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Introduction

In the paper [1] M. Becker studied approximation problems for functions
f ∈ Cp and Szasz-Mirakyan operators

Sn(f ;x) := e−nx
∞∑

k=0

(nx)k

k!
f

(
k

n

)
, (1)

x ∈ R0 = [0,+∞), n ∈ N := {1, 2, . . . }, where Cp with fixed p ∈ N0 :=
{0, 1, 2, . . . } is polynomial weighted space generated by the weighted function

w0(x) := 1, wp(x) := (1 + xp)−1, if p ≥ 1, (2)

i.e. Cp is the set of all real-valued functions f , continuous on R0 and such that
wpf is uniformly continuous and bounded on R0. The norm in Cp is defined by
the formula

‖f‖p ≡ ‖f (·) ‖p := sup
x∈R0

wp(x) |f(x)|. (3)

In [1] theorems on the degree of approximation of f ∈ Cp by the operators
Sn were proved. From these theorems it was deduced that

lim
n→∞

Sn(f ;x) = f(x), (4)
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for every f ∈ Cp, p ∈ N0 and x ∈ R0. Moreover the convergence (4) is uniform
on every interval [x1, x2], x2 > x1 ≥ 0.

In this paper we shall modify the formula (1) and we shall study certain
approximation properties of introduced operators.

Let Cp be the space given above and let f ∈ C1
p := {f ∈ Cp : f ′ ∈ Cp}, where

f ′ is the first derivative of f .

For f ∈ Cp we define the modulus of continuity ω1(f ; ·) as usual ([2]) by
formula

ω1(f ;Cp; t) := sup
0≤h≤t

‖∆hf(·)‖p, t ∈ R0, (5)

where ∆hf(x) := f(x+ h)− f(x), for x, h ∈ R0. From the above it follows that

lim
t→0+

ω1(f ;Cp; t) = 0, (6)

for every f ∈ Cp. Moreover if f ∈ C1
p then there exists M1 = const. > 0 such

that

ω1(f ;Cp; t) ≤M1 · t for t ∈ R0. (7)

We introduce the following

1 Definition. Let R2 := [2,+∞) and let r ∈ R2 and p ∈ N0 be fixed
numbers. For functions f ∈ Cp we define the operators

An(f ; r;x) := e−(nx+1)r
∞∑

k=0

(nx+ 1)rk

k!
f

(
k

n(nx+ 1)r−1

)
, (8)

x ∈ R0, n ∈ N .

Similarly as Sn, the operator An is linear and positive. In § 2 we shall prove
that An is an operator from the space Cp into itself for every fixed p ∈ N0.

From (8) we easily derive the following formulas

An(1; r;x) = 1, (9)

An (t; r;x) = x+
1

n
, An

(
t2; r;x

)
=

(
x+

1

n

)2 [
1 +

1

(nx+ 1)r

]

An

(
t3; r;x

)
=

(
x+

1

n

)3 [
1 +

3

(nx+ 1)r
+

1

(nx+ 1)2r

]
,

for every fixed r ∈ R2 and for all n ∈ N and x ∈ R0.
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1 Main results

From formulas (8), (9) and An(tk; r;x), 1 ≤ k ≤ 3, given above we obtain

2 Lemma. Let r ∈ R2 be a fixed number. Then for all x ∈ R0 and n ∈ N
we have

An (t− x; r;x) =
1

n
,

An

(
(t− x)2; r;x

)
=

1

n2

[
1 +

1

(nx+ 1)r−2

]
,

An

(
(t− x)3; r;x

)
=

1

n3

[
1 +

3

(nx+ 1)r−2
+

1

(nx+ 1)2r−3

]
.

Next we shall prove

3 Lemma. Let s ∈ N and r ∈ R2 be fixed numbers. Then there exist positive
numbers λs,j, 1 ≤ j ≤ s, depending only on j and s, such that

An(ts; r;x) =

(
x+

1

n

)s s∑

j=1

λs,j

(nx+ 1)(j−1)r
(10)

for all n ∈ N and x ∈ R0. Moreover λs,1 = λs,s = 1.

Proof. We shall use the mathematical induction on s.
The formula (10) for s = 1, 2, 3 is given above.
Let (10) holds for f(x) = xj , 1 ≤ j ≤ s, with fixed s ∈ N . We shall prove

(10) for f(x) = xs+1. From (8) it follows that

An(ts+1; r;x) = e−(nx+1)r
∞∑

k=1

(nx+ 1)rk

(k − 1)!

ks

(n(nx+ 1)r−1)s+1
=

=
(nx+ 1)r

(n(nx+ 1)r−1)s+1
e−(nx+1)r

∞∑

k=0

(nx+ 1)rk

k!
(k + 1)s =

=
(nx+ 1)r

(n(nx+ 1)r−1)s+1
e−(nx+1)r

∞∑

k=0

(nx+ 1)rk

k!

s∑

µ=0

(
s
µ

)
kµ =

=
(nx+ 1)r

(n(nx+ 1)r−1)s+1

s∑

µ=0

(
s
µ

)
(n(nx+ 1)r−1)µAn(tµ; r;x).

By our assumption we get

An(ts+1; r;x) =
(nx+ 1)r

(n(nx+ 1)r−1)s+1
·
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·



1 +

s∑

µ=1

(
s
µ

)
(nx+ 1)rµ

µ∑

j=1

λµ,j

(nx+ 1)(j−1)r



 =

=

(
x+

1

n

)s+1




1

(nx+ 1)rs
+

s∑

j=1

s∑

µ=j

(
s
µ

)
λµ,j

(nx+ 1)(s+j−µ−1)r



 =

=

(
x+

1

n

)s+1




1

(nx+ 1)rs
+

s∑

j=1

1

(nx+ 1)(j−1)r

s∑

µ=s−j+1

(
s
µ

)
λµ,µ+j−s



 =

=

(
x+

1

n

)s+1 s+1∑

j=1

λs+1,j

(nx+ 1)(j−1)r

and λs+1,1 = λs+1,s+1 = 1, which proves (10) for f(x) = xs+1. Hence the proof
of (10) is completed. QED

4 Lemma. Let p ∈ N0 and r ∈ R2 be fixed numbers. Then there exists a
positive constant M2 ≡M2(p, r), depending only on the parameters p and r such
that

‖An(1/wp(t); r; ·)‖p ≤M2, n ∈ N. (11)

Moreover for every f ∈ Cp we have

‖An(f ; r; ·)‖p ≤M2‖f‖p, n ∈ N. (12)

The formula (8) and inequality (12) show that An, n ∈ N , is a positive linear
operator from the space Cp into Cp, for every p ∈ N0.

Proof. The inequality (11) is obvious for p = 0 by (2), (3) and (9).
Let p ∈ N . Then by (2) and (8)-(10) we have

wp(x)An(1/wp(t); r;x) = wp(x) {1 +An(tp; r;x)} =

=
1

1 + xp
+ +

(x+ 1/n)p

1 + xp

p∑

j=1

λp,j

(nx+ 1)(j−1)r
≤

≤ 1 +

p∑

µ=0

(
p

µ

)
xµ

1 + xp

p∑

j=1

λp,j

(nx+ 1)(j−1)r
≤M2(p, r),

for x ∈ R0, n ∈ N and r ∈ R2, where M2(p, r) is a positive constant depending
only p and r. From this follows (11).

The formula (8) and (3) imply

‖An(f(t); r; ·)‖p ≤ ‖f‖p‖An(1/wp(t); r; ·)‖p, n ∈ N, r ∈ R2,

for every f ∈ Cp. By applying (11), we obtain (12). QED
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5 Lemma. Let p ∈ N0 and r ∈ R2 be fixed numbers. Then there exists a
positive constant M3 ≡M3(p, r) such that

∥∥∥∥An

(
(t− ·)2
wp(t)

; r; ·
)∥∥∥∥

p

≤ M3

n2
for all n ∈ N. (13)

Proof. The formulas given in 2 Lemma and (2), (3) imply (13) for p = 0.
By (2) and (9) we have

An

(
(t− x)2/wp(t); r;x

)
= An

(
(t− x)2; r;x

)
+An

(
tp(t− x)2; r;x

)
,

for p, n ∈ N and r ∈ R2. If p = 1 then by the equality we get

An

(
(t− x)2/w1(t); r;x

)
= An

(
(t− x)2; r;x

)
+An

(
t(t− x)2; r;x

)
=

= An

(
(t− x)3; r;x

)
+ (1 + x)An

(
(t− x)2; r;x

)
,

which by (2) and (3) and 2 Lemma yields (13) for p = 1.
Let p ≥ 2. By applying (10), we get

wp(x)An

(
tp(t− x)2; r;x

)
= wp(x)

{
An

(
tp+2; r;x

)
− 2xAn

(
tp+1; r;x

)
+

+x2An (tp; r;x)
}

= wp(x)





(
x+

1

n

)p+2 p+2∑

j=1

λp+2,j

(nx+ 1)(j−1)r
+

−2x

(
x+

1

n

)p+1 p+1∑

j=1

λp+1,j

(nx+ 1)(j−1)r
+

+x2

(
x+

1

n

)p p∑

j=1

λp,j

(nx+ 1)(j−1)r



 =

= wp(x)

(
x+

1

n

)p




1

n2
+

(
x+

1

n

)2 p+2∑

j=2

λp+2,j

(nx+ 1)(j−1)r
+

−2x

(
x+

1

n

) p+1∑

j=2

λp+1,j

(nx+ 1)(j−1)r
+ x2

p∑

j=2

λp,j

(nx+ 1)(j−1)r





which implies

wp(x)An

(
tp(t− x)2; r;x

)
≤ 1

n2

(1 + x)p

1 + xp



1 +

1

(nx+ 1)r−2




p+2∑

j=2

λp+2,j +
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+ 2

p+1∑

j=2

λp+1,j +

p∑

j=2

λp,j





 ≤ M3(p, r)

n2

for x ∈ R0, n ∈ N and r ∈ R2. Thus the proof is completed. QED

Now we shall give approximation theorems for An.

6 Theorem. Let p ∈ N0 and r ∈ R2 be fixed numbers. Then there exists a
positive constant M4 ≡M4(p, r) such that for every f ∈ C1

p we have

‖An(f ; r; ·) − f(·)‖p ≤ M4

n
‖f ′‖p, n ∈ N. (14)

Proof. Let x ∈ R0 be a fixed point. Then for f ∈ C1
p we have

f(t) − f(x) =

∫ t

x
f ′(u)du, t ∈ R0.

From this and by (8) and (9) we get

An (f(t); r;x) − f(x) = An

(∫ t

x
f ′(u)du; r;x

)
, n ∈ N.

But by (2) and (3) we have
∣∣∣∣
∫ t

x
f ′(u)du

∣∣∣∣ ≤ ‖f ′‖p

(
1

wp(t)
+

1

wp(x)

)
|t− x|, t ∈ R0,

which implies

wp(x)|An(f ; r;x) − f(x)| ≤ (15)

≤ ‖f ′‖p

{
An (|t− x|; r;x) + wp(x)An

( |t− x|
wp(t)

; r;x

)}

for n ∈ N . By the Hölder inequality and by (9) and 2, 4, 5 Lemmas it follows
that

An (|t− x|; r;x) ≤
{
An

(
(t− x)2; r;x

)
An (1; r;x)

}1/2 ≤
√

2

n
,

wp(x)An

( |t− x|
wp(t)

; r;x

)
≤

≤ wp(x)

{
An

(
(t− x)2

wp(t)
; r;x

)}1/2{
An

(
1

wp(t)
; r;x

)}1/2

≤

≤ M4

n

for n ∈ N . From this and by (15) we immediately obtain (14). QED
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7 Theorem. Let p ∈ N0 and r ∈ R2 be fixed numbers. Then there exists
M6 ≡M6(p, r) such that for every f ∈ Cp and n ∈ N we have

‖An(f ; r; ·) − f(·)‖p ≤M6ω1

(
f ;Cp;

1

n

)
. (16)

Proof. We use Steklov function fh of f ∈ Cp

fh(x) :=
1

h

∫ h

0
f(x+ t)dt, x ∈ R0, h > 0. (17)

From (17) we get

fh(x) − f(x) =
1

h

∫ h

0
∆tf(x)dt,

f ′h(x) =
1

h
∆hf(x), x ∈ R0, h > 0,

which imply
‖fh − f‖p ≤ ω1 (f ;Cp;h) , (18)

‖f ′h‖p ≤ h−1ω (f ;Cp;h) , (19)

for h > 0. From this we deduce that fh ∈ C1
p if f ∈ Cp and h > 0.

Hence we can write

wp(x)|An(f ;x) − f(x)| ≤ wp(x) {|An (f − fh;x)|+
+ |An (fh;x) − fh(x)| + |fh(x) − f(x)|} := L1(x) + L2(x) + L3(x),

for n ∈ N , h > 0 and x ∈ R0. From (12) and (18) we get

‖L1‖p ≤M2‖fh − f‖p ≤M2ω1 (f ;Cp;h) ,

‖L3‖p ≤ ω1 (f ;Cp;h) .

By 6 Theorem and (19) it follows that

‖L2‖p ≤ M4

n
‖f ′h‖p ≤ M4

nh
ω1 (f ;Cp;h) .

Consequently

‖An(f ; r; ·) − f(·)‖p ≤
(

1 +M2 +
M4

nh

)
ω1(f ;Cp;h).

Now, for fixed n ∈ N , setting h = 1
n , we obtain

‖An(f ; r; ·) − f(·)‖p ≤M6(p, r)ω1

(
f ;Cp;

1

n

)

and we complete the proof. QED
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From 6 Theorem and 7 Theorem we derive the following two corollaries:

8 Corollary. For every fixed r ∈ R2 and f ∈ Cp, p ∈ N0, we have

lim
n→∞

‖An(f ; r; ·) − f(·)‖p = 0.

9 Corollary. If f ∈ C1
p , p ∈ N0 and r ∈ R2, then

‖An(f ; r; ·) − f(·)‖p = O(1/n).

Finally, we shall give the Voronovskaya type theorem for An.

10 Theorem. Let f ∈ C1
p and let r ∈ R2 be fixed number. Then,

lim
n→∞

n {An (f ; r;x) − f(x)} = f ′(x) (20)

for every x ∈ R0.

Proof. Let x ∈ R0 be a fixed point. Then by the Taylor formula we have

f(t) = f(x) + f ′(x)(t− x) + ε(t;x)(t− x)

for t ∈ R0, where ε(t) ≡ ε(t;x) is a function belonging to Cp and ε(x) = 0.
Hence by (8) and (9) we get

An(f ; r;x) = f(x)+f ′(x)An(t−x; r;x)+An(ε(t)(t−x); r;x), n ∈ N, (21)

and by Hölder inequality

|An(ε(t)(t− x); r;x)| ≤
{
An

(
ε2(t);x

)}1/2 {
An

(
(t− x)2;x

)}1/2
.

By 8 Corollary we deduce that

lim
n→∞

An

(
ε2(t); r;x

)
= ε2(x) = 0.

From this and by 2 Lemma we get

lim
n→∞

nAn(ε(t)(t− x); r;x) = 0. (22)

Using (22) and 2 Lemma to (21), we obtain the desired assertion (20). QED

11 Remark. It is easily verified that the operators

An(f ; r;x) := e−(nx+1)r
∞∑

k=0

(nx+ 1)rk

k!
n(nx+1)r−1

∫ (k+1+r)/(n(nx+1)r−1)

(k+r)/(n(nx+1)r−1)
f(t)dt,

p ∈ N0, x ∈ R0, n ∈ N and r ∈ R2, have analogous approximation properties
in the space Cp.
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12 Remark. In [1] it was proved that if f ∈ Cp, p ∈ N0, then for the Szasz-
Mirakyan operators Sn (defined by (1)) is satisfied the following inequality

wp(x)|Sn(f ;x) − f(x)| ≤M9ω2

(
f ;Cp;

√
x

n

)
, x ∈ R0, n ∈ N0,

where M9 = const. > 0 and ω2 (f ; ·) is the modulus of smoothness defined by
the formula

ω2(f ;Cp; t) := sup
0≤h≤t

‖∆2
hf(·)‖p, t ∈ R0,

where ∆2
hf(x) := f(x)− 2f(x+h)+ f(x+2h). In particular, if f ∈ C1

p , p ∈ N0,
then

wp(x)|Sn(f ;x) − f(x)| ≤M10

√
x

n
,

for x ∈ R0 and n ∈ N (M10 = const. > 0).
7 Theorem and 10 Theorem and 9 Corollary in our paper show that operators

An, n ∈ N , give better degree of approximation of functions f ∈ Cp and f ∈ C1
p

than Sn.
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