The Neumann Laplacian on spaces of continuous functions

Markus Biegertⁱ

 $Department\ of\ Applied\ Analysis,\ University\ of\ Ulm,\ Germany.\\ \verb|markus@mathematik.uni-ulm.de|$

Received: 12/2/2003; accepted: 12/2/2003.

Abstract. If $\Omega \subset \mathbb{R}^N$ is an open set, one can always define the Laplacian with Neumann boundary conditions Δ_{Ω}^N on $L^2(\Omega)$. It is a self-adjoint operator generating a C_0 -semigroup on $L^2(\Omega)$. Considering the part $\Delta_{\Omega,c}^N$ of Δ_{Ω}^N in $C(\overline{\Omega})$, we ask under which conditions on Ω it generates a C_0 -semigroup.

Keywords: Neumann Laplacian.

MSC 2000 classification: primary 47D06, secondary 35J25.

Introduction

The question whether or not the Neumann Laplacian on $C(\overline{\Omega})$ generates a C_0 -semigroup depends only on the range condition (3) in Proposition 3. It is shown by Fukushima and Tomisaki [5] that the equivalent conditions of Proposition 3 are satisfied if the boundary of Ω is Lipschitz continuous. And in fact, more general assumptions are given (Ω is allowed to have Hölder cusps). However, no counter-examples seem to be known in the literature showing that $\Delta_{\Omega,c}^N$ may not be the generator of a C_0 -semigroup. In this note we first consider the one-dimensional case. Here it is actually possible to characterize those open sets for which $\Delta_{\Omega,c}^N$ is a generator. Of course, this is true if Ω is an interval. But for arbitrary open sets it is equivalent to Ω beeing the union of disjoint open intervals B_i $(j \in J)$ such that $dist(B_i, \Omega \setminus B_i) > 0$ for all $j \in J$. This gives us counter-examples in IR which are not connected. In Section 2 we construct a two-dimensional connected, bounded and open set Ω such that $\Delta_{\Omega,c}^N$ is not a generator. Actually, Ω can be taken a square minus a segment. It is noteworthy that this Ω is Dirichlet regular and therefore the Dirichlet Laplacian generates a C_0 -semigroup on $C_0(\Omega)$ [1, p.401].

ⁱThis work is partially supported by the LFSP "Evolutionsgleichungen"

Let \mathcal{E} be the bilinear form on $L^2(\Omega)$ given by

$$D(\mathcal{E}) := H^1(\Omega),$$

$$\mathcal{E}(u,\varphi) := \int_{\Omega} \nabla u \nabla \varphi \, dx.$$

The Neumann-Laplacian Δ_{Ω}^{N} is the selfadjoint operator on $L^{2}(\Omega)$ associated to the form \mathcal{E} , i.e.

$$D(\Delta_{\Omega}^{N}) := \{ u \in H^{1}(\Omega) \mid \exists v \in L^{2}(\Omega) : -\mathcal{E}(u, \varphi) = (v \mid \varphi)_{L^{2}(\Omega)} \ \forall \varphi \in H^{1}(\Omega) \}$$

$$\Delta_{\Omega}^{N}u := v.$$

By $\Delta^N_{\Omega,c}$ we denote the part of Δ^N_Ω in $C(\overline{\Omega})$, i.e.

$$\begin{array}{lcl} D(\Delta_{\Omega,c}^N) &:= & \{u \in D(\Delta_{\Omega}^N) \cap C(\overline{\Omega}) \mid \Delta_{\Omega}^N u \in C(\overline{\Omega})\} \\ \Delta_{\Omega,c}^N u &:= & \Delta_{\Omega}^N u. \end{array}$$

1 Lemma (The maximum principle for Δ_{Ω}^{N}). Let Ω be an open subset of \mathbb{R}^{N} with arbitrary boundary and $u \in D(\Delta_{\Omega}^{N})$. Then

$$\operatorname{ess\,inf}_{\Omega}[u - \lambda \Delta_{\Omega}^{N} u] \le u(x) \le \operatorname{ess\,sup}_{\Omega}[u - \lambda \Delta_{\Omega}^{N} u] \tag{1}$$

for all positive λ and almost all $x \in \Omega$.

QED

A consequence of Lemma 1 is the dissipativity of $\Delta^N_{\Omega,c}.$

2 Lemma (Dissipativity). The operator $\Delta_{\Omega,c}^N$ is dissipative.

PROOF. Let $u \in D(\Delta_{\Omega,c}^N)$. By Lemma 1 we have the estimate

$$||u||_{C(\overline{\Omega})} \le ||u - \lambda \Delta_{\Omega,c}^{N} u||_{C(\overline{\Omega})} \quad \forall \lambda \ge 0,$$
 (2)

which gives the dissipativity.

QED

- **3 Proposition.** Let $\Omega \subset \mathbb{R}^N$ be an open and bounded set with arbitrary boundary. Then the following statements are equivalent:
 - (1) $\Delta_{\Omega,c}^N$ generates a C_0 -semigroup.
 - (2) $\Delta_{\Omega,c}^N$ generates a C_0 -semigroup of contractions.
 - (3) $R(1, \Delta_{\Omega}^N)C(\overline{\Omega}) \subset C(\overline{\Omega})$ and $D(\Delta_{\Omega,c}^N)$ is dense in $C(\overline{\Omega})$.
- $(\star) \ \ \textit{In this case we have} \ e^{t\Delta_{\Omega,c}^N} = e^{t\Delta_{\Omega}^N}|_{C(\overline{\Omega})}.$

PROOF. (1) \Rightarrow (*): Clear, since $C(\overline{\Omega}) \hookrightarrow L^2(\Omega)$. (1) \Rightarrow (2): Follows from (*) and the fact, that

$$||e^{t\Delta_{\Omega}^{N}}u||_{L^{\infty}(\Omega)} \le ||u||_{L^{\infty}(\Omega)} \ \forall u \in L^{\infty}(\Omega).$$

(2) \Rightarrow (3): Since $\Delta_{\Omega,c}^N$ is densely defined and dissipative the Lumer-Phillips Theorem [6, p.83] implies that $\operatorname{rg}(1-\Delta_{\Omega,c}^N)=C(\overline{\Omega})$ and hence $1\in\rho(\Delta_{\Omega,c}^N)$. For $f\in C(\overline{\Omega})$ let $u_1:=R(1,\Delta_{\Omega}^N)f$ and $u_2:=R(1,\Delta_{\Omega,c}^N)f$. Then

$$(1 - \Delta_{\Omega}^{N})u_1 = (1 - \Delta_{\Omega}^{N})u_2$$

which shows that $u_1 = u_2 \in C(\overline{\Omega})$.

(3) \Rightarrow (2) Since $R(1, \Delta_{\Omega}^{N})C(\overline{\Omega}) \subset D(\Delta_{\Omega,c}^{N})$ we have $\operatorname{rg}(1 - \Delta_{\Omega,c}^{N}) = C(\overline{\Omega})$ and therefore the Lumer-Phillips Theorem implies (2).

We have seen that Proposition 3 gives a characterisation when $\Delta_{\Omega,c}^N$ is the generator of a C_0 -semigroup, but it is not so easy to verify condition (3). The following theorem, proved by Fukushima and Tomisaki, gives a sufficient condition. The interested reader can find the general assumptions on Ω as condition (A) in [5, Section 3]. We will state this result as simple as possible.

4 Theorem (Density and Invariance). Let $\Omega \subset \mathbb{R}^N$ be a bounded open set with Lipschitz boundary. Then $D(\Delta_{\Omega,c}^N)$ is dense in $C(\overline{\Omega})$ and $R(1,\Delta_{\Omega}^N)C(\overline{\Omega}) \subset C(\overline{\Omega})$, i.e. $\Delta_{\Omega,c}^N$ generates a C_0 -semigroup on $C(\overline{\Omega})$.

1 The One-Dimensional Case

If $\Omega \subset \mathbb{R}$ is bounded, then we can even give a **sufficient** and **necessary** condition on Ω , such that $\Delta_{\Omega,c}^N$ is the generator of a C_0 -semigroup.

5 Lemma. For each ball $\mathcal{B} := B(x_0, \rho) \subset \mathbb{R}^N$ there exists $v \in C^2(\overline{\mathcal{B}})$ such that $v = \Delta v = 1$ on the boundary $\partial \mathcal{B}$ of \mathcal{B} and the normal derivative $\partial v/\partial n = 0$ on $\partial \mathcal{B}$.

PROOF. For $z \in \mathcal{B}$ and $r(z) := |z - x_0|$ we set

$$v(z) := 1 + c(r^2 - \rho^2)^2$$

where $c := 1/(8\rho^2)$. It is easy to verify that v satisfies the desired properties.

6 Definition. We call a bounded open set $\Omega \subset \mathbb{R}^N$ simple, if Ω is the union of disjoint balls B_j $(j \in J)$ such that

$$\operatorname{dist}(B_j, \Omega \backslash B_j) > 0 \quad \forall j \in J.$$

7 Theorem. Let $\Omega \subset \mathbb{R}^N$ be a bounded set which is the union of disjoint open balls B_i $(j \in J)$. Then we have the following equivalence:

$$R(1,\Delta_{\Omega}^{N})C(\overline{\Omega})\subset C(\overline{\Omega})\Leftrightarrow \Omega \ \ is \ simple.$$

PROOF. \Rightarrow : If Ω is not simple, then there exists $k_0 \in J$, a sequence $(k_n) \subset J \setminus \{k_0\}$, $y_0 \in \partial B_{k_0}$ and $y_n \in \partial B_{k_n}$, such that $y_n \to y_0$ as $n \to \infty$. For B_{k_0} we choose a function v with the properties in Lemma 5. Then for u defined on Ω by $u(x) := v(x)\chi_{\overline{B_{k_0}}}$ one has $u \in D(\Delta_{\Omega}^N)$ and $(u - \Delta_{\Omega}^N u) \in C(\overline{\Omega})$ but $u \notin C(\overline{\Omega})$. In fact, one has $0 = u(y_n) \to 0 \neq 1 = u(y_0)$.

 \Leftarrow : The only problem is to show the continuity in those points x_0 on the boundary $\partial\Omega$, for which $x_0 \notin \partial B_j \ \forall j \in J$. Let x_0 be such a point, $f \in C(\overline{\Omega})$ and $u := R(1, \Delta_{\Omega}^N)f$. Without loss the generality we assume that $f(x_0) = 0$. For a fixed $\varepsilon > 0$ there exists a $\delta_1 > 0$, such that $|f(x)| < \varepsilon \ \forall x \in B(x_0, \delta_1)$. We set

$$O := \bigcup B_j$$

where the union is taken over all B_j $(j \in J)$ such that $B_j \subset B(x_0, \delta_1)$. Then there exists $\delta_2 \in (0, \delta_1)$ such that $B(x_0, \delta_2) \cap O = B(x_0, \delta_2) \cap \Omega$. In fact, one can take $\delta_2 := \min\{\delta_1/2, \operatorname{dist}(x_0, \Omega \setminus O)\}$. Clearly, $|u(x)| = |R(1, \Delta_O^N)f| \leq ||f||_{C(\overline{O})} \leq \varepsilon \ \forall x \in \Omega \cap B(x_0, \delta_2)$, i.e. for each sequence $x_n \in \Omega$ which converges to x_0 , one has that $u(x_n)$ converges to 0.

Without the assumption that $f(x_0) = 0$, one has that $u(x_n)$ converges to $f(x_0)$.

8 Theorem. Let $\Omega \subset \mathbb{R}$ be a bounded open set. Then the Neumann-Laplacian $\Delta_{\Omega,c}^N$ generates a C_0 -semigroup (of contractions) on $C(\overline{\Omega})$ if and only if Ω is simple.

PROOF. Assume that Ω is simple. Then $D(\Delta_{\Omega,c}^N)$ is dense in $C(\overline{\Omega})$. In fact, let Ω be the union of disjoint balls B_j $(j \in J)$, $f \in C(\overline{\Omega})$ and $\varepsilon > 0$. Since the function f is continuous on $\overline{\Omega}$ there exists $\delta > 0$ such that $|f(x) - f(y)| < \varepsilon$ whenever $x, y \in \overline{\Omega}$ with $|x - y| < \delta$. Using the fact that $D(\Delta_{B_j,c}^N)$ is dense in $C(\overline{B_j})$ we can choose a function $f_j \in D(\Delta_{B_j,c}^N)$ such that $||f_j - f||_{B_j}||_{C(\overline{B_j})} < \varepsilon$. If the length of the interval B_j is less than δ then the function f_j is given by $f_j(x) := (\sup_{B_j} f - \inf_{B_j} f)/2$. Let \tilde{f} be given by $\tilde{f}(x) := f_j(x)$ if $x \in B_j$. Then \tilde{f} and $\Delta \tilde{f}$ are continuous on $C := \bigcup_{j \in J} \overline{B_j}$. Moreover, for every $x_0 \in \overline{\Omega} \setminus C$ and every sequence $(x_n) \subset \overline{\Omega}$ converging to x_0 one has $\lim_n \tilde{f}(x_n) = f(x_0)$ and $\lim_n \Delta \tilde{f}(x_n) = 0$, showing that $\tilde{f} \in D(\Delta_{\Omega,c}^N)$. Moreover, one has $||\tilde{f} - f||_{C(\overline{\Omega})} \le \varepsilon$. Now we can apply Proposition 3 and Theorem 7 to conclude the assertion.

9 Examples.

- $\Omega_1 := (0,1) \cup (1,2)$ is **not** simple.
- For $k \in \mathbb{N}$ let $I_k := (2^{-2k-1}, 2^{-2k})$ and $I_{-k} := (-2^{-2k}, -2^{-2k-1})$. Then $\Omega_2 := \bigcup_{k \in \mathbb{N}} I_k$, $\Omega_3 := \bigcup_{k \in \mathbb{N}} I_{-k}$ and $\Omega_4 := \Omega_2 \cup \Omega_3$ are simple, but they do **not** have Lipschitz boundaries.
- $\Omega_5 := (-1,0) \cup \Omega_2$ is **not** simple.
- Let $x_0 \in \mathbb{R}^N \setminus \{0\}$ and $l := |x_0|$. We set $B_k := B(x_0 \cdot 2^{1-k}, l \cdot 2^{-1-k})$. Then $\Omega_6 := \bigcup_{k \in \mathbb{N}} B_k$ is simple and $\Omega_7 := B(-x_0, l) \cup \Omega_6$ is **not** simple.

 Ω_6 : For N = 2 and $x_0 = (1, 1)$

2 Counterexamples

We have seen some examples $\Omega \subset \mathbb{R}^N$, where the operator $R(1,\Delta_\Omega^N)$ does not leave the space $C(\overline{\Omega})$ invariant. In these examples the set Ω was never connected. Now we give an example of a connected set in \mathbb{R}^2 , such that

$$R(1,\Delta_{\Omega}^{N})C(\overline{\Omega}) \not\subset C(\overline{\Omega})$$

For this example we need the following definition

10 Definition. Let $a, b \in \mathbb{R}^2$, $a = (a_1, a_2)$ and $b = (b_1, b_2)$ such that a < b, i.e. $a_1 < b_1$ and $a_2 < b_2$. By R(a, b) we denote the rectangle

$$R(a,b) := \{ x \in \mathbb{R}^2 \mid a < x < b \}$$

and by N(R(a,b)) the space of functions $u \in C^2(\overline{R(a,b)})$ such that the following two conditions are satisfied:

(1)
$$\partial u/\partial x(a_1, y) = \partial u/\partial x(b_1, y) = 0 \ \forall y \in [a_2, b_2]$$

(2)
$$\partial u/\partial y(x, a_2) = \partial u/\partial y(x, b_2) = 0 \ \forall x \in [a_1, b_1]$$

11 Lemma. We consider the rectangle $\Omega := R((a,c),(b,d))$. If $u \in N(\Omega)$ and $f = u - \Delta u$, then the following holds

$$\int_{\Omega} u\varphi + \int_{\Omega} \nabla u \nabla \varphi = \int_{\Omega} f\varphi \quad \forall \varphi \in D(\mathbb{R}^2)$$
 (3)

Remark: Since Ω has Lipschitz boundary, equation (3) holds for all $\varphi \in H^1(\Omega)$. PROOF. By Fubini's theorem it follows immediately that

$$\int_{\Omega} \nabla u \nabla \varphi = \int_{c}^{d} \int_{a}^{b} \frac{\partial u}{\partial x}(x,y) \cdot \frac{\partial \varphi}{\partial x}(x,y) \, dx \, dy + \int_{a}^{b} \int_{c}^{d} \frac{\partial u}{\partial y}(x,y) \cdot \frac{\partial \varphi}{\partial y}(x,y) \, dy \, dx = \int_{c}^{d} \frac{\partial u}{\partial x}(x,y) \varphi(x,y) \bigg|_{x=a}^{b} \, dy - \int_{c}^{d} \int_{a}^{b} \frac{\partial^{2} u}{\partial x^{2}}(x,y) \cdot \varphi(x,y) \, dx \, dy + \int_{a}^{b} \frac{\partial u}{\partial y}(x,y) \varphi(x,y) \bigg|_{y=c}^{d} \, dx - \int_{a}^{b} \int_{c}^{d} \frac{\partial^{2} u}{\partial y^{2}}(x,y) \cdot \varphi(x,y) \, dy \, dx = -\int_{\Omega} \Delta u \cdot \varphi$$

12 Example.

Let $\Omega \subset \mathbb{R}^2$ be given by $\Omega := R((0,0),(2,2)) \setminus \{(1,y) \in \mathbb{R}^2 | 0 < y \leq 1\}$. We denote by P_1, P_2, P_3 and P_4 the rectangles

$$P_2 := R((0,1), (1,2)), P_3 := R((1,1), (2,2)),$$

 $P_1 := R((0,0), (1,1)), P_4 := R((1,0), (2,1)).$

- (1) Let $u:[0,1]\to\mathbb{R}$ be a function in $C^2([0,1],\mathbb{R})$ with the properties
 - u(0) = u''(0) = 1
 - u(1) = u''(1) = 1
 - u'(0) = u'(1) = 0.

For example we may take $u(x) := 1/(4\pi^2) \cdot [-\cos(2\pi x) + 4\pi^2 + 1].$

- (2) Let $A, L: [0,1] \to \mathbb{R}$ be functions in $C^2([0,1],\mathbb{R})$ with the properties
 - $A^{(k)}(0) = A^{(k)}(1) = L^{(k)}(0) = L^{(k)}(1) = 0$ for $k = 0, \dots, 2$.
 - L''(y) = L(y) A''(y)
 - $A + L \not\equiv 0$

For example, we may take

$$A(y) := -y^{10} + 5y^9 + 80y^8 - 350y^7 + 555y^6 - 419y^5 + 150y^4 - 20y^3$$
$$L(y) := 20y^3(1-y)^5 - 50y^4(1-y)^4 + 20y^5(1-y)^3$$

For $(x,y) \in P_1$ we set $g(x,y) := u(x) \cdot A(y) + L(y)$ and for $(x,y) \in \Omega$

$$v(x,y) := \begin{cases} g(x,y) & \text{if } (x,y) \in P_1 \\ 0 & \text{else.} \end{cases}$$

In the first step we observe that $v|_{P_k} \in N(P_k)$ for k = 1, ..., 4. In fact, for k = 2, 3, 4 it is clear and for k = 1 this is equivalent to $g \in N(P_1)$.

- (1) We show that $g \in C^2(\overline{P_1})$: Since $u, A, L \in C^2([0,1])$ and $g(x,y) = u(x) \cdot A(y) + L(y)$ this is trivial.
- (2) We show that $\partial g/\partial x(0,y) = \partial g/\partial x(1,y) = 0 \ \forall y \in [0,1]$: We have $\partial g/\partial x(x,y) = u'(x) \cdot A(y)$ and u'(0) = u'(1) = 0.
- (3) We show that $\partial g/\partial y(x,0) = \partial g/\partial y(x,1) = 0 \ \forall x \in [0,1]$: We have $\partial g/\partial y(x,y) = u(x) \cdot A'(y) + L'(y)$ with A'(0) = A'(1) = L'(0) = L'(1) = 0.

Moreover $D^{\alpha}g(x,1) = D^{\alpha_1}u(x)\cdot D^{\alpha_2}A(1) + \{D_2^{\alpha}L(1)\}\cdot \chi_{\{0\}}(\alpha_1)$ and therefore $D^{\alpha}g(x,1) = 0$ for all α with $|\alpha| \leq 2$. This shows, that $v \in C^2(\Omega)$. Let $y_0 \in (0,1)$ be such that $A(y_0) \neq -L(y_0)$, then it follows

•
$$\lim_{(x,y)\in P_1\to(1,y_0)} v(x,y) = u(1)A(y_0) + L(y_0) = A(y_0) + L(y_0) \neq 0.$$

•
$$\lim_{(x,y)\in P_4\to(1,y_0)} v(x,y) = 0$$

Therefore $v \notin C(\overline{\Omega})$. Now, we show that $v \in D(\Delta_{\Omega}^{N})$. By Lemma 11, $v|_{P_1} \in N(P_1)$ and for any $\varphi \in H^1(\Omega)$, we have

$$\int_{\Omega} \nabla v \nabla \varphi = \int_{P_1} \nabla v \nabla \varphi = -\int_{P_1} \Delta v \ \varphi = -\int_{\Omega} \Delta v \ \varphi$$

Since $\Delta v \in L^2(\Omega)$ one has $v \in D(\Delta_{\Omega}^N)$.

In the third step we set $f := v - \Delta_{\Omega}^N v = v - \Delta v$ and we show that $f \in C(\overline{\Omega})$. Since $v \in C^2(\Omega)$ it is sufficient to show the continuity on the boundary of Ω . The only problem lies on the segment $\{1\} \times [0,1]$. Let $(1,y_0)$ be a fixed point on this segment and take a sequence $(x_n,y_n)_{n\in\mathbb{N}} \in P_1$ which converges to $(1,y_0)$. Then

$$f(x_n, y_n) = u(x_n)A(y_n) + L(y_n) - u''(x_n)A(y_n) - u(x_n)A''(y_n) - L''(y_n) \to$$

$$A(y_0) + L(y_0) - A(y_0) - A''(y_0) - L''(y_0) = 0$$

$$\Leftrightarrow L''(y_0) = L(y_0) - A''(y_0)$$

Now the function $R(1, \Delta_{\Omega,c}^N) f = v$ is not in $C(\overline{\Omega})$. This finishes the example.

In this example, Ω is connected, Dirichlet regular and satisfies the Uniform Interior Cone Property. We remark, that the Dirichlet Laplacian Δ_0 on $C_0(\Omega)$ generates a C_0 -semigroup if and only if Ω is Dirichlet regular - see [1]. But Ω is not too good, since Ω is not a Caratheodory domain, i.e. $\partial \Omega \neq \partial \overline{\Omega}$, and it does not satisfy the Exterior Cone Property.

13 Example. Let $A \subset (0,1)$ be a closed set with empty interior and $\Omega_1 := R \setminus S$, where R is the rectangle R((0,0),(2,2)) and $S := \{1\} \times A$. It is easy to see that $H^1(\Omega_1) = H^1(R)$, i.e. S is a removable singularity for H^1 , cf. [2]. Therefore the Neumann Laplacian $\Delta_{\Omega_1,c}^N$ generates a C_0 -semigroup on $C(\overline{\Omega_1}) = C(\overline{R})$. If in addition $[0,1] \setminus A$ is dense in [0,1], then $H^1_0(\Omega_1) = H^1_0(\Omega) \neq H^1_0(R)$, where Ω is given by Example 12. Since Ω is Dirichlet regular, it follows that the Dirichlet Laplacian $\Delta_{\Omega_1}^D$ generates a C_0 -semigroup on $C_0(\Omega_1) = C_0(\Omega)$.

The function f

The function v

14 Example. Let $\Omega \subset \mathbb{R}^2$ be as follows

For $\delta > 0$ we choose $\varphi_{\delta} \in C^{\infty}(\mathbb{R})$ such that

$$\varphi_{\delta}(x) = \begin{cases} 1 & \text{for } x \in (-\infty, \delta/3) \\ 0 & \text{for } x > \frac{2}{3}\delta \end{cases}$$

Then let $v: \mathbb{R} \to \mathbb{R}$ be given by

$$v_{\delta}(x) := \begin{cases} \varphi_{\delta}(x) \cdot \cosh(x) & \text{if } x > 0 \\ 0 & \text{else} \end{cases}$$

We consider the function $u \in C^{\infty}(\Omega)$ given by

$$u(x,y) := \begin{cases} v_1(x-1) & \text{if } (x,y) \in (1,2) \times (2,3) \\ 0 & \text{else} \end{cases}$$

and the function $f:=u-\Delta u$. Then $u\in D(\Delta_{\Omega}^N),\ u=R(1,\Delta_{\Omega}^N)f$ and $f\in C^{\infty}(\overline{\Omega})$. Since $u\not\in C(\overline{\Omega}),\ R(1,\Delta_{\Omega}^N)C(\overline{\Omega})\not\subset C(\overline{\Omega})$.

References

- [1] W.Arendt, C.Batty, M.Hieber and F.Neubrander: Vector-Valued Laplace Transforms and Cauchy Problems, Birkhäuser, Basel 2001.
- [2] M.Biegert and M.Warma: Removable Singularities for a Sobolev Space, Preprint 2003.
- [3] H. Brezis: Analyse Fonctionnelle, Théorie et Applications, Masson Paris 1983.
- [4] R. Dautray and J.-L. Lions: Mathematical Analysis and Numerical Methods for Science and Technology, Volume 1, Springer Berlin.
- [5] M. FUKUSHIMA AND M. TOMISAKI: Construction and decomposition of reflecting diffusions on Lipschitz domains with Hölder cusps, Probability Theory and Related Fields, 106, 1996, pp. 521-557.
- [6] K.J.ENGEL AND R.NAGEL: One-Parameter Semigroups for Linear Evolution Equations: Springer Berlin 2000.