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On the semifield planes of order 54
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Abstract. In this article we consider the problem of determining all non-Desarguesian
semifield planes of order 54 and kernel GF(52). We show that the class of p-primitive planes is
the largest class and besides those the only other semifield planes in the class under study are
the generalized twisted field planes. We conjecture that in general these two classes include all
the non-Desarguesian semifield planes of order p4 and kernel GF(p2).
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1 Semifield planes of order 5
4

Let Π be a semifield plane of order p4 and kernel containing GF(p2). Let S
be a semifield coordinatizing Π and let {1, π} be a basis for S over GF(p2). Each
element in S is of the form x + yπ where x, y ∈ GF(p2). In GF(p2) choose an
element γ such that γ2 = s where s is a nonsquare in GF(p). Then {1, γ, π, γπ} is
a basis of S over GF(p). To define the product we must determine the following:

πγ = a+ bπ π2 = c+ dπ π(γπ) = e+ fπ (1)

where a, b, c, d, e, f ∈GF(p2).
Paralleling earlier work of Kleinfeld [13]and Boerner-Lantz [3], in [10] we

constructed all the semifield planes of order 54 and kernel containing GF(52).
With the aid of the computer, we obtained all the coefficients a, b, c, d, e, f that
produce a semifield thus obtaining all the semifields of order 54 and kernel
containing GF(52). We then grouped the corresponding semifields into isotopism
classes.

In the following table we list a representative from each isotopism class:
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Semifields of order 54

Plane πγ π2 π(γπ)

(a) γπ γ 3
(b) 4γπ γ 3
(c) 4γπ γ 2
(d) 4γπ 1 + γ 2 + 4γ
(e) 4γπ 1 + γ 3 + 2γ
(f) 4γπ 1 + 2γ 4 + 4γ
(g) (2 + γ)π 4γ 2 + 2γ
(h) 4γπ γ 1 + γ
(i) 4γπ γ 2 + γ
(j) 4γπ 1 + γ 4 + γ
(k) 4γπ γ 3 + 2γ
(L) γ + γπ γ 3 + γ + 2γπ
(m) γ + γπ γ 3 + 4γ + 3γπ

Table 1

2 p-primitive semifield planes

Let Π be a semifield plane of order q4 and kernel containing K ' GF(q2)
where q is a prime power pr. A p-primitive Baer collineation of Π is a collineation
σ which fixes a Baer subplane of Π pointwise and whose order is a p-primitive
divisor of q2 − 1, i.e. |σ||q2 − 1, but |σ| 6 |pi − 1 for 1 ≤ i ≤ 2r. A semifield plane
of order p4 and kernel GF(p2) where p is an odd prime is called a p-primitive
semifield plane if it admits a p-primitive Baer collineation. This is the class of
planes obtained when the construction method of Hiramine, Matsumoto and
Oyama [11] is applied to the Desarguesian plane of order p2. Equivalently (see
Johnson [12], Theorem 2.1), this is the class of planes that admit a matrix spread
set of the form

(
u v

f(v) up

)

where f is an additive function in GF(p2) such that up+1 6= vf(v) for any u, v ∈
GF(p2) with (u, v) 6= (0, 0). This class of planes was studied by Cordero in [4]-
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[8]. The following was shown:

1 Theorem. (see [6], Theorem 2.1)
Let Π be a p−primitive semifield plane and let Nm,Nr,Nl be its middle,

right and left nucleus, respectively. Then exactly one of the following holds:

(i) Nm = Nl = Nr ' GF (p2)

(ii) Nm = Nr ' GF (p)

2 Theorem. (see [5] Corollary 2.2)
Let Π be a p−primitive semifield plane and let A(Π) be its autotopism group.

Then A(Π) is solvable.

3 Theorem. (see [4] Theorem 4.2)

For any odd prime p, there are

(
p+ 1

2

)2

nonisomorphic p−primitive semi-

field planes of order p4.

In [8] a matrix spread set of the p-primitive planes for p = 3, 5, 7, 11 was
given. A representative from each isotopism class of semifields of order 54 is
given in the table below:

p-primitive planes of order 54

Name πγ π2 π(γπ)

Primi 1 4γπ 3γ 1
Primi 2 4γπ 1 + 4γ 1 + γ
Primi 3 4γπ 2 + 4γ 1
Primi 4 4γπ 3 + 4γ 1 + 4γ
Primi 5 4γπ 2 + γ 3
Primi 6 4γπ 3 + γ 3 + 4γ
Primi 7 4γπ 1 + γ 3 + γ
Primi 8 4γπ 1 + 3γ 1 + 4γ
Primi 9 4γπ 2 + 3γ 1 + 3γ

Table 2
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3 Determinants

Let S be a semifield of order p4 and kernel containing GF(p2) and let
u, v, x, y ∈ GF(p2). Then the product (u+ vπ)(x+ yπ) ∈ S may be represented
by:

(u, v)

(
x y

f(x, y) g(x, y)

)

where the functions f(x, y) and g(x, y) are given by:

f(x, y) = p1,1x+p1,2x
p+p2,1y+p2,2y

p, g(x, y) = q1,1x+q1,2x
p+q2,1y+q2,2y

p

where pi,j , qi,j ∈GF(p2) for i, j ∈ 0, 1. For the basis {1, γ, π, γπ} the associated
matrices are: (

1 0
0 1

)
,

(
γ 0
a b

)
,

(
0 1
c d

)
,

(
0 γ
e f

)
(2)

Let M be a matrix spread set for S. Then each matrix M ∈ M is a linear
combination of the matrices in (2) above where the coefficients belong to GF(p).

For the case when p = 5, we calculated the determinants of a matrix spread
set of each semifield with product given in Table 1 above. In the table below
we give the ”pattern” of determinants; that is, the ordered p2-tuple consisting
of the frequency of each element in GF(p2) as a determinant of a matrix in the
matrix spread set.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
(a) 1 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26
(b) 1 6 6 6 6 26 26 36 36 26 26 36 26 26 36 26 36 26 26 36 26 26 36 36 26
(c) 1 6 6 6 6 6 36 36 36 36 6 36 36 36 36 6 36 36 36 36 6 36 36 36 36
(d) 1 6 6 6 6 36 6 36 36 36 36 36 6 36 36 36 36 36 6 36 36 36 36 36 6
(e) 1 6 6 6 6 36 16 36 26 36 36 36 36 16 26 36 26 16 36 36 36 36 26 36 16
(f) 1 6 6 6 6 36 36 36 6 36 36 6 36 36 36 36 36 36 36 6 36 36 6 36 36
(g) 1 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26
(h) 1 6 6 6 6 26 36 36 26 26 26 26 36 26 36 26 36 26 36 26 26 26 26 36 36
(i) 1 6 6 6 6 26 36 16 36 36 36 36 26 16 36 36 36 16 26 36 26 36 36 16 36
(j) 1 6 6 6 6 36 26 16 36 36 36 16 36 26 36 36 36 26 36 16 36 36 36 16 26
(k) 1 6 6 6 6 26 36 26 26 36 26 26 36 36 26 26 26 36 36 26 26 36 26 26 36
(L) 1 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26
(m) 1 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26

Table 3
Note that (a) corresponds to the Desarguesian plane and the planes (g), (L)

amd (m) have the same determinant pattern as the Desarguesian plane.
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4 Classification of the semifields of order 5
4 and ker-

nel containing GF(52)

Let Π1 and Π2 be two semifield planes of order p4 with matrix spread sets
S1 and S2, respectively. If the planes are isomorphic, then there exist 2 × 2
non-singular matrices A and B in GF(p2) and σ ∈ Aut(GF(p2)) such that
A−1MσB = N ∈ S2 for every M ∈ S1. Moreover, det(A−1MσB) = detN .
Letting k = detB

detA we have (detM)σk = detN . Now letting Mσ,k be the pattern
of determinants A−1MσB we have that Mσ,k coincides with the determinant
pattern of S2.

Let Π be a semifield plane of order 54 and kernel containing GF(52) with ma-
trix spread set S and determinant patternM . Then there exist σ ∈ Aut(GF(52))
and k ∈GF(52) such that Mσ,k coincides with one of the determinant patterns
given in Table 3.

When we calculated the determinants for a matrix spread set for Primi 1 we
obtained the following determinant pattern:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 6 6 6 6 6 36 36 36 36 6 36 36 36 36 6 36 36 36 36 6 36 36 36 36

Denote this pattern by M . Next we computed the patterns Mσ,k for all σ ∈
Aut(GF(52)) and k ∈GF(52). We found that for all the choices of σ and k for
which Mσ,k was a pattern in Table 3, then the pattern was that of Plane (b).
Therefore the plane coordinatized by (b) is isomorphic to the one coordinatized
by Primi 7.

Similarly after comparing the determinant patterns of all the p-primitive
semifield planes with the patterns of the planes in Table 1 we found the following
isomorphisms:

Plane in Table 1 Isomorphic to
(b) Primi 7
(c) Primi 1
(d) Primi 9
(e) Primi 6
(f) Primi 8
(h) Primi 3
(i) Primi 4
(j) Primi 2
(k) Primi 5

In order to complete the classification of semifield planes of order 54 we now
consider the generalized twisted field planes .

Let Π be a generalized twisted field plane of order pr. The product in Π
is given by x ◦ y = xy − cxαyβ where α, β ∈ Aut(GF(pr)) and c 6= xα−1yβ−1
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for all x, y ∈GF(pr). If α 6= I, β 6= I, (I = identity) and α 6= β,then the right
nucleus is the subfield of GF(pr) fixed by β; that is, {x ∈ GF (pr) : xβ = x}.
The left nucleus (or kernel) is the subfield fixed by α, Albert [1], Theorem 1.
Moreover, Π is Desarguesian if and only if α = β, Albert [1]. Therefore, if Π is a
non-Desarguesian semifield plane of order p4 with kernel GF(p2) we must have
α : x→ xp2

and the product is one of the following:

(i) x ◦ y = xy − cxp2

yp

(ii) x ◦ y = xy − cxp2

yp2

(iii) x ◦ y = xy − cxp2

yp3

The product in (iii) gives a pre-semifield isotopic to the one given by (i)
by Albert [2], Lemma 6. The product in (ii) yields a pre-semifield isotopic to
GF(p4). For the case (i), let D(c) be the pre-semifield with product given in
(i). Since x and y are powers of a primitive element θ ∈ GF(p4), the condition
c 6= x1−p2

y1−p is equivalent to c 6= θi(1−p2)θj(1−p) = θ(p−1)(−j−i(p+1). Therefore
c cannot be a power of θp−1. Hence θ, θ2, . . . , θp−2 are possible values for c. Now
D(c) is isotopic to D(d) if and only if d = chp2−1kp−1 for some nonzero h, k ∈
GF(p4), Albert [2]. Thus d = cθ(p−1)m for some integer m. Therefore there are
exactly p − 2 nonisotopic generalized twisted fields of order p4 with product
given in (i), namely D(θ), . . . ,D(θp−2). In particular, when p=5 there are 3
nonisotopic generalized twisted fields. Therefore the remaining three planes on
the list, namely planes (g), (L) and (m) must be the three generalized twisted
field planes of order 54.

We have the following result.

4 Theorem. There are exactly 13 nonisomorphic semifield planes of or-
der 54 and kernel containing GF (52); one is the Desarguesian plane, three are
Generalized Twisted Field planes and nine are p-primitive planes.

In the case when p = 3, Boerner [3] showed that there are six nonisomorphic
semifield planes of order 34 and kernel containing GF (32). Of these, one is
the Desarguesian plane, one is a Generalized Twisted Field plane and four are
p−primitive planes. We have the following conjecture:

5 Conjecture. There are exactly 1 + (p − 2) +

(
p+ 1

2

)2

non isomorphic

semifield planes of order p4 and kernel containing GF (p2) for each prime number
p > 2. Of these, one is the Desarguesian plane, p − 2 are Generalized Twisted

Field planes and

(
p+ 1

2

)2

are p-primitive planes.
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