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Introduction

Let x : Mm → Nn be an isometric immersion of an m-dimensional manifold
Mm into an n-dimensional manifold Nn. Denote the Laplace operator acting
on the sections of the induced bundle x∗TNn (resp. normal bundle T⊥Mm) by
∆ (resp. ∆D).

During the last two decades, the class of submanifolds satisfying the follow-
ing condition in (pseudo-) Riemannian space forms has been investigated by
many geometers:

∆H = λH, (1)

∆DH = λH, (2)

where λ is a constant and H is the mean curvature vector field (see, for instance
[2], [4]-[7], [12]).

However, in ambient spaces with non-constant curvature, very little is known
for submanifolds satisfying such conditions. Recently, J. Inoguchi [13] has classi-
fied Legendre curves and Hopf cylinders which satisfy (1) or (2) in 3-dimensional
Sasakian space forms. It is a generalization of the classification results about
Hopf cylinders with harmonic mean curvature in the unit 3-sphere ([2]). Also,
the author [14] studied surfaces satisfying (1) or (2) in a Sasakian space form
of constant φ-sectional curvature −3.
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If the mean curvature vector field satisfiesDH||ξ for the characteristic vector
field ξ, then it is said to be C-parallel, where D is the normal connection. C.
Baikoussis and D. E. Blair [1] classified Legendre surfaces in Sasakian space
forms whose mean curvature vector fields are C-parallel. If the squared mean
curvature of Legendre surfaces satisfying (1) or (2) in Sasakian space forms is
constant, then H is C-parallel and therefore such surfaces are classified by the
result due to C. Baikoussis and D. E. Blair.

In this article, we investigate Legendre surfaces with (1) or (2) in Sasakian
space forms under the condition that the squared mean curvature is constant
along a certain direction.

1 Preliminaries

A (2n + 1)-dimensional manifold M 2n+1 is said to be an almost contact
manifold if the structure group GL2n+1R of its linear frame bundle is reducible
to U(n)×{1}. This is equivalent to the existence of a tensor field φ of type (1,1),
a vector field ξ and one-form η satisfying

φ2 = −I + η ⊗ ξ, η(ξ) = 1. (3)

It follows that

η ◦ φ = 0, φξ = 0. (4)

Moreover, since U(n) × {1} ⊂ O(2n + 1), there exists a Riemannian metric g
which satisfies

g(φX, φY ) = g(X,Y ) − η(X)η(Y ), g(ξ,X) = η(X), (5)

for all X,Y ∈ TM2n+1. The structure (φ, ξ, η, g) is called an almost contact
metric structure and the manifold M 2n+1 with an almost contact metric struc-
ture is said to be an almost contact metric manifold. If an almost contact metric
manifold satisfies

dη(X,Y ) = g(X,φY ), (6)

for all X,Y ∈ TM2n+1, then M is said to be a contact metric manifold. On
a contact metric manifold, the vector field ξ is called the characteristic vector
field.

A contact metric manifold is said to be a Sasakian manifold if it satisfies
[φ, φ] + 2dη ⊗ ξ = 0 on M 2n+1, where [φ, φ] is the Nijenhuis torsion of φ.

The sectional curvature of a tangent plane which is invariant under φ is
called φ-sectional curvature. If the sectional curvature is constant on all p ∈
M2n+1 and all tangent planes in TpM

2n+1 which are invariant under φ, then



Legendre surfaces in Sasakian space forms 51

M2n+1 is said to be of constant φ-sectional curvature. Complete and connected
Sasakian manifolds of constant φ-sectional curvature are called Sasakian space
forms. We denote Sasakian space forms of constant φ-sectional curvature ε by
M2n+1(ε). The curvature tensor R̄ of M(ε) is given by

R̄(X,Y )Z =
ε+ 3

4
{g(Y,Z)X + g(Z,X)Y }

+
ε− 1

4
{η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ

+ g(Z, φY )φX − g(Z, φX)φY + 2g(X,φY )φZ}.
Let x : Nm → M2n+1(ε) be an isometric immersion. If η restricted to Nm

vanishes, then Nm is an integral submanifold, in particular if m = n, it is
called a Legendre submanifold.

Denote the Levi-Civita connection of M 2n+1(ε) (resp. Nm) by ∇̄ (resp. ∇).
The formulas of Gauss and Weingarten are given respectively by

∇̄XY = ∇XY + h(X,Y ), (7)

∇̄XV = −AVX +DXV, (8)

where X, Y ∈ TM , V ∈ T⊥M . Here h,A and D are the second fundamental
form, the shape operator and the normal connection, respectively. The mean
curvature vector H is given by H = 1

mtraceh.
If Nn is a Legendre submanifold, from [3] we have

AφYX = −φh(X,Y ) = AφXY, Aξ = 0. (9)

For more details see [3].
Denote by R the Riemann curvature tensor of Nm. Then the equations of

Gauss, Codazzi and Ricci are given respectively by

〈R(X,Y )Z,W 〉 =
〈
Ah(Y,Z)X,W

〉
−
〈
Ah(X,Z)Y,W

〉
+
〈
R̄(X,Y )Z,W

〉
,(10)

(R̄(X,Y )Z)⊥ = (∇̄Xh)(Y,Z) − (∇̄Y h)(X,Z), (11)〈
RD(X,Y )V1, V2

〉
=
〈
R̄(X,Y )V1, V2

〉
+ 〈[AV1

, AV2
](X), Y 〉 , (12)

where X,Y, Z,W (resp. V1 and V2) are vectors tangent (resp. normal) to Nm,
〈, 〉 = g(, ), RD(X,Y ) = [DX , DY ] −D[X,Y ], and ∇̄h is defined by

(∇̄Xh)(Y,Z) = DXh(Y,Z) − h(∇XY,Z) − h(Y,∇XZ). (13)

In case that Nn is a Legendre submanifold, the equation of Gauss, Codazzi,
Ricci are equivalent to

〈R(X,Y )Z,W 〉 = 〈[AφZ , AφW ]X,Y 〉 +
〈
R̄(X,Y )Z,W

〉
, (14)

(∇̄Xh)(Y,Z) = (∇̄Y h)(X,Z). (15)
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The Laplace operator which acts on the sections of the induced bundle
x∗TM2n+1(ε) (resp. normal bundle T⊥Nm) is defined by ∆ = −∑m

i=1(∇̄ei
∇̄ei

−
∇̄∇ei

ei
) (resp. ∆D = −∑m

i=1(Dei
Dei

−D∇ei
ei

)), where {ei} is a local orthonor-
mal frame of Nm.

One can obtain the following existence and uniqueness theorems by argu-
ments similar to those given in [10, 11].

1 Theorem. Let (Mn, 〈·, ·〉) be an n-dimensional simply connected Rieman-
nian manifold. Let σ be a symmetric bilinear TMn-valued form on Mn satisfying

(1) 〈σ(X,Y ), Z〉 is totally symmetric,
(2) (∇σ)(X,Y, Z) = ∇Xσ(Y,Z) − σ(∇XY,Z) − α(Y,∇XZ) is totally sym-

metric,
(3) R(X,Y )Z = ε(g(Y,Z)X − g(X,Z)Y ) + σ(σ(Y,Z), X) − σ(σ(X,Z), Y ).

Then there exists a Legendre isometric immersion x : (Mn, 〈·, ·〉) → N2n+1(ε)
such that the second fundamental form h satisfies h(X,Y ) = φσ(X,Y ).

2 Theorem. Let x1, x2 : Mn → N2n+1(ε) be two Legendre isometric immer-
sions of a connected Riemannian n-manifold into a Sasakian manifold N 2n+1(ε)
with second fundamental forms h1 and h2. If

〈
h1(X,Y ), φx1

∗Z
〉

=
〈
h2(X,Y ), φx2

∗Z
〉

for all vector fields X, Y , Z tangent to Mn, there exists an isometry A of
N2n+1(ε) such that x1 = A ◦ x2.

2 Main results

Let x : M2 → N5(ε) be a non-minimal Legendre immersion and {ei} be an
orthonormal frame along M 2 such that e1, e2 are tangent to M 2 and e3 = φe1
is parallel to H. Then the shape operators take the following forms,

A1 =

(
a b
b c

)
, A2 =

(
b c
c −b

)
, Aξ =

(
0 0
0 0

)
, (16)

where Ai = Aφei
. The Codazzi equation becomes (∇e1

Ai)e2 − ADe1
φei
e2 −

(∇e2
Ai)e1 +ADe2

φei
e1 = 0, i = 1, 2, and hence we obtain

c1 + 3bω2
1(e1) = b2 + (a− 2c)ω2

1(e2), (17)

−b1 + 3cω2
1(e1) = c2 + 3bω2

1(e2), (18)

a2 − 3bω2
1(e2) = b1 + (a− 2c)ω2

1(e1). (19)

where ωj
i (ek) = 〈∇ek

ei, ej〉 and fi = eif for a function f . Combining (18) and
(19) yields

a2 + c2 = (a+ c)ω2
1(e1). (20)
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The allied mean curvature vector field a(H) is defined by

5∑

r=4

(traceAHAer)er.

By the Gauss and Weingarten formulas we have

∆H = tr(∇̄AH) + ∆DH + (trA2
φe1

)H + a(H), (21)

where tr(∇̄AH) =
∑2

i=1(ADei
Hei + (∇ei

AH)ei).

Assume that M2 satisfies ∆H = λH. Since 〈∆H − λH, ξ〉 = 0, we get

a1 + c1 + (a+ c)ω2
1(e2) = 0. (22)

3 Remark. If a(H) vanishes identically on M 2, it is called a Chen (or A)
surface (see, [6], [7]). In this case, b in (16) vanishes. Using (20), (21) and (22),
we find that in the class of Legendre surfaces with ∆H = λH, the condition
“||H|| is constant” and “trA2

φH = (λ− 1)||H||2 and M2 is a Chen surface” are
equivalent.

By combining (17) and (22), we obtain

a1 + b2 = 3bω2
1(e1) − (2a− c)ω2

1(e2). (23)

Also since tr(∇̄AH) = 0, we have

2a(a1 + c1) + 2b(a2 + c2) + (a+ c){b2 + a1 + (a− b)ω2
1(e1)} = 0, (24)

b(a1 + c1) + 2c(a2 + c2) + (a+ c){c2 + b1 + (a+ b)ω2
1(e2)} = 0. (25)

By substituting (18), (20), (22) and (23) into (24) and (25), we get

4bω2
1(e1) − (3a− c)ω2

1(e2) = 0, (26)

(a+ 5c)ω2
1(e1) − 4bω2

1(e2) = 0. (27)

Denote the unit vector field perpendicular to φH in TM 2 by (φH)⊥. First we
shall consider the case of (φH)⊥||H||2 = 0. Then ω2

1(e1) = 0 by (20) and hence
from (27) we obtain bω2

1(e2) = 0. We put U = {p ∈ M |ω2
1(e2) 6= 0}. On U we

have b = 0 and 3a = c. It follows from (17) and (22) that a = 0 on U . Hence U is
totally geodesic. It is a contradiction. Thus U is empty and ω2

1 = 0. Therefore H
is C-parallel as in [1]. Moreover since 〈∆H − λH, φe1〉 = 〈∆H − λH, φe2〉 = 0,
we have trA2

φE1
= λ− 1 and b = 0.

Next we shall consider the case of φH||H||2 = 0. Then ω2
1(e2) = 0 by (22)

and hence from (26) we obtain bω2
1(e1) = 0. Similarly we see that H is C-parallel

and trA2
φe1

= λ− 1 and b = 0.

Conversely if H is C-parallel, then ||H||2 is constant. Consequently we can
state the following.
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4 Proposition. Let M2 be a non-minimal Legendre surface of N 5(ε) sat-
isfying ∆H = λH for some constant λ. Then H satisfies φH||H||2 = 0 or
(φH)⊥||H||2 = 0 if and only if M 2 is a Chen surface and H is C-parallel, and
moreover trA2

φH = (λ− 1)||H||2.
5 Remark. By remark 3 and proposition 4, we obtain that in the class of

Legendre surfaces with ∆H = λH, the condition “φH||H||2 = 0 or (φH)⊥||H||2
= 0” and “||H|| is constant” are equivalent.

In the rest of this section we study Legendre surfaces satisfying ∆DH = λH.

6 Proposition. Let M2 be a non-minimal Legendre surface satisfying
∆DH = λH in N5(ε). Then ||H||2 is a constant if and only if H is C-parallel
and λ = 1

Proof. Since
〈
∆DH − λH, φe1

〉
=
〈
∆DH − λH, φe2

〉
= 0, we have

∆α+ α{1 − λ+ (ω2
1(e1))

2 + (ω2
1(e2))

2} = 0, (28)

2α1ω
2
1(e1) + 2α2ω

2
1(e2) + α{(ω2

1(e1))1 + (ω2
1(e2))2} = 0, (29)

where α = a + c. The condition
〈
∆DH − λH, ξ

〉
= 0 is equivalent to (22). If

||H||2 is constant, we have ω2
1 = 0 from (20) and (22). Hence H is C-parallel

by the same way as [1]. Moreover by (28) we obtain λ = 1. The converse is
trivial. QED

In view of this proposition, it is interesting to investigate whether there
exists a Legendre surface satisfying ∆DH = λH with non-constant squared
mean curvature.

By using (17), (18), (19) and (22), we can prove the following lemma.

7 Lemma. If a = 2c, then ||H||2 is constant.

Suppose that M2 is a Legendre Chen surface in N 5(ε) satisfying ∆DH = λH
with non-constant squared mean curvature. Then a 6= 2c from lemma 7.

First we shall consider the case of α2 = 0. Then ω2
1(e1) = 0 by (20). Hence

there exists a local coordinate system {x, ỹ} such that the metric tensor takes
the form

g = dx2 +G2dỹ2 (30)

and e1 = ∂
∂x , e2 = G−1 ∂

∂ỹ . Since a2 = c2 = 0 by (18) and (19), we have a = a(x)

and c = c(x). We obtain G = f(ỹ)exp
∫ x

( c′

(a−2c))dx for some function f(ỹ)

because ω2
1(e2) = Gx

G holds, where c
′
= c1. By using the coordinate change:

y =

∫ ỹ

f(ỹ)dỹ,
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G takes the form G = exp
∫ x

( c′

(a−2c))dx. The relation (28) implies

−αα′′

+ 2(α
′

)2 = (λ− 1)α2. (31)

By (22), (31) and the equation of Gauss, we obtain

ac− c2 +
ε+ 3

4
= −(ω2

1(e2))
′ − (ω2

1(e2))
2

= 1 − λ. (32)

We put W = {p ∈M2|c 6= 0}. On M −W we see that α is constant by using
(17) and (22). It is a contradiction. Hence M 2 = W . From (32) we have

α =
1 − 4λ− ε+ 8c2

4c
. (33)

Combining (17) and (22) yields

c
′

α− 3c
= −α

′

α
. (34)

By substituting (33) into (34) we obtain

(1 − 4λ− ε)(1 − 4λ− ε− 16c2) = 0. (35)

If λ 6= 1−ε
4 , then c is constant and hence α is constant. It is a contradiction.

Hence λ = 1−ε
4 . Thus α = 2a = 2c from (32). Then by solving (31), we find that

α(x) is one of the following function:

1

scos
√

ε+3
2 x+ tsin

√
ε+3
2 x

(ε > −3), (36)

1

sx+ t
(ε = −3), (37)

1

sexp(
√
−ε−3
2 x) + texp(−

√
−ε−3
2 x)

(ε < −3), (38)

where s, t are integration constants.
Conversely, suppose that s, t, ε = 1−4λ are constants and α(x) is a function

satisfying one of (36)-(38) defined on an open interval I. Let g be the metric
tensor on a simply-connected domain V ⊂ I × R defined by (30), where G =

1
α(x) . We define a symmetric bilinear form σ on (V, g) by σ(∂x, ∂x) = α

2 ∂x,

σ(∂y, ∂y) = 1
2α∂x, σ(∂x, ∂y) = α

2 ∂y. Here ∂x = ∂
∂x and ∂y = ∂

∂y . By a straight-
forward computation, we can see that ((V, g), σ) satisfies (1)− (3) of theorem 1.
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By applying theorem 1 and 2, we conclude that up to rigid motions of N 5(ε),
there exists a unique Legendre Chen immersion of (V, g) into N 5(ε). Moreover
we can show that such an immersion satisfies ∆DH = λH and (φH)⊥||H||2 = 0.

Next we shall consider the case of α1 = 0. Then ω2
1(e2) = 0 by (22). Hence

there exists a local coordinate system {x̃, y} such that the metric tensor takes
the form

g = E2dx̃2 + dy2 (39)

and e1 = E−1 ∂
∂x̃ , e2 = ∂

∂y . Since a1 = c1 = 0 by (17) and (22), we have a = a(y)

and c = c(y). We obtain E = g(x̃)exp
∫ y

( −a′

(a−2c))dy for some function g(x̃)

because ω2
1(e1) = −Ey

E holds. By using the coordinate change:

x =

∫ x̃

g(x̃)dx̃,

E takes the form E = exp
∫ y

( −a′

(a−2c))dy.

By the same way as the case α2 = 0, we obtain (31) and (32). On W we
have

1 − λ− ε+ 3

4
+ 2c2 = 0. (40)

It follows that α = 0. It is a contradiction. Thus W is empty and hence c = 0
and ε = 1 − 4λ on M 2.

Conversely, suppose that s, t, ε = 1−4λ are constants and α(y) is a function
satisfying one of (36)-(38) (replace x with y) defined on an open interval I. Let
g be the metric tensor on a simply-connected domain V ⊂ I × R defined by
(39), where E = 1

a(y) . We define a symmetric bilinear form σ on (V, g) by

σ(∂x, ∂x) = ∂x, σ(∂y, ∂y) = σ(∂x, ∂y) = 0. By a straight-forward computation,
we can see that ((V, g), σ) satisfies (1)− (3) of theorem 1. By applying theorem
1 and 2, we conclude that up to rigid motions of N 5(ε), there exists a unique
Legendre Chen immersion of (V, g) into N 5(ε). Moreover we can show that such
an immersion satisfies ∆DH = λH and φH||H||2 = 0.

Consequently we can state the following.

8 Theorem. Let M2 be a Legendre Chen surface of N 5(ε) satisfying ∆DH
= λH with non-constant squared mean curvature. If (φH)⊥||H||2 = 0 ( resp.
φH||H||2 = 0 ), then 1− 4λ− ε = 0 and there exists a coordinate system {x, y}
defined in a neighborhood V ⊂ I × R of p ∈ M 2 and a function α : I → R :
x → α(x) satisfying one of (36) − (38) for some constants s, t. Moreover the
metric tensor of M 2 is given by

g = dx2 +
1

α(x)2
dy2 (41)
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and the second fundamental form is given by

h(∂x, ∂x) =
α

2
φ∂x, h(∂y, ∂y) =

1

2α
φ∂x, h(∂x, ∂y) =

α

2
φ∂y, (42)

(resp. h(∂x, ∂x) = h(∂x, ∂y) = 0, h(∂y, ∂y) = φ∂y) , (43)

Conversely, suppose that s, t, ε = 1−4λ are constants and α(x) is a function
defined on an open interval I satisfying one of (36)−(38). Let g be the metric ten-
sor on a simply-connected domain V ⊂ I×R defined by (41). Then, up to rigid
motions of N5(ε), there exists a unique Legendre Chen immersion of (V, g) into
N5(ε) whose second fundamental form is given by (42) (resp. (43)). Moreover
such a surface satisfies ∆DH = λH and (φH)⊥||H||2 = 0 (resp. φH||H||2 =
0).

By the same method as [8] and [9] and using the suitable coordinate change
in theorem 8, if ε = 1, i.e., the ambient space is the unit 5-sphere S5(1), we
obtain the explicit representation of the position vector of surfaces in theorem
8.

9 Corollary. Let ψ : M2 → S5(1) ⊂ C3 be a Legendre Chen surface which
satisfies ∆DH = λH for a constant λ. Suppose that the mean curvature is non-
constant. Then H satisfies (φH)⊥||H||2 = 0 if and only if up to rigid motions
of S5(1), the immersion ψ is locally given by

ψ(x, y) =
1√
2
(i+ sinx, (secx+ tanx)icosxcosy, (secx+ tanx)icosxsiny). (44)

Also, H satisfies φH||H||2 = 0 if and only if up to rigid motions of S5(1), the
immersion ψ is locally given by

ψ(x, y) =

(
1√
2
exp(

1 +
√

5

2
iy)cosx,

1√
2
exp(

1 −
√

5

2
iy)cosx, sinx

)
. (45)
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