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Abstract. If Q ¢ IRY is an open set, one can always define the Laplacian with Neumann
boundary conditions AY on L?*(Q). It is a self-adjoint operator generating a Co-semigroup
on L?(2). Considering the part Ag’c of AY in C(Q), we ask under which conditions on € it
generates a Cp-semigroup.
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Introduction

The question whether or not the Neumann Laplacian on C({2) generates a
Co-semigroup depends only on the range condition (3) in Proposition 3. It is
shown by Fukushima and Tomisaki [5] that the equivalent conditions of Propo-
sition 3 are satisfied if the boundary of §2 is Lipschitz continuous. And in fact,
more general assumptions are given (€ is allowed to have Holder cusps). How-
ever, no counter-examples seem to be known in the literature showing that Ag .
may not be the generator of a Cy-semigroup. In this note we first consider the
one-dimensional case. Here it is actually possible to characterize those open sets
for which Ag . is a generator. Of course, this is true if € is an interval. But for
arbitrary open sets it is equivalent to () beeing the union of disjoint open in-
tervals B; (j € J) such that dist(B;,Q\B;) > 0 for all j € J. This gives us
counter-examples in IR which are not connected. In Section 2 we construct a
two-dimensional connected, bounded and open set {2 such that Agc is not a
generator. Actually, €2 can be taken a square minus a segment. It is noteworthy
that this € is Dirichlet regular and therefore the Dirichlet Laplacian generates
a Cp-semigroup on Cy(Q2) [1, p.401].
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Let € be the bilinear form on L?(f) given by
DE) = H(Q),
E(u,p) = / VuV dz.
Q

The Neumann-Laplacian AY is the selfadjoint operator on L?(§2) associated to
the form &, i.e.

DAY) = {ue HY(Q)|3ve L2(Q): —E(u,¢) = (v | 9)a@) Yo € HY(Q)}
Alu = .
By Ag’c we denote the part of AY in C(Q), i.e.

D(AY.) = {ueDAJ)NCAQ)|AJue CQ)}

Agcu = ANu.

1 Lemma (The maximum principle for Ag) Let Q be an open subset
of RN with arbitrary boundary and u € D(AY). Then

essinfolu — AMANu] < u(x) < esssupg[u — AAN ] (1)

for all positive A and almost all x € Q).
PRrOOF. See [3, Théoréeme 1X.30, p.192]. QED

A consequence of Lemma 1 is the dissipativity of Ag o
2 Lemma (Dissipativity). The operator Agj\i . s dissipative.
PROOF. Let u € D(AY ). By Lemma 1 we have the estimate

||U||(J(§) <lu— AAQ,CUIlc@) VA >0, (2)

which gives the dissipativity. QED

3 Proposition. Let Q ¢ RY be an open and bounded set with arbitrary
boundary. Then the following statements are equivalent:

(1) Agﬁ generates a Cy-semigroup.
(2) Agc generates a Cy-semigroup of contractions.
(3) R(1,AN)C(©) c C(Q) and D(Ag’c) is dense in C(£).

. tAN . tAN
(%) In this case we have e'~%c = e'2a |c(§)'
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PROOF. (1) = (%): Clear, since C(Q) — L?(1).
(1) = (2): Follows from (*) and the fact, that

N
HetAQuHLOO(Q) < Jul[ oo (@) Yu € L(Q).

(2) = (3): Since Ag’ . is densely defined and dissipative the Lumer-Phillips
Theorem [6, p.83] implies that rg(1 — Agc) = C(Q) and hence 1 € p(Agc). For
feC(Q)let up := R(1,AN)f and us := R(I,Agﬁ)f. Then

(1-— Ag)ul =(1- Ag)w

which shows that u; = ug € C().
(3) = (2) Since R(1,AY)C(Q) c D(AY,) we have rg(1 — AY,) = C(Q) and
therefore the Lumer-Phillips Theorem implies (2). ’ QED
We have seen that Proposition 3 gives a characterisation when Ag . is the
generator of a Cy-semigroup, but it is not so easy to verify condition (3) The
following theorem, proved by Fukushima and Tomisaki, gives a sufficient condi-
tion. The interested reader can find the general assumptions on {2 as condition
(A) in [5, Section 3]. We will state this result as simple as possible.

4 Theorem (Density and Invariance). Let Q C RN be a bounded open
set with Lipschitz boundary. Then D(Ag’c) is dense in C(Q) and R(1,AY)C(Q)
C O(9), i.e. Agp generates a Cy-semigroup on C(£).

1 The One-Dimensional Case

If Q C IR is bounded, then we can even give a sufficient and necessary
condition on €2, such that Ag . is the generator of a Cp-semigroup.

5 Lemma. For each ball B := B(zg,p) C RN there exists v € C*(B) such
that v = Av = 1 on the boundary OB of B and the normal derivative Ov/0n = 0
on OB.

PRrROOF. For z € B and r(z) := |z — x¢| we set
0(z) = 1+ c(r? — p?)?

where ¢ := 1/(8p?). It is easy to verify that v satisfies the desired properties.

QED

6 Definition. We call a bounded open set @ ¢ IRY simple, if Q is the
union of disjoint balls B; (j € J) such that

diSt(Bj,Q\Bj) >0 Vje
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7 Theorem. Let Q C RN be a bounded set which is the union of disjoint
open balls Bj (j € J). Then we have the following equivalence:

R(1,AN)C(Q) c C(Q) & Q is simple.

PROOF. =: If  is not simple, then there exists ko € J, a sequence (k) C
J\{ko}, yo € OBy, and y, € dBy,, such that y, — yo as n — oo. For By, we
choose a function v with the properties in Lemma 5. Then for u defined on 2
by u(z) := v(x)Xm one has u € D(AY) and (u— AJu) € C(Q) but u ¢ C(Q).
In fact, one has 0 = u(y,) — 0 # 1 = u(yo).
<: The only problem is to show the continuity in those points xy on the bound-
ary 0, for which xg ¢ 0B, Vj € J. Let 2o be such a point, f € C(Q) and
u = R(1,AY)f. Without loss the generality we assume that f(z¢) = 0. For a
fixed £ > 0 there exists a d; > 0, such that |f(x)| < e Vz € B(xg,d1). We set

O::UBj

where the union is taken over all B; (j € J) such that B; C B(zg,01). Then
there exists d2 € (0, d1) such that B(zg,d2) NO = B(xg,d2) N In fact, one can
take dy := min{dy /2, dist(xg, 2\ O)}. Clearly, |u(z)| = |R(1,AN)f| < 1flc@) <
e Vo € QN B(xo, d2), i.e. for each sequence x,, € 2 which converges to zg, one
has that u(z,) converges to 0.

Without the assumption that f(z¢) = 0, one has that u(z,) converges to f(xo).

8 Theorem. Let Q C IR be a bounded open set. Then the Neumann-
Laplacian AL, generates a Cy-semigroup (of contractions) on C () if and only
if Q is sz’mplej

PROOF. Assume that  is simple. Then D(Agc) is dense in C(Q). In fact,
let 2 be the union of disjoint balls B; (j € J), f € C(2) and £ > 0. Since the
function f is continuous on Q there exists 6 > 0 such that |f(z) — f(y)| < ¢
whenever z,y € Q with |z — y| < . Using the fact that D(Agjﬂ) is dense in
C(Bj) we can choose a function f; € D(Agj,c) such that || f; — flB, HC(E) <e.
If the length of the interval B; is less than 0 then the function f; is given by
fi(z) := (supp, f —infp, f)/2. Let f be given by f(x) := f;(x) if z € B;. Then
f and Af are continuous on C := UjeJ
and every sequence (z,) C € converging to xo one has lim, f(z,) = f(zo)
and lim, Af(z,) = 0, showing that f € D(AY ). Moreover, one has ||f —
£l c@ < € Now we can apply Proposition 3 and Theorem 7 to conclude the
assertion. QED

Bj;. Moreover, for every zg € Q\ C
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9 Examples.
Q1 :=(0,1) U (1,2) is not simple.
For k € IN let I := (272¢=1,272F) and I_; := (—272F, —272k—1),

Then Q3 := Upen Ik, 23 := Upen I+ and Qy := Qp U Q3 are simple, but
they do not have Lipschitz boundaries.

Q5 := (—1,0) U Qs is not simple.

Let 2o € RV\{0} and [ := |2¢|. We set By, := B(xg-2'7%,1-271F),
Then Qg := Uy Br is simple and Q7 := B(—x,1) U {2 is not simple.

o

O

o

Qg: For N =2 and zp = (1,1)

2 Counterexamples

We have seen some examples Q C IRY, where the operator R(1, Ag ) does

not leave the space C(f2) invariant. In these examples the set 2 was never
connected. Now we give an example of a connected set in IR?, such that

R(1,A{)C(Q) ¢ C(Q)

For this example we need the following definition

10 Definition. Let a,b € IR?, a = (a1, az) and b = (b1, by) such that a < b,
i.e. a1 < by and ag < be. By R(a,b) we denote the rectangle

R(a,b) :=={z € R? |a < x < b}

and by N(R(a,b)) the space of functions u € C?(R(a, b)) such that the following
two conditions are satisfied:
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(1) Ou/0z(ar,y) = Ou/0x(br,y) = 0 Vy € [ag, bo)]
(2) Ou/dy(x,az) = du/dy(xz,bs) = 0 Vx € [ay, by]

11 Lemma. We consider the rectangle Q0 := R((a,c), (b,d)). If u € N()
and f = u — Au, then the following holds

/Qutp—F/QVquoz/Qfgo Vo € D(IR?) (3)

Remark: Since  has Lipschitz boundary, equation (3) holds for all ¢ € H*(Q).
Proor. By Fubini’s theorem it follows immediately that

/b% )
aayxay@ y

12 Example.
Let © c IR? be given by Q := R((0,0),(2,2)\{(1,y) € R?0 < y < 1}. We
denote by P;, P>, P3 and Py the rectangles

Py := R((0,1),(1,2)), P := R((1,1),(2,2)),
Py = R((0,0), (1,1)), Py := R((1,0),(2,1)).

Y

2
P Ps

1 by Q
P Py
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(1) Let u: [0,1] — IR be a function in C?([0, 1],IR) with the properties

e u(0)=u"(0)=1
e u(l)y=u"(1)=1
e u/(0)=4/(1)=0.

For example we may take u(x) := 1/(47?) - [~ cos(27mz) + 472 + 1].
(2) Let A, L :[0,1] — IR be functions in C?([0, 1], R) with the properties

o AB0) =AW 1) =L®0)=LF(1)=0 for k=0,...,2.
o L'(y) = L(y) — A"(y)
e A+ L#0

For example, we may take
Ay) == —y1% 4 5¢° 4 80y® — 350y" + 55515 — 419y° + 150y* — 204>

L(y) := 20y°(1 — y)° = 504" (1 — )" +205°(1 — )°
For (z,y) € P1 we set g(z,y) := u(z) - A(y) + L(y) and for (z,y) € Q

x, if (z,y) € P
v(x,y) ::{ g( v) els(e. v) !

In the first step we observe that v|p, € N(P) for K = 1,...,4. In fact, for
k =2,3,4 it is clear and for k = 1 this is equivalent to g € N(Py).

(1) We show that g € C%(Py):
Since u, A, L € C?(]0,1]) and g(=x,y) = u(x) - A(y) + L(y) this is trivial.

(2) We show that dg/0z(0,y) = dg/0z(1,y) =0 Vy € [0
1

1]:
We have dg/0x(z,y) = u/(x) - A(y) and v/ (0) = /(1) =

)=0.

(3) We show that dg/dy(z,0) = dg/dy(x,1) =0 Vz € [0,1]:
We have dg/dy(x,y) = u(z) - A'(y) + L'(y) with
A(0)=A'(1)=L'(0)=L'(1) = 0.

Moreover D%g(z,1) = D™ u(x)- D2 A(1)+{D§L(1)} X0} (1) and therefore
D%g(z,1) = 0 for all @ with |a| < 2. This shows, that v € C?(£). Let yo € (0, 1)
be such that A(yo) # —L(yo), then it follows

° lim v(z,y) = u(1)A(yo) + L(yo) = A(yo) + L(yo) # 0.
(:E,y)GPlH(l,yo)
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° lim v(x,y) =0
(z.y)ePs—(1,y0) (@9)

Therefore v ¢ C(Q). Now, we show that v € D(AL). By Lemma 11, v|p, €
N(Py) and for any ¢ € HY(Q), we have

/Vvap: VoV = — Avgz):—/Avgp
Q Py Q

Py
Since Av € L?(Q2) one has v € D(AY).

In the third step we set f :=v—AYv = v— Av and we show that f € C(Q).
Since v € C?(Q) it is sufficient to show the continuity on the boundary of €.
The only problem lies on the segment {1} x [0, 1]. Let (1, y0) be a fixed point on
this segment and take a sequence (xy,,yn)new € P1 which converges to (1,yo).
Then

f(xna yn) = u(xn)A(yn) + L(yn) - ull(xn)A(yn) - u(xn)A”(yn) - L”(yn) -

A(yo) + L(yo) — A(yo) — A" (yo) — L"(y0) =0
< L"(yo) = L(yo) — A" (yo)
Now the function R(1, Ag J)f =wvisnot in C(Q). This finishes the example.

In this example, 2 is connected, Dirichlet regular and satisfies the Uniform
Interior Cone Property. We remark, that the Dirichlet Laplacian Ag on Cy(2)
generates a Cp-semigroup if and only if  is Dirichlet regular - see [1]. But 2 is
not too good, since  is not a Caratheodory domain, i.e. 9Q # 9Q, and it does
not satisfy the Exterior Cone Property.

13 Example. Let A C (0,1) be a closed set with empty interior and € :=
R\S, where R is the rectangle R((0,0),(2,2)) and S := {1} x A. It is easy to see
that H'(21) = H'(R), i.e. S is a removable singularity for H!, cf. [2]. Therefore
the Neumann Laplacian Agbe generates a Co-semigroup on C(;) = C(R). If
in addition [0, 1]\ A is dense in [0, 1], then H}(Qy) = H}(Q) # H}(R), where
is given by Example 12. Since €2 is Dirichlet regular, it follows that the Dirichlet
Laplacian Agl generates a Cy-semigroup on Co(21) = Cp(Q).
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The function f

The function v

14 Example. Let Q C IR? be as follows

supp(f)
/
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For 6 > 0 we choose 5 € C*°(IR) such that

{ 1 forz € (—00,8/3)

ws(@) = 0 forax> %5

Then let v : IR — IR be given by

x) - cosh(z ifz>0
vs() ::{ g‘;( ) (z) olse

We consider the function v € C*°(Q2) given by

u(z,y) == { Sl(x -1) gls(:’y) € (1,2) x (2,3)

and the function f := u — Au. Then v € D(AY), u = R(1,AN)f and f €
C*(Q). Since u € C(Q), R(1,AN)C(Q) ¢ C(Q).
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