note that p* divides |G| and p* = |U|, then remember that
|R(U)| divides |U]|.

To prove (f), suppose at first that | R(U)| = p* and choose, by statement (d),
Up € O such that 1g € Up: since, by statement (c), |[R(Up)| = |R(U)| = p* =
|Uol|, by Remark 1 Up is a subgroup of G; conversely, suppose that © contains
a subgroup Uy: since |R(U)| = |R(Up)| by statement (c), and |R(Up)| = |Up| (=
p*) by Remark 1, we conclude that p* = |R(U)|.

Finally, statement (g) is obvious because if © contains a subgroup L then
the elements of © are exactly the right cosets of L. This concludes the proof of
Lemma 6.

By statement (e) of Lemma 6, (1) can be rewritten as

my = 1G1 " p* p*
|[Fu(p™)| = Dk <|R(U1)] + |R(Us)| o |R(Ut)|> .
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where Uy, Us,...,U; are any representatives of the classes ©1,0,...,0;.
By statements (f) and (g) of Lemma 6, (2) can be rewritten as

e IGL " " pt L Pt
Fulp") =% (!SH<p ' Ru T RO +|R<Ui>\) (3)

where Sg(p*) is the number of subgroups of G of order p* containing H, the

sets Uiy, Ui, ..., U;, are representatives of those classes which do not contain
k

subgroups, and the integers IMPT)I are different from 1.
i

We now examine the left side of (3). Since the right cosets of H are a partition
of the set G into subsets all having cardinality p”, the number of subsets of G
of cardinality p* containing exactly p¥~" components of the partition is equal
to the number of choices of p*~" components out of |G|/p" components. Thus,
by Remark 3,

G |
k) _ ph _|G\ oh 1
= () = 5 (i

So (3) can be rewritten as

G| k k k

ph Y k p p I
() =180+ gy * g mim

Now, the left side of (4) is congruent to 1 modulo p by Remark 4; all the
summands on the right side except Sg(p*) (being divisors of p* different from
1) are congruent to 0 modulo p; so we can conclude that [Sg(p*)] =1 mod p
and Theorem 5 is proved.

3 The conditioned binomial coefficient

In the proof of Theorem 5 we used the collection Fz(p*) of all the subsets
of G having cardinality p* and containing exactly p*~" right cosets of H. It
seems equally natural to work with the family of the subsets of G which have
order p* and contain at least one right coset of H; one can also prove Theorem
5 using this family, provided he has the necessary knowledge of the arithmetical
properties of its cardinality. Thus we are led to make the following general
definition:
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7 Definition. Let a,b,c be positive integers such that a > b > ¢ and a
a multiple of c. Let A be a set of cardinality a partitioned into subsets all of
cardinality c. We call Conditioned Binomial Coefficient determined by a,b and
¢, and denote by

a
b
&

the number of subsets of A of cardinality b containing at least one component
of the partition.

8 Note (Open question). Let a,b,c be positive integers such that ¢ divides
b and b divides a. Give a direct proof that

@ | » :%m with m € N.
C

(2) If b is a power of a prime p, then m =1 mod p.
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