# The Neumann Laplacian on spaces of continuous functions 

Markus Biegert ${ }^{\text {i }}$<br>Department of Applied Analysis, University of Ulm, Germany. markus@mathematik.uni-ulm.de

Received: $12 / 2 / 2003$; accepted: $12 / 2 / 2003$.


#### Abstract

If $\Omega \subset \mathbb{R}^{N}$ is an open set, one can always define the Laplacian with Neumann boundary conditions $\Delta_{\Omega}^{N}$ on $L^{2}(\Omega)$. It is a self-adjoint operator generating a $C_{0}$-semigroup on $L^{2}(\Omega)$. Considering the part $\Delta_{\Omega, c}^{N}$ of $\Delta_{\Omega}^{N}$ in $C(\bar{\Omega})$, we ask under which conditions on $\Omega$ it generates a $C_{0}$-semigroup.


Keywords: Neumann Laplacian.
MSC 2000 classification: primary 47D06, secondary 35J25.

## Introduction

The question whether or not the Neumann Laplacian on $C(\bar{\Omega})$ generates a $C_{0}$-semigroup depends only on the range condition (3) in Proposition 3. It is shown by Fukushima and Tomisaki [5] that the equivalent conditions of Proposition 3 are satisfied if the boundary of $\Omega$ is Lipschitz continuous. And in fact, more general assumptions are given ( $\Omega$ is allowed to have Hölder cusps). However, no counter-examples seem to be known in the literature showing that $\Delta_{\Omega, c}^{N}$ may not be the generator of a $C_{0}$-semigroup. In this note we first consider the one-dimensional case. Here it is actually possible to characterize those open sets for which $\Delta_{\Omega, c}^{N}$ is a generator. Of course, this is true if $\Omega$ is an interval. But for arbitrary open sets it is equivalent to $\Omega$ beeing the union of disjoint open intervals $B_{j}(j \in J)$ such that $\operatorname{dist}\left(B_{j}, \Omega \backslash B_{j}\right)>0$ for all $j \in J$. This gives us counter-examples in $\mathbb{R}$ which are not connected. In Section 2 we construct a two-dimensional connected, bounded and open set $\Omega$ such that $\Delta_{\Omega, c}^{N}$ is not a generator. Actually, $\Omega$ can be taken a square minus a segment. It is noteworthy that this $\Omega$ is Dirichlet regular and therefore the Dirichlet Laplacian generates a $C_{0}$-semigroup on $C_{0}(\Omega)$ [1, p.401].

[^0]Let $\mathcal{E}$ be the bilinear form on $L^{2}(\Omega)$ given by

$$
\begin{aligned}
D(\mathcal{E}) & :=H^{1}(\Omega), \\
\mathcal{E}(u, \varphi) & :=\int_{\Omega} \nabla u \nabla \varphi d x .
\end{aligned}
$$

The Neumann-Laplacian $\Delta_{\Omega}^{N}$ is the selfadjoint operator on $L^{2}(\Omega)$ associated to the form $\mathcal{E}$, i.e.

$$
\begin{aligned}
D\left(\Delta_{\Omega}^{N}\right) & :=\left\{u \in H^{1}(\Omega) \mid \exists v \in L^{2}(\Omega):-\mathcal{E}(u, \varphi)=(v \mid \varphi)_{L^{2}(\Omega)} \forall \varphi \in H^{1}(\Omega)\right\} \\
\Delta_{\Omega}^{N} u & :=v
\end{aligned}
$$

By $\Delta_{\Omega, c}^{N}$ we denote the part of $\Delta_{\Omega}^{N}$ in $C(\bar{\Omega})$, i.e.

$$
\begin{aligned}
D\left(\Delta_{\Omega, c}^{N}\right) & :=\left\{u \in D\left(\Delta_{\Omega}^{N}\right) \cap C(\bar{\Omega}) \mid \Delta_{\Omega}^{N} u \in C(\bar{\Omega})\right\} \\
\Delta_{\Omega, c}^{N} u & :=\Delta_{\Omega}^{N} u
\end{aligned}
$$

1 Lemma (The maximum principle for $\Delta_{\Omega}^{N}$ ). Let $\Omega$ be an open subset of $\mathbb{R}^{N}$ with arbitrary boundary and $u \in D\left(\Delta_{\Omega}^{N}\right)$. Then

$$
\begin{equation*}
{\operatorname{ess} \inf _{\Omega}}\left[u-\lambda \Delta_{\Omega}^{N} u\right] \leq u(x) \leq \operatorname{ess} \sup _{\Omega}\left[u-\lambda \Delta_{\Omega}^{N} u\right] \tag{1}
\end{equation*}
$$

for all positive $\lambda$ and almost all $x \in \Omega$.
Proof. See [3, Théorème IX.30, p.192].
A consequence of Lemma 1 is the dissipativity of $\Delta_{\Omega, c}^{N}$.
2 Lemma (Dissipativity). The operator $\Delta_{\Omega, c}^{N}$ is dissipative.
Proof. Let $u \in D\left(\Delta_{\Omega, c}^{N}\right)$. By Lemma 1 we have the estimate

$$
\begin{equation*}
\|u\|_{C(\bar{\Omega})} \leq\left\|u-\lambda \Delta_{\Omega, c}^{N} u\right\|_{C(\bar{\Omega})} \forall \lambda \geq 0 \tag{2}
\end{equation*}
$$

which gives the dissipativity.
3 Proposition. Let $\Omega \subset \mathbb{R}^{N}$ be an open and bounded set with arbitrary boundary. Then the following statements are equivalent:
(1) $\Delta_{\Omega, c}^{N}$ generates a $C_{0}$-semigroup .
(2) $\Delta_{\Omega, c}^{N}$ generates a $C_{0}$-semigroup of contractions.
(3) $R\left(1, \Delta_{\Omega}^{N}\right) C(\bar{\Omega}) \subset C(\bar{\Omega})$ and $D\left(\Delta_{\Omega, c}^{N}\right)$ is dense in $C(\bar{\Omega})$.
( $\star$ ) In this case we have $e^{t \Delta_{\Omega, c}^{N}}=\left.e^{t \Delta_{\Omega}^{N}}\right|_{C(\bar{\Omega})}$.

Proof. $(1) \Rightarrow(\star)$ : Clear, since $C(\bar{\Omega}) \hookrightarrow L^{2}(\Omega)$.
$(1) \Rightarrow(2)$ : Follows from $(\star)$ and the fact, that

$$
\left\|e^{t \Delta_{\Omega}^{N}} u\right\|_{L^{\infty}(\Omega)} \leq\|u\|_{L^{\infty}(\Omega)} \forall u \in L^{\infty}(\Omega)
$$

$(2) \Rightarrow(3)$ : Since $\Delta_{\Omega, c}^{N}$ is densely defined and dissipative the Lumer-Phillips Theorem [6, p.83] implies that $\operatorname{rg}\left(1-\Delta_{\Omega, c}^{N}\right)=C(\bar{\Omega})$ and hence $1 \in \rho\left(\Delta_{\Omega, c}^{N}\right)$. For $f \in C(\bar{\Omega})$ let $u_{1}:=R\left(1, \Delta_{\Omega}^{N}\right) f$ and $u_{2}:=R\left(1, \Delta_{\Omega, c}^{N}\right) f$. Then

$$
\left(1-\Delta_{\Omega}^{N}\right) u_{1}=\left(1-\Delta_{\Omega}^{N}\right) u_{2}
$$

which shows that $u_{1}=u_{2} \in C(\bar{\Omega})$.
$(3) \Rightarrow(2)$ Since $R\left(1, \Delta_{\Omega}^{N}\right) C(\bar{\Omega}) \subset D\left(\Delta_{\Omega, c}^{N}\right)$ we have $\operatorname{rg}\left(1-\Delta_{\Omega, c}^{N}\right)=C(\bar{\Omega})$ and therefore the Lumer-Phillips Theorem implies (2).

QED
We have seen that Proposition 3 gives a characterisation when $\Delta_{\Omega, c}^{N}$ is the generator of a $C_{0}$-semigroup, but it is not so easy to verify condition (3). The following theorem, proved by Fukushima and Tomisaki, gives a sufficient condition. The interested reader can find the general assumptions on $\Omega$ as condition (A) in $[5$, Section 3]. We will state this result as simple as possible.

4 Theorem (Density and Invariance). Let $\Omega \subset \mathbb{R}^{N}$ be a bounded open set with Lipschitz boundary. Then $D\left(\Delta_{\Omega, c}^{N}\right)$ is dense in $C(\bar{\Omega})$ and $R\left(1, \Delta_{\Omega}^{N}\right) C(\bar{\Omega})$ $\subset C(\bar{\Omega})$, i.e. $\Delta_{\Omega, c}^{N}$ generates a $C_{0}$-semigroup on $C(\bar{\Omega})$.

## 1 The One-Dimensional Case

If $\Omega \subset \mathbb{R}$ is bounded, then we can even give a sufficient and necessary condition on $\Omega$, such that $\Delta_{\Omega, c}^{N}$ is the generator of a $C_{0}$-semigroup.

5 Lemma. For each ball $\mathcal{B}:=B\left(x_{0}, \rho\right) \subset \mathbb{R}^{N}$ there exists $v \in C^{2}(\overline{\mathcal{B}})$ such that $v=\Delta v=1$ on the boundary $\partial \mathcal{B}$ of $\mathcal{B}$ and the normal derivative $\partial v / \partial n=0$ on $\partial \mathcal{B}$.

Proof. For $z \in \mathcal{B}$ and $r(z):=\left|z-x_{0}\right|$ we set

$$
v(z):=1+c\left(r^{2}-\rho^{2}\right)^{2}
$$

where $c:=1 /\left(8 \rho^{2}\right)$. It is easy to verify that $v$ satisfies the desired properties. QED
6 Definition. We call a bounded open set $\Omega \subset \mathbb{R}^{N}$ simple, if $\Omega$ is the union of disjoint balls $B_{j}(j \in J)$ such that

$$
\operatorname{dist}\left(B_{j}, \Omega \backslash B_{j}\right)>0 \quad \forall j \in J
$$

7 Theorem. Let $\Omega \subset \mathbb{R}^{N}$ be a bounded set which is the union of disjoint open balls $B_{j}(j \in J)$. Then we have the following equivalence:

$$
R\left(1, \Delta_{\Omega}^{N}\right) C(\bar{\Omega}) \subset C(\bar{\Omega}) \Leftrightarrow \Omega \text { is simple. }
$$

Proof. $\Rightarrow$ : If $\Omega$ is not simple, then there exists $k_{0} \in J$, a sequence $\left(k_{n}\right) \subset$ $J \backslash\left\{k_{0}\right\}, y_{0} \in \partial B_{k_{0}}$ and $y_{n} \in \partial B_{k_{n}}$, such that $y_{n} \rightarrow y_{0}$ as $n \rightarrow \infty$. For $B_{k_{0}}$ we choose a function $v$ with the properties in Lemma 5. Then for $u$ defined on $\Omega$ by $u(x):=v(x) \chi_{\overline{B_{k_{0}}}}$ one has $u \in D\left(\Delta_{\Omega}^{N}\right)$ and $\left(u-\Delta_{\Omega}^{N} u\right) \in C(\bar{\Omega})$ but $u \notin C(\bar{\Omega})$. In fact, one has $0=u\left(y_{n}\right) \rightarrow 0 \neq 1=u\left(y_{0}\right)$.
$\Leftarrow$ : The only problem is to show the continuity in those points $x_{0}$ on the boundary $\partial \Omega$, for which $x_{0} \notin \partial B_{j} \forall j \in J$. Let $x_{0}$ be such a point, $f \in C(\bar{\Omega})$ and $u:=R\left(1, \Delta_{\Omega}^{N}\right) f$. Without loss the generality we assume that $f\left(x_{0}\right)=0$. For a fixed $\varepsilon>0$ there exists a $\delta_{1}>0$, such that $|f(x)|<\varepsilon \forall x \in B\left(x_{0}, \delta_{1}\right)$. We set

$$
O:=\bigcup B_{j}
$$

where the union is taken over all $B_{j}(j \in J)$ such that $B_{j} \subset B\left(x_{0}, \delta_{1}\right)$. Then there exists $\delta_{2} \in\left(0, \delta_{1}\right)$ such that $B\left(x_{0}, \delta_{2}\right) \cap O=B\left(x_{0}, \delta_{2}\right) \cap \Omega$. In fact, one can take $\delta_{2}:=\min \left\{\delta_{1} / 2, \operatorname{dist}\left(x_{0}, \Omega \backslash O\right)\right\}$. Clearly, $|u(x)|=\left|R\left(1, \Delta_{O}^{N}\right) f\right| \leq\|f\|_{C(\bar{O})} \leq$ $\varepsilon \forall x \in \Omega \cap B\left(x_{0}, \delta_{2}\right)$, i.e. for each sequence $x_{n} \in \Omega$ which converges to $x_{0}$, one has that $u\left(x_{n}\right)$ converges to 0 .
Without the assumption that $f\left(x_{0}\right)=0$, one has that $u\left(x_{n}\right)$ converges to $f\left(x_{0}\right)$.

8 Theorem. Let $\Omega \subset \mathbb{R}$ be a bounded open set. Then the NeumannLaplacian $\Delta_{\Omega, c}^{N}$ generates a $C_{0}$-semigroup (of contractions) on $C(\bar{\Omega})$ if and only if $\Omega$ is simple.

Proof. Assume that $\Omega$ is simple. Then $D\left(\Delta_{\Omega, c}^{N}\right)$ is dense in $C(\bar{\Omega})$. In fact, let $\Omega$ be the union of disjoint balls $B_{j}(j \in J), f \in C(\bar{\Omega})$ and $\varepsilon>0$. Since the function $f$ is continuous on $\bar{\Omega}$ there exists $\delta>0$ such that $|f(x)-f(y)|<\varepsilon$ whenever $x, y \in \bar{\Omega}$ with $|x-y|<\delta$. Using the fact that $D\left(\Delta_{B_{j}, c}^{N}\right)$ is dense in $C\left(\overline{B_{j}}\right)$ we can choose a function $f_{j} \in D\left(\Delta_{B_{j}, c}^{N}\right)$ such that $\left\|f_{j}-\left.f\right|_{B_{j}}\right\|_{C\left(\overline{B_{j}}\right)}<\varepsilon$. If the length of the interval $B_{j}$ is less than $\delta$ then the function $f_{j}$ is given by $f_{j}(x):=\left(\sup _{B_{j}} f-\inf _{B_{j}} f\right) / 2$. Let $\tilde{f}$ be given by $\tilde{f}(x):=f_{j}(x)$ if $x \in B_{j}$. Then $\tilde{f}$ and $\Delta \tilde{f}$ are continuous on $C:=\bigcup_{j \in J} \overline{B_{j}}$. Moreover, for every $x_{0} \in \bar{\Omega} \backslash C$ and every sequence $\left(x_{n}\right) \subset \bar{\Omega}$ converging to $x_{0}$ one has $\lim _{n} \tilde{f}\left(x_{n}\right)=f\left(x_{0}\right)$ and $\lim _{n} \Delta \tilde{f}\left(x_{n}\right)=0$, showing that $\tilde{f} \in D\left(\Delta_{\Omega, c}^{N}\right)$. Moreover, one has $\| \tilde{f}-$ $f \|_{C(\bar{\Omega})} \leq \varepsilon$. Now we can apply Proposition 3 and Theorem 7 to conclude the assertion.

## 9 Examples.

- $\Omega_{1}:=(0,1) \cup(1,2)$ is not simple.
- For $k \in \mathbb{N}$ let $I_{k}:=\left(2^{-2 k-1}, 2^{-2 k}\right)$ and $I_{-k}:=\left(-2^{-2 k},-2^{-2 k-1}\right)$.

Then $\Omega_{2}:=\bigcup_{k \in \mathbb{N}} I_{k}, \Omega_{3}:=\bigcup_{k \in \mathbb{N}} I_{-k}$ and $\Omega_{4}:=\Omega_{2} \cup \Omega_{3}$ are simple, but they do not have Lipschitz boundaries.

- $\Omega_{5}:=(-1,0) \cup \Omega_{2}$ is not simple.
- Let $x_{0} \in \mathbb{R}^{N} \backslash\{0\}$ and $l:=\left|x_{0}\right|$. We set $B_{k}:=B\left(x_{0} \cdot 2^{1-k}, l \cdot 2^{-1-k}\right)$.

Then $\Omega_{6}:=\bigcup_{k \in \mathbb{N}} B_{k}$ is simple and $\Omega_{7}:=B\left(-x_{0}, l\right) \cup \Omega_{6}$ is not simple.


$$
\Omega_{6}: \text { For } N=2 \text { and } x_{0}=(1,1)
$$

## 2 Counterexamples

We have seen some examples $\Omega \subset \mathbb{R}^{N}$, where the operator $R\left(1, \Delta_{\Omega}^{N}\right)$ does not leave the space $C(\bar{\Omega})$ invariant. In these examples the set $\Omega$ was never connected. Now we give an example of a connected set in $\mathbb{R}^{2}$, such that

$$
R\left(1, \Delta_{\Omega}^{N}\right) C(\bar{\Omega}) \not \subset C(\bar{\Omega})
$$

For this example we need the following definition
10 Definition. Let $a, b \in \mathbb{R}^{2}, a=\left(a_{1}, a_{2}\right)$ and $b=\left(b_{1}, b_{2}\right)$ such that $a<b$, i.e. $a_{1}<b_{1}$ and $a_{2}<b_{2}$. By $R(a, b)$ we denote the rectangle

$$
R(a, b):=\left\{x \in \mathbb{R}^{2} \mid a<x<b\right\}
$$

and by $N(R(a, b))$ the space of functions $u \in C^{2}(\overline{R(a, b)})$ such that the following two conditions are satisfied:
(1) $\partial u / \partial x\left(a_{1}, y\right)=\partial u / \partial x\left(b_{1}, y\right)=0 \forall y \in\left[a_{2}, b_{2}\right]$
(2) $\partial u / \partial y\left(x, a_{2}\right)=\partial u / \partial y\left(x, b_{2}\right)=0 \forall x \in\left[a_{1}, b_{1}\right]$

11 Lemma. We consider the rectangle $\Omega:=R((a, c),(b, d))$. If $u \in N(\Omega)$ and $f=u-\Delta u$, then the following holds

$$
\begin{equation*}
\int_{\Omega} u \varphi+\int_{\Omega} \nabla u \nabla \varphi=\int_{\Omega} f \varphi \quad \forall \varphi \in D\left(\mathbb{R}^{2}\right) \tag{3}
\end{equation*}
$$

Remark: Since $\Omega$ has Lipschitz boundary, equation (3) holds for all $\varphi \in H^{1}(\Omega)$.
Proof. By Fubini's theorem it follows immediately that

$$
\begin{gathered}
\int_{\Omega} \nabla u \nabla \varphi= \\
\int_{c}^{d} \int_{a}^{b} \frac{\partial u}{\partial x}(x, y) \cdot \frac{\partial \varphi}{\partial x}(x, y) d x d y+\int_{a}^{b} \int_{c}^{d} \frac{\partial u}{\partial y}(x, y) \cdot \frac{\partial \varphi}{\partial y}(x, y) d y d x= \\
\left.\int_{c}^{d} \frac{\partial u}{\partial x}(x, y) \varphi(x, y)\right|_{x=a} ^{b} d y-\int_{c}^{d} \int_{a}^{b} \frac{\partial^{2} u}{\partial x^{2}}(x, y) \cdot \varphi(x, y) d x d y+ \\
\left.\int_{a}^{b} \frac{\partial u}{\partial y}(x, y) \varphi(x, y)\right|_{y=c} ^{d} d x-\int_{a}^{b} \int_{c}^{d} \frac{\partial^{2} u}{\partial y^{2}}(x, y) \cdot \varphi(x, y) d y d x=-\int_{\Omega} \Delta u \cdot \varphi
\end{gathered}
$$

## 12 Example.

Let $\Omega \subset \mathbb{R}^{2}$ be given by $\Omega:=R((0,0),(2,2)) \backslash\left\{(1, y) \in \mathbb{R}^{2} \mid 0<y \leq 1\right\}$. We denote by $P_{1}, P_{2}, P_{3}$ and $P_{4}$ the rectangles

$$
\begin{aligned}
& P_{2}:=R((0,1),(1,2)), P_{3}:=R((1,1),(2,2)), \\
& P_{1}:=R((0,0),(1,1)), P_{4}:=R((1,0),(2,1))
\end{aligned}
$$


(1) Let $u:[0,1] \rightarrow \mathbb{R}$ be a function in $C^{2}([0,1], \mathbb{R})$ with the properties

- $u(0)=u^{\prime \prime}(0)=1$
- $u(1)=u^{\prime \prime}(1)=1$
- $u^{\prime}(0)=u^{\prime}(1)=0$.

For example we may take $u(x):=1 /\left(4 \pi^{2}\right) \cdot\left[-\cos (2 \pi x)+4 \pi^{2}+1\right]$.
(2) Let $A, L:[0,1] \rightarrow \mathbb{R}$ be functions in $C^{2}([0,1], \mathbb{R})$ with the properties

- $A^{(k)}(0)=A^{(k)}(1)=L^{(k)}(0)=L^{(k)}(1)=0$ for $k=0, \ldots, 2$.
- $L^{\prime \prime}(y)=L(y)-A^{\prime \prime}(y)$
- $A+L \not \equiv 0$

For example, we may take

$$
\begin{gathered}
A(y):=-y^{10}+5 y^{9}+80 y^{8}-350 y^{7}+555 y^{6}-419 y^{5}+150 y^{4}-20 y^{3} \\
L(y):=20 y^{3}(1-y)^{5}-50 y^{4}(1-y)^{4}+20 y^{5}(1-y)^{3}
\end{gathered}
$$

For $(x, y) \in P_{1}$ we set $g(x, y):=u(x) \cdot A(y)+L(y)$ and for $(x, y) \in \Omega$

$$
v(x, y):= \begin{cases}g(x, y) & \text { if }(x, y) \in P_{1} \\ 0 & \text { else. }\end{cases}
$$

In the first step we observe that $\left.v\right|_{P_{k}} \in N\left(P_{k}\right)$ for $k=1, \ldots, 4$. In fact, for $k=2,3,4$ it is clear and for $k=1$ this is equivalent to $g \in N\left(P_{1}\right)$.
(1) We show that $g \in C^{2}\left(\overline{P_{1}}\right)$ :

Since $u, A, L \in C^{2}([0,1])$ and $g(x, y)=u(x) \cdot A(y)+L(y)$ this is trivial.
(2) We show that $\partial g / \partial x(0, y)=\partial g / \partial x(1, y)=0 \forall y \in[0,1]$ :

We have $\partial g / \partial x(x, y)=u^{\prime}(x) \cdot A(y)$ and $u^{\prime}(0)=u^{\prime}(1)=0$.
(3) We show that $\partial g / \partial y(x, 0)=\partial g / \partial y(x, 1)=0 \forall x \in[0,1]$ :

We have $\partial g / \partial y(x, y)=u(x) \cdot A^{\prime}(y)+L^{\prime}(y)$ with $A^{\prime}(0)=A^{\prime}(1)=L^{\prime}(0)=L^{\prime}(1)=0$.

Moreover $D^{\alpha} g(x, 1)=D^{\alpha_{1}} u(x) \cdot D^{\alpha_{2}} A(1)+\left\{D_{2}^{\alpha} L(1)\right\} \cdot \chi_{\{0\}}\left(\alpha_{1}\right)$ and therefore $D^{\alpha} g(x, 1)=0$ for all $\alpha$ with $|\alpha| \leq 2$. This shows, that $v \in C^{2}(\Omega)$. Let $y_{0} \in(0,1)$ be such that $A\left(y_{0}\right) \neq-L\left(y_{0}\right)$, then it follows

- $\lim _{(x, y) \in P_{1} \rightarrow\left(1, y_{0}\right)} v(x, y)=u(1) A\left(y_{0}\right)+L\left(y_{0}\right)=A\left(y_{0}\right)+L\left(y_{0}\right) \neq 0$.
- $\lim _{(x, y) \in P_{4} \rightarrow\left(1, y_{0}\right)} v(x, y)=0$

Therefore $v \notin C(\bar{\Omega})$. Now, we show that $v \in D\left(\Delta_{\Omega}^{N}\right)$. By Lemma $11,\left.v\right|_{P_{1}} \in$ $N\left(P_{1}\right)$ and for any $\varphi \in H^{1}(\Omega)$, we have

$$
\int_{\Omega} \nabla v \nabla \varphi=\int_{P_{1}} \nabla v \nabla \varphi=-\int_{P_{1}} \Delta v \varphi=-\int_{\Omega} \Delta v \varphi
$$

Since $\Delta v \in L^{2}(\Omega)$ one has $v \in D\left(\Delta_{\Omega}^{N}\right)$.
In the third step we set $f:=v-\Delta_{\Omega}^{N} v=v-\Delta v$ and we show that $f \in C(\bar{\Omega})$. Since $v \in C^{2}(\Omega)$ it is sufficient to show the continuity on the boundary of $\Omega$. The only problem lies on the segment $\{1\} \times[0,1]$. Let $\left(1, y_{0}\right)$ be a fixed point on this segment and take a sequence $\left(x_{n}, y_{n}\right)_{n \in \mathbb{N}} \in P_{1}$ which converges to $\left(1, y_{0}\right)$. Then

$$
\begin{gathered}
f\left(x_{n}, y_{n}\right)=u\left(x_{n}\right) A\left(y_{n}\right)+L\left(y_{n}\right)-u^{\prime \prime}\left(x_{n}\right) A\left(y_{n}\right)-u\left(x_{n}\right) A^{\prime \prime}\left(y_{n}\right)-L^{\prime \prime}\left(y_{n}\right) \rightarrow \\
A\left(y_{0}\right)+L\left(y_{0}\right)-A\left(y_{0}\right)-A^{\prime \prime}\left(y_{0}\right)-L^{\prime \prime}\left(y_{0}\right)=0 \\
\Leftrightarrow L^{\prime \prime}\left(y_{0}\right)=L\left(y_{0}\right)-A^{\prime \prime}\left(y_{0}\right)
\end{gathered}
$$

Now the function $R\left(1, \Delta_{\Omega, c}^{N}\right) f=v$ is not in $C(\bar{\Omega})$. This finishes the example.
In this example, $\Omega$ is connected, Dirichlet regular and satisfies the Uniform Interior Cone Property. We remark, that the Dirichlet Laplacian $\Delta_{0}$ on $C_{0}(\Omega)$ generates a $C_{0}$-semigroup if and only if $\Omega$ is Dirichlet regular - see [1]. But $\Omega$ is not too good, since $\Omega$ is not a Caratheodory domain, i.e. $\partial \Omega \neq \partial \bar{\Omega}$, and it does not satisfy the Exterior Cone Property.

13 Example. Let $A \subset(0,1)$ be a closed set with empty interior and $\Omega_{1}:=$ $R \backslash S$, where $R$ is the rectangle $R((0,0),(2,2))$ and $S:=\{1\} \times A$. It is easy to see that $H^{1}\left(\Omega_{1}\right)=H^{1}(R)$, i.e. $S$ is a removable singularity for $H^{1}$, cf. [2]. Therefore the Neumann Laplacian $\Delta_{\Omega_{1}, c}^{N}$ generates a $C_{0}$-semigroup on $C\left(\overline{\Omega_{1}}\right)=C(\bar{R})$. If in addition $[0,1] \backslash A$ is dense in $[0,1]$, then $H_{0}^{1}\left(\Omega_{1}\right)=H_{0}^{1}(\Omega) \neq H_{0}^{1}(R)$, where $\Omega$ is given by Example 12. Since $\Omega$ is Dirichlet regular, it follows that the Dirichlet Laplacian $\Delta_{\Omega_{1}}^{D}$ generates a $C_{0}$-semigroup on $C_{0}\left(\Omega_{1}\right)=C_{0}(\Omega)$.

The function f


The function $v$


14 Example. Let $\Omega \subset \mathbb{R}^{2}$ be as follows


For $\delta>0$ we choose $\varphi_{\delta} \in C^{\infty}(\mathbb{R})$ such that

$$
\varphi_{\delta}(x)= \begin{cases}1 & \text { for } x \in(-\infty, \delta / 3) \\ 0 & \text { for } x>\frac{2}{3} \delta\end{cases}
$$

Then let $v: \mathbb{R} \rightarrow \mathbb{R}$ be given by

$$
v_{\delta}(x):= \begin{cases}\varphi_{\delta}(x) \cdot \cosh (x) & \text { if } x>0 \\ 0 & \text { else }\end{cases}
$$

We consider the function $u \in C^{\infty}(\Omega)$ given by

$$
u(x, y):= \begin{cases}v_{1}(x-1) & \text { if }(x, y) \in(1,2) \times(2,3) \\ 0 & \text { else }\end{cases}
$$

and the function $f:=u-\Delta u$. Then $u \in D\left(\Delta_{\Omega}^{N}\right), u=R\left(1, \Delta_{\Omega}^{N}\right) f$ and $f \in$ $C^{\infty}(\bar{\Omega})$. Since $u \notin C(\bar{\Omega}), R\left(1, \Delta_{\Omega}^{N}\right) C(\bar{\Omega}) \not \subset C(\bar{\Omega})$.

## References

[1] W.Arendt, C.Batty, M.Hieber and F.Neubrander: Vector-Valued Laplace Transforms and Cauchy Problems, Birkhäuser, Basel 2001.
[2] M.Biegert and M.Warma: Removable Singularities for a Sobolev Space, Preprint 2003.
[3] H. Brezis: Analyse Fonctionnelle, Théorie et Applications, Masson Paris 1983.
[4] R. Dautray and J.-L. Lions: Mathematical Analysis and Numerical Methods for Science and Technology, Volume 1, Springer Berlin.
[5] M. Fukushima and M. Tomisaki: Construction and decomposition of reflecting diffusions on Lipschitz domains with Hölder cusps, Probability Theory and Related Fields, 106, 1996, pp. 521-557.
[6] K.J.Engel and R.Nagel: One-Parameter Semigroups for Linear Evolution Equations: Springer Berlin 2000.


[^0]:    ${ }^{\mathrm{i}}$ This work is partially supported by the LFSP "Evolutionsgleichungen"

