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Abstract. If Ω ⊂ IRN is an open set, one can always define the Laplacian with Neumann
boundary conditions ∆N

Ω on L2(Ω). It is a self-adjoint operator generating a C0-semigroup
on L2(Ω). Considering the part ∆N

Ω,c of ∆N
Ω in C(Ω), we ask under which conditions on Ω it

generates a C0-semigroup.
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Introduction

The question whether or not the Neumann Laplacian on C(Ω) generates a
C0-semigroup depends only on the range condition (3) in Proposition 3. It is
shown by Fukushima and Tomisaki [5] that the equivalent conditions of Propo-
sition 3 are satisfied if the boundary of Ω is Lipschitz continuous. And in fact,
more general assumptions are given (Ω is allowed to have Hölder cusps). How-
ever, no counter-examples seem to be known in the literature showing that ∆N

Ω,c

may not be the generator of a C0-semigroup. In this note we first consider the
one-dimensional case. Here it is actually possible to characterize those open sets
for which ∆N

Ω,c is a generator. Of course, this is true if Ω is an interval. But for
arbitrary open sets it is equivalent to Ω beeing the union of disjoint open in-
tervals Bj (j ∈ J) such that dist(Bj ,Ω\Bj) > 0 for all j ∈ J . This gives us
counter-examples in IR which are not connected. In Section 2 we construct a
two-dimensional connected, bounded and open set Ω such that ∆N

Ω,c is not a
generator. Actually, Ω can be taken a square minus a segment. It is noteworthy
that this Ω is Dirichlet regular and therefore the Dirichlet Laplacian generates
a C0-semigroup on C0(Ω) [1, p.401].
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Let E be the bilinear form on L2(Ω) given by

D(E) := H1(Ω),

E(u, ϕ) :=

∫

Ω
∇u∇ϕ dx.

The Neumann-Laplacian ∆N
Ω is the selfadjoint operator on L2(Ω) associated to

the form E , i.e.

D(∆N
Ω ) := {u ∈ H1(Ω) | ∃v ∈ L2(Ω) : −E(u, ϕ) = (v | ϕ)L2(Ω) ∀ϕ ∈ H1(Ω)}

∆N
Ω u := v.

By ∆N
Ω,c we denote the part of ∆N

Ω in C(Ω), i.e.

D(∆N
Ω,c) := {u ∈ D(∆N

Ω ) ∩ C(Ω) | ∆N
Ω u ∈ C(Ω)}

∆N
Ω,cu := ∆N

Ω u.

1 Lemma (The maximum principle for ∆N
Ω ). Let Ω be an open subset

of IRN with arbitrary boundary and u ∈ D(∆N
Ω ). Then

ess infΩ[u− λ∆N
Ω u] ≤ u(x) ≤ ess supΩ[u− λ∆N

Ω u] (1)

for all positive λ and almost all x ∈ Ω.

Proof. See [3, Théorème IX.30, p.192]. QED

A consequence of Lemma 1 is the dissipativity of ∆N
Ω,c.

2 Lemma (Dissipativity). The operator ∆N
Ω,c is dissipative.

Proof. Let u ∈ D(∆N
Ω,c). By Lemma 1 we have the estimate

‖u‖C(Ω) ≤ ‖u− λ∆N
Ω,cu‖C(Ω) ∀λ ≥ 0, (2)

which gives the dissipativity. QED

3 Proposition. Let Ω ⊂ IRN be an open and bounded set with arbitrary
boundary. Then the following statements are equivalent:

(1) ∆N
Ω,c generates a C0-semigroup.

(2) ∆N
Ω,c generates a C0-semigroup of contractions.

(3) R(1,∆N
Ω )C(Ω) ⊂ C(Ω) and D(∆N

Ω,c) is dense in C(Ω).

(?) In this case we have et∆N
Ω,c = et∆

N
Ω |C(Ω).
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Proof. (1) ⇒ (?): Clear, since C(Ω) ↪→ L2(Ω).
(1) ⇒ (2): Follows from (?) and the fact, that

‖et∆N
Ω u‖L∞(Ω) ≤ ‖u‖L∞(Ω) ∀u ∈ L∞(Ω).

(2) ⇒ (3): Since ∆N
Ω,c is densely defined and dissipative the Lumer-Phillips

Theorem [6, p.83] implies that rg(1−∆N
Ω,c) = C(Ω) and hence 1 ∈ ρ(∆N

Ω,c). For

f ∈ C(Ω) let u1 := R(1,∆N
Ω )f and u2 := R(1,∆N

Ω,c)f . Then

(1 − ∆N
Ω )u1 = (1 − ∆N

Ω )u2

which shows that u1 = u2 ∈ C(Ω).
(3) ⇒ (2) Since R(1,∆N

Ω )C(Ω) ⊂ D(∆N
Ω,c) we have rg(1 − ∆N

Ω,c) = C(Ω) and
therefore the Lumer-Phillips Theorem implies (2). QED

We have seen that Proposition 3 gives a characterisation when ∆N
Ω,c is the

generator of a C0-semigroup, but it is not so easy to verify condition (3). The
following theorem, proved by Fukushima and Tomisaki, gives a sufficient condi-
tion. The interested reader can find the general assumptions on Ω as condition
(A) in [5, Section 3]. We will state this result as simple as possible.

4 Theorem (Density and Invariance). Let Ω ⊂ IRN be a bounded open
set with Lipschitz boundary. Then D(∆N

Ω,c) is dense in C(Ω) and R(1,∆N
Ω )C(Ω)

⊂ C(Ω), i.e. ∆N
Ω,c generates a C0-semigroup on C(Ω).

1 The One-Dimensional Case

If Ω ⊂ IR is bounded, then we can even give a sufficient and necessary
condition on Ω, such that ∆N

Ω,c is the generator of a C0-semigroup.

5 Lemma. For each ball B := B(x0, ρ) ⊂ IRN there exists v ∈ C2(B) such
that v = ∆v = 1 on the boundary ∂B of B and the normal derivative ∂v/∂n = 0
on ∂B.

Proof. For z ∈ B and r(z) := |z − x0| we set

v(z) := 1 + c(r2 − ρ2)2

where c := 1/(8ρ2). It is easy to verify that v satisfies the desired properties.
QED

6 Definition. We call a bounded open set Ω ⊂ IRN simple, if Ω is the
union of disjoint balls Bj (j ∈ J) such that

dist(Bj ,Ω\Bj) > 0 ∀j ∈ J.
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7 Theorem. Let Ω ⊂ IRN be a bounded set which is the union of disjoint
open balls Bj (j ∈ J). Then we have the following equivalence:

R(1,∆N
Ω )C(Ω) ⊂ C(Ω) ⇔ Ω is simple.

Proof. ⇒: If Ω is not simple, then there exists k0 ∈ J , a sequence (kn) ⊂
J\{k0}, y0 ∈ ∂Bk0

and yn ∈ ∂Bkn
, such that yn → y0 as n → ∞. For Bk0

we
choose a function v with the properties in Lemma 5. Then for u defined on Ω
by u(x) := v(x)χBk0

one has u ∈ D(∆N
Ω ) and (u−∆N

Ω u) ∈ C(Ω) but u 6∈ C(Ω).

In fact, one has 0 = u(yn) → 0 6= 1 = u(y0).
⇐: The only problem is to show the continuity in those points x0 on the bound-
ary ∂Ω, for which x0 6∈ ∂Bj ∀j ∈ J . Let x0 be such a point, f ∈ C(Ω) and
u := R(1,∆N

Ω )f . Without loss the generality we assume that f(x0) = 0. For a
fixed ε > 0 there exists a δ1 > 0, such that |f(x)| < ε ∀x ∈ B(x0, δ1). We set

O :=
⋃
Bj

where the union is taken over all Bj (j ∈ J) such that Bj ⊂ B(x0, δ1). Then
there exists δ2 ∈ (0, δ1) such that B(x0, δ2)∩O = B(x0, δ2)∩Ω. In fact, one can
take δ2 := min{δ1/2, dist(x0,Ω\O)}. Clearly, |u(x)| = |R(1,∆N

O )f | ≤ ‖f‖C(O) ≤
ε ∀x ∈ Ω ∩ B(x0, δ2), i.e. for each sequence xn ∈ Ω which converges to x0, one
has that u(xn) converges to 0.
Without the assumption that f(x0) = 0, one has that u(xn) converges to f(x0).

QED

8 Theorem. Let Ω ⊂ IR be a bounded open set. Then the Neumann-
Laplacian ∆N

Ω,c generates a C0-semigroup (of contractions) on C(Ω) if and only
if Ω is simple.

Proof. Assume that Ω is simple. Then D(∆N
Ω,c) is dense in C(Ω). In fact,

let Ω be the union of disjoint balls Bj (j ∈ J), f ∈ C(Ω) and ε > 0. Since the
function f is continuous on Ω there exists δ > 0 such that |f(x) − f(y)| < ε
whenever x, y ∈ Ω with |x − y| < δ. Using the fact that D(∆N

Bj ,c) is dense in

C(Bj) we can choose a function fj ∈ D(∆N
Bj ,c) such that ‖fj − f |Bj

‖C(Bj)
< ε.

If the length of the interval Bj is less than δ then the function fj is given by
fj(x) := (supBj

f − infBj
f)/2. Let f̃ be given by f̃(x) := fj(x) if x ∈ Bj . Then

f̃ and ∆f̃ are continuous on C :=
⋃

j∈J Bj . Moreover, for every x0 ∈ Ω \ C
and every sequence (xn) ⊂ Ω converging to x0 one has limn f̃(xn) = f(x0)
and limn ∆f̃(xn) = 0, showing that f̃ ∈ D(∆N

Ω,c). Moreover, one has ‖f̃ −
f‖C(Ω) ≤ ε. Now we can apply Proposition 3 and Theorem 7 to conclude the
assertion. QED
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9 Examples.

• Ω1 := (0, 1) ∪ (1, 2) is not simple.

• For k ∈ IN let Ik := (2−2k−1, 2−2k) and I−k := (−2−2k,−2−2k−1).
Then Ω2 :=

⋃
k∈IN Ik, Ω3 :=

⋃
k∈IN I−k and Ω4 := Ω2 ∪ Ω3 are simple, but

they do not have Lipschitz boundaries.

• Ω5 := (−1, 0) ∪ Ω2 is not simple.

• Let x0 ∈ IRN\{0} and l := |x0|. We set Bk := B(x0 · 21−k, l · 2−1−k).
Then Ω6 :=

⋃
k∈INBk is simple and Ω7 := B(−x0, l) ∪ Ω6 is not simple.

B1

B2

B3

Ω6: For N = 2 and x0 = (1, 1)

2 Counterexamples

We have seen some examples Ω ⊂ IRN , where the operator R(1,∆N
Ω ) does

not leave the space C(Ω) invariant. In these examples the set Ω was never
connected. Now we give an example of a connected set in IR2, such that

R(1,∆N
Ω )C(Ω) 6⊂ C(Ω)

For this example we need the following definition

10 Definition. Let a, b ∈ IR2, a = (a1, a2) and b = (b1, b2) such that a < b,
i.e. a1 < b1 and a2 < b2. By R(a, b) we denote the rectangle

R(a, b) := {x ∈ IR2 | a < x < b}
and by N(R(a, b)) the space of functions u ∈ C2(R(a, b)) such that the following
two conditions are satisfied:
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(1) ∂u/∂x(a1, y) = ∂u/∂x(b1, y) = 0 ∀y ∈ [a2, b2]

(2) ∂u/∂y(x, a2) = ∂u/∂y(x, b2) = 0 ∀x ∈ [a1, b1]

11 Lemma. We consider the rectangle Ω := R((a, c), (b, d)). If u ∈ N(Ω)
and f = u− ∆u, then the following holds

∫

Ω
uϕ+

∫

Ω
∇u∇ϕ =

∫

Ω
fϕ ∀ϕ ∈ D(IR2) (3)

Remark: Since Ω has Lipschitz boundary, equation (3) holds for all ϕ ∈ H1(Ω).

Proof. By Fubini’s theorem it follows immediately that
∫

Ω
∇u∇ϕ =

∫ d

c

∫ b

a

∂u

∂x
(x, y) · ∂ϕ

∂x
(x, y) dx dy +

∫ b

a

∫ d

c

∂u

∂y
(x, y) · ∂ϕ

∂y
(x, y) dy dx =

∫ d

c

∂u

∂x
(x, y)ϕ(x, y)

∣∣∣∣
b

x=a

dy −
∫ d

c

∫ b

a

∂2u

∂x2
(x, y) · ϕ(x, y) dx dy +

∫ b

a

∂u

∂y
(x, y)ϕ(x, y)

∣∣∣∣
d

y=c

dx−
∫ b

a

∫ d

c

∂2u

∂y2
(x, y) · ϕ(x, y) dy dx = −

∫

Ω
∆u · ϕ

QED

12 Example.
Let Ω ⊂ IR2 be given by Ω := R((0, 0), (2, 2))\{(1, y) ∈ IR2|0 < y ≤ 1}. We
denote by P1, P2, P3 and P4 the rectangles

P2 := R((0, 1), (1, 2)), P3 := R((1, 1), (2, 2)),

P1 := R((0, 0), (1, 1)), P4 := R((1, 0), (2, 1)).

0 1 2 x

1

2

y

P1

P2 P3

P4

Ω
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(1) Let u : [0, 1] → IR be a function in C2([0, 1], IR) with the properties

• u(0) = u′′(0) = 1

• u(1) = u′′(1) = 1

• u′(0) = u′(1) = 0.

For example we may take u(x) := 1/(4π2) · [− cos(2πx) + 4π2 + 1].

(2) Let A,L : [0, 1] → IR be functions in C2([0, 1], IR) with the properties

• A(k)(0) = A(k)(1) = L(k)(0) = L(k)(1) = 0 for k = 0, . . . , 2.

• L′′(y) = L(y) −A′′(y)

• A+ L 6≡ 0

For example, we may take

A(y) := −y10 + 5y9 + 80y8 − 350y7 + 555y6 − 419y5 + 150y4 − 20y3

L(y) := 20y3(1 − y)5 − 50y4(1 − y)4 + 20y5(1 − y)3

For (x, y) ∈ P1 we set g(x, y) := u(x) ·A(y) + L(y) and for (x, y) ∈ Ω

v(x, y) :=

{
g(x, y) if (x, y) ∈ P1

0 else.

In the first step we observe that v|Pk
∈ N(Pk) for k = 1, . . . , 4. In fact, for

k = 2, 3, 4 it is clear and for k = 1 this is equivalent to g ∈ N(P1).

(1) We show that g ∈ C2(P1):
Since u,A,L ∈ C2([0, 1]) and g(x, y) = u(x) ·A(y) + L(y) this is trivial.

(2) We show that ∂g/∂x(0, y) = ∂g/∂x(1, y) = 0 ∀y ∈ [0, 1]:
We have ∂g/∂x(x, y) = u′(x) ·A(y) and u′(0) = u′(1) = 0.

(3) We show that ∂g/∂y(x, 0) = ∂g/∂y(x, 1) = 0 ∀x ∈ [0, 1]:
We have ∂g/∂y(x, y) = u(x) ·A′(y) + L′(y) with
A′(0) = A′(1) = L′(0) = L′(1) = 0.

MoreoverDαg(x, 1) = Dα1u(x)·Dα2A(1)+{Dα
2L(1)}·χ{0}(α1) and therefore

Dαg(x, 1) = 0 for all α with |α| ≤ 2. This shows, that v ∈ C2(Ω). Let y0 ∈ (0, 1)
be such that A(y0) 6= −L(y0), then it follows

• lim
(x,y)∈P1→(1,y0)

v(x, y) = u(1)A(y0) + L(y0) = A(y0) + L(y0) 6= 0.
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• lim
(x,y)∈P4→(1,y0)

v(x, y) = 0

Therefore v 6∈ C(Ω). Now, we show that v ∈ D(∆N
Ω ). By Lemma 11, v|P1

∈
N(P1) and for any ϕ ∈ H1(Ω), we have

∫

Ω
∇v∇ϕ =

∫

P1

∇v∇ϕ = −
∫

P1

∆v ϕ = −
∫

Ω
∆v ϕ

Since ∆v ∈ L2(Ω) one has v ∈ D(∆N
Ω ).

In the third step we set f := v−∆N
Ω v = v−∆v and we show that f ∈ C(Ω).

Since v ∈ C2(Ω) it is sufficient to show the continuity on the boundary of Ω.
The only problem lies on the segment {1}× [0, 1]. Let (1, y0) be a fixed point on
this segment and take a sequence (xn, yn)n∈IN ∈ P1 which converges to (1, y0).
Then

f(xn, yn) = u(xn)A(yn) + L(yn) − u′′(xn)A(yn) − u(xn)A′′(yn) − L′′(yn) →

A(y0) + L(y0) −A(y0) −A′′(y0) − L′′(y0) = 0

⇔ L′′(y0) = L(y0) −A′′(y0)

Now the function R(1,∆N
Ω,c)f = v is not in C(Ω). This finishes the example.

In this example, Ω is connected, Dirichlet regular and satisfies the Uniform
Interior Cone Property. We remark, that the Dirichlet Laplacian ∆0 on C0(Ω)
generates a C0-semigroup if and only if Ω is Dirichlet regular - see [1]. But Ω is
not too good, since Ω is not a Caratheodory domain, i.e. ∂Ω 6= ∂Ω, and it does
not satisfy the Exterior Cone Property.

13 Example. Let A ⊂ (0, 1) be a closed set with empty interior and Ω1 :=
R\S, where R is the rectangle R((0, 0), (2, 2)) and S := {1}×A. It is easy to see
that H1(Ω1) = H1(R), i.e. S is a removable singularity for H1, cf. [2]. Therefore
the Neumann Laplacian ∆N

Ω1,c generates a C0-semigroup on C(Ω1) = C(R). If

in addition [0, 1]\A is dense in [0, 1], then H1
0 (Ω1) = H1

0 (Ω) 6= H1
0 (R), where Ω

is given by Example 12. Since Ω is Dirichlet regular, it follows that the Dirichlet
Laplacian ∆D

Ω1
generates a C0-semigroup on C0(Ω1) = C0(Ω).
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14 Example. Let Ω ⊂ IR2 be as follows

supp(f)
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For δ > 0 we choose ϕδ ∈ C∞(IR) such that

ϕδ(x) =

{
1 for x ∈ (−∞, δ/3)
0 for x > 2

3δ

Then let v : IR → IR be given by

vδ(x) :=

{
ϕδ(x) · cosh(x) if x > 0
0 else

We consider the function u ∈ C∞(Ω) given by

u(x, y) :=

{
v1(x− 1) if (x, y) ∈ (1, 2) × (2, 3)
0 else

and the function f := u − ∆u. Then u ∈ D(∆N
Ω ), u = R(1,∆N

Ω )f and f ∈
C∞(Ω). Since u 6∈ C(Ω), R(1,∆N

Ω )C(Ω) 6⊂ C(Ω).
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