Sylow's Theorem and the arithmetic of binomial coefficients

Marco Barlotti
Dipartimento di Matematica per le Decisioni, Università di Firenze marco.barlotti@dmd.unifi.it
Virgilio Pannone
Dipartimento di Matematica"U. Dini", Università di Firenze pannone@math.unifi.it

Received: 23/6/2003; accepted: 23/6/2003.

Abstract

We present a result on the existence and the number of subgroups of any given prime-power order containing an arbitrarily fixed subgroup in a finite group (see also [2]). Our proof is an extension of Krull's generalization ([1], 1961) of Sylow's theorem, which leads us to consider a new concept (the conditioned binomial coefficient) of independent combinatorial interest.

Keywords: Sylow's Theorem, Binomial Coefficients.
MSC 2000 classification: 20D20.
dedicated to prof. Adriano Barlotti on the occasion of his 80th birthday

1 Prerequisites

All the groups considered in this paper are finite. The terminology and the notations we use are standard, and can be found, e. g., in [2]. We recall, for later reference, some elementary facts on the behaviour of a subset U of a finite group acting on it by right-multiplication. Let G be a group. If U is a subgroup of G and $g \in G$,

$$
U g=U \Longleftrightarrow g \in U .
$$

If U is just a subset of G, neither implication is true. Thus we are naturally led to define and study the set

$$
R(U):=\{g \in G \mid U g=U\} .
$$

It is immediate to check that, for any $U \subseteq G, R(U)$ is a subgroup of G; we call it the stabilizer of U under right-multiplication by elements of G (or, briefly, the right-stabilizer of U). Since $U \cdot R(U)=U, U$ is union of left cosets of $R(U)$ whence $|R(U)|$ divides $|U|$.

1 Remark. Le G be a group. For any subset U of G such that $1_{G} \in U$, the following statements are equivalent:
(i) U is a subgroup of G
(ii) $R(U)=U$
(iii) $|R(U)|=|U|$

2 Remark. Let G be a group. For any subset U of $G,|\{U g \mid g \in G\}|=$ $|G: R(U)|$.

We will also need two results on binomial coefficients. The first one can be obtained by straightforward computation, while the second one is proved in [1].

3 Remark. Let a, b be positive integers such that b divides a. Then

$$
\binom{a}{b}=\frac{a}{b} \cdot\binom{a-1}{b-1}
$$

4 Remark. Let p be a prime, s a positive integer and g a positive integer divisible by p^{s}. Then

$$
\binom{g-1}{p^{s}-1} \equiv 1 \quad \bmod p
$$

2 The main theorem

We want to prove
5 Theorem. Let G be a finite group, p a prime dividing $|G|, H$ a p-subgroup of $G . \operatorname{Let}|H|=p^{h}$ and let k be a positive integer such that $h<k$ and p^{k} divides $|G|$. Denote by $S_{H}\left(p^{k}\right)$ the set of all the p-subgroups of G of order p^{k} which contain H. Then

$$
\left|S_{H}\left(p^{k}\right)\right| \equiv 1 \quad \bmod p
$$

We set some notation. Denote by $F_{H}\left(p^{k}\right)$ the collection of all the subsets of G having cardinality p^{k} and containing exactly p^{k-h} right cosets of H. For any two subsets U_{1}, U_{2} of G, define $U_{1} \sim U_{2}$ if and only if $U_{2}=U_{1} g$ for some $g \in G$.

Since G is a group, \sim is an equivalence relation in any set of subsets of G; in particular, \sim is an equivalence relation in $F_{H}\left(p^{k}\right)$, and thus $F_{H}\left(p^{k}\right)$ is partitioned into equivalence classes $\Theta_{1}, \Theta_{2}, \ldots, \Theta_{t}$. Therefore we can write

$$
\begin{equation*}
\left|F_{H}\left(p^{k}\right)\right|=\left|\Theta_{1}\right|+\left|\Theta_{2}\right|+\cdots+\left|\Theta_{t}\right| \tag{1}
\end{equation*}
$$

We note that the subgroups of G which have order p^{k} and contain H are exactly the subgroups of G belonging to $F_{H}\left(p^{k}\right)$. Indeed, let K be a subgroup
belonging to $F_{H}\left(p^{k}\right)$: then its order is p^{k} and it contains p^{k-h} right cosets of H; these are a partition of K, so in particular 1_{G} must belong to one of these right cosets, which must be H itself, whence $H \subseteq K$. On the other hand, any subgroup K of G of order p^{k} containing H will contain exactly p^{k-h} right cosets of H, hence will belong to $F_{H}\left(p^{k}\right)$.

6 Lemma. Let $\Theta \subseteq F_{H}\left(p^{k}\right)$ be an equivalence class of \sim. Then
(a) For any $U \in \Theta, \Theta=\{U g \mid g \in G\}$
(b) For any $U \in \Theta,|\Theta|=|G: R(U)|$
(c) For any $U_{1}, U_{2} \in \Theta, R\left(U_{1}\right)$ is conjugate to $R\left(U_{2}\right)$; in particular, $\left|R\left(U_{1}\right)\right|=$ $\left|R\left(U_{2}\right)\right|$
(d) There exists $U_{0} \in \Theta$ such that $1_{G} \in U_{0}$
(e) For any $U \in \Theta,|\Theta|=\frac{|G|}{p^{k}} \cdot \frac{p^{k}}{|R(U)|}$ with $\frac{|G|}{p^{k}}$ and $\frac{p^{k}}{|R(U)|}$ integers.
(f) For any $U \in \Theta, \frac{p^{k}}{|R(U)|}=1$ if and only if Θ contains a subgroup.
(g) If Θ contains a subgroup, it contains only one.

Proof. Statement (a) follows from the fact that $|U g|=|U|$, so whenever $U \in F_{H}\left(p^{k}\right)$ then also $U g \in F_{H}\left(p^{k}\right)$. By Remark 2 and statement (a) there follows (b).

To prove (c), let $U_{2}=U_{1} g$ with $g \in G$; then it is easy to check that $R\left(U_{2}\right)=$ $g^{-1} R\left(U_{1}\right) g$.

To prove (d), take any $U \in \Theta$ and any $g \in U$ and observe that $1_{G}=g g^{-1} \in$ $U g^{-1} \in \Theta$.

To prove (e), note that p^{k} divides $|G|$ and $p^{k}=|U|$, then remember that $|R(U)|$ divides $|U|$.

To prove (f), suppose at first that $|R(U)|=p^{k}$ and choose, by statement (d), $U_{0} \in \Theta$ such that $1_{G} \in U_{0}$: since, by statement $(c),\left|R\left(U_{0}\right)\right|=|R(U)|=p^{k}=$ $\left|U_{0}\right|$, by Remark $1 U_{0}$ is a subgroup of G; conversely, suppose that Θ contains a subgroup U_{0} : since $|R(U)|=\left|R\left(U_{0}\right)\right|$ by statement (c), and $\left|R\left(U_{0}\right)\right|=\left|U_{0}\right|(=$ $\left.p^{k}\right)$ by Remark 1, we conclude that $p^{k}=|R(U)|$.

Finally, statement (g) is obvious because if Θ contains a subgroup L then the elements of Θ are exactly the right cosets of L. This concludes the proof of Lemma 6.

By statement (e) of Lemma 6, (1) can be rewritten as

$$
\begin{equation*}
\left|F_{H}\left(p^{k}\right)\right|=\frac{|G|}{p^{k}} \cdot\left(\frac{p^{k}}{\left|R\left(U_{1}\right)\right|}+\frac{p^{k}}{\left|R\left(U_{2}\right)\right|}+\cdots+\frac{p^{k}}{\left|R\left(U_{t}\right)\right|}\right) \tag{2}
\end{equation*}
$$

where $U_{1}, U_{2}, \ldots, U_{t}$ are any representatives of the classes $\Theta_{1}, \Theta_{2}, \ldots, \Theta_{t}$. By statements (f) and (g) of Lemma $6,(2)$ can be rewritten as

$$
\begin{equation*}
\left|F_{H}\left(p^{k}\right)\right|=\frac{|G|}{p^{k}} \cdot\left(\left|S_{H}\left(p^{k}\right)\right|+\frac{p^{k}}{\left|R\left(U_{i_{1}}\right)\right|}+\frac{p^{k}}{\left|R\left(U_{i_{2}}\right)\right|}+\cdots+\frac{p^{k}}{\left|R\left(U_{i_{z}}\right)\right|}\right) \tag{3}
\end{equation*}
$$

where $S_{H}\left(p^{k}\right)$ is the number of subgroups of G of order p^{k} containing H, the sets $U_{i_{1}}, U_{i_{2}}, \ldots, U_{i_{z}}$ are representatives of those classes which do not contain subgroups, and the integers $\frac{p^{k}}{\left|R\left(U_{i_{j}}\right)\right|}$ are different from 1.

We now examine the left side of (3). Since the right cosets of H are a partition of the set G into subsets all having cardinality p^{h}, the number of subsets of G of cardinality p^{k} containing exactly p^{k-h} components of the partition is equal to the number of choices of p^{k-h} components out of $|G| / p^{h}$ components. Thus, by Remark 3,

$$
\left|F_{H}\left(p^{k}\right)\right|=\binom{\frac{|G|}{p^{h}}}{p^{k-h}}=\frac{|G|}{p^{k}} \cdot\binom{\frac{|G|}{p^{h}}-1}{p^{k-h}-1}
$$

So (3) can be rewritten as

$$
\begin{equation*}
\binom{\frac{|G|}{p^{h}}-1}{p^{k-h}-1}=\left|S_{H}\left(p^{k}\right)\right|+\frac{p^{k}}{\left|R\left(U_{i_{1}}\right)\right|}+\frac{p^{k}}{\left|R\left(U_{i_{2}}\right)\right|}+\cdots+\frac{p^{k}}{\left|R\left(U_{i_{z}}\right)\right|} \tag{4}
\end{equation*}
$$

Now, the left side of (4) is congruent to 1 modulo p by Remark 4; all the summands on the right side except $S_{H}\left(p^{k}\right)$ (being divisors of p^{k} different from $1)$ are congruent to 0 modulo p ; so we can conclude that $\left|S_{H}\left(p^{k}\right)\right| \equiv 1 \bmod p$ and Theorem 5 is proved.

3 The conditioned binomial coefficient

In the proof of Theorem 5 we used the collection $F_{H}\left(p^{k}\right)$ of all the subsets of G having cardinality p^{k} and containing exactly p^{k-h} right cosets of H. It seems equally natural to work with the family of the subsets of G which have order p^{k} and contain at least one right coset of H; one can also prove Theorem 5 using this family, provided he has the necessary knowledge of the arithmetical properties of its cardinality. Thus we are led to make the following general definition:

7 Definition. Let a, b, c be positive integers such that $a \geq b \geq c$ and a a multiple of c. Let A be a set of cardinality a partitioned into subsets all of cardinality c. We call Conditioned Binomial Coefficient determined by a, b and c, and denote by

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

the number of subsets of A of cardinality b containing at least one component of the partition.

8 Note (Open question). Let a, b, c be positive integers such that c divides b and b divides a. Give a direct proof that
(1) $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\frac{a}{b} m \quad$ with $m \in \mathbb{N}$.
(2) If b is a power of a prime p, then $m \equiv 1 \bmod p$.

References

[1] W. Krull: Über die p-Untergruppen, Archiv der Math. 12 (1961) p. 1-6.
[2] M. Suzuki: Group Theory I, Springer-Verlag (Berlin, 1982) [English translation of Gunron, Iwanami Shoten (Tokyo, 1977)].
[3] V. Pannone: A rounded off proof of Sylow's Theorem, seminar notes typewritten by P. Santaniello (2000).

