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Abstract. We formulate a universal axiom system for plane hyperbolic geometry in a first-
order language with one sort of individual variables, points (lower-case), containing three
individual constants, ao, a1, a2, standing for three non-collinear points, with II(apa1) = 7/3,
one quaternary operation symbol i, with Z(abcd) = p to be interpreted as ‘p is the point of
intersection of lines ab and cd, provided that lines ab and cd are distinct and have a point of
intersection, an arbitrary point, otherwise’, and two ternary operation symbols, €1 (abc) and
ea(abe), with e;(abc) = d; (for i = 1,2) to be interpreted as ‘dy and dz are two distinct points
on line ac such that ad; = adz = ab, provided that a # ¢, an arbitrary point, otherwise’.
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Introduction

J. Strommer [11] showed that in hyperbolic geometry all constructions,
which are possible based on Hilbert’s Axioms I-IV can be carried out with
a ruler and a segment transporter, if two limiting parallel lines are given. The
segment-transporter is an instrument that lays off on a given ray a segment
congruent to a given segment. A hyperbolic plane, i. e. a Hilbert plane satisfy-
ing the axiom of limiting parallels, is uniquely characterized by its abstract field
constructed by means of Hilbert’s end-calculus. With coordinates from this field
one can develop non-Euclidean trigonometry ([4, Ch. 7, §41-43]). Using hyper-
bolic trigonometry, M. N. Gafurov [1] showed that in a hyperbolic plane two
limiting parallel lines can be constructed using a ruler and a gauge, if the open-
ing of the gauge is such that a segment of length x, with tanhz = 1/2, is
constructible. (Gafurov’s gauge is an instrument that lays off a segment of fixed
length on a given ray). We will show that these results turn out to be relevant
for constructive axiomatizations of elementary hyperbolic geometry.
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An axiomatization formulated in a first-order language in which the axioms
are universal statements is called a constructive axiomatization. Such axiom-
atizations of hyperbolic geometry are but only ‘fragments’ ([8]), since inside
first-order logic the Lowenheim-Skolem theorem does not allow a characteriza-
tion up to isomorphism of the classical Beltrami-Klein model. Several authors
formulated axioms systems for hyperbolic geometry inside first-order logic (see
[8] for an overview). In 1938, K. Menger [5] observed that hyperbolic geometry
can be axiomatized based on point-line incidence alone. Building on Menger’s
and his students’ work H. L. Skala [10] produced a first-order axiom system for
hyperbolic geometry formulated in a bi-sorted language, with individual vari-
ables for points and lines, and a single binary relation — as a primitive notion,
with PJl to be read as ‘point P is incident with line ’.

Recently, starting from Skala’s axiom system, V. Pambuccian [7] showed
that plane hyperbolic geometry over Euclidean ordered fields can be construc-
tively axiomatized in a first-order language £ with two sorts of individual vari-
ables, points and lines, containing three individual constants standing for three
non-collinear points, two binary operation symbols, ¢ and ¢, and two binary
operation symbols, 71 (P,1) and mo(P,1). In this axiom system, p(A, B) = [ is
interpreted as ‘I is the line joining A and B, if A # B, an arbitrary line, oth-
erwise’; ¢(g,h) = P is interpreted as ‘P is the point of intersection of g and h,
when ¢ and h are distinct lines and have a point of intersection, an arbitrary
point, otherwise’; and for i = 1,2, m;(P,1) = g; is interpreted as ‘g; and go are
the two limiting parallel lines from P to [, if P is not on [, otherwise g; is an
arbitrary line’. The operations 71, m2 may be interpreted as an instrument that
constructs the limiting parallel lines through a point to a line not incident with
the point.

The purpose of this paper is to provide a constructive axiomatization of
plane hyperbolic geometry over Euclidean ordered fields in a language that
corresponds to constructions with a ruler and an instrument that we shall call
segment - transporter. The ruler constructs new points by intersecting two lines
ab and cd, while the segment - transporter constructs the points of intersection
of a circle with a line passing through the center of the circle, but is not capable

of selecting one of the two points, such as the point rightmost on the ray cd.
Our universal axiom system for hyperbolic geometry is formulated in Ly, a first-
order language with individual variables for points (lower-case), one quaternary
operation symbol 7 and two ternary operation symbols, €1 and o as primitive
notions, with Z(abed) = p to be interpreted as ‘p is the point of intersection of
lines ab and cd, if the lines ab and cd are distinct and have a point of intersection,
an arbitrary point, otherwise’, and ¢;(abc) = d; (for i = 1,2) to be interpreted
as ‘dy and dy are two distinct points on line ac such that ad; = ab, provided
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that a # ¢, an arbitrary point, otherwise’. The language £y contains also three
individual constants, ag, a1, a2, to be interpreted as three non-collinear points,
with II(apa;) = /3, where II(apa;) is the angle of parallelism of the segment
apari .

The paper is organized as follows: in section 2, using Gafurov’s and Strom-
mer’s results, we define inside the language Ly the operations 71 (pab), T2 (pab),
where 7;(pab) = p;, i = 1,2, will be interpreted as ‘p; are points on the two
limiting parallel rays from point p to line ab’; in section 3 we formulate our
axiom system in two steps: first, we show how to rephrase most of the Pam-
buccian axioms in our language Ly, and then we state the axioms that will give
the desired interpretations for our primitive operations €1, €2, and 7; finally, in
section 4 we prove the adequacy of our system.

1 Definitions of operations and relations

In this section we will define the operations 71, 72 in the language Ly. We
will also show that these definitions are valid in hyperbolic geometry if the
operations €1, €2, ¢ have the desired interpretations, and ag, a1, as are three
non-collinear points such that II(aga;) = 7/3. We start by defining the notions
of collinearity and ‘two lines coincide’, and then translate in Ly two simple
constructions in neutral geometry.

(i) Clabe) < (V2 eilabc) =b)Va=c

may be read as ‘a, b, ¢ are collinear’;

(ii) Clabc) < a#bAb#cAc#aA (\/12:1 ei(abc) = b)
may be read as ‘a, b, ¢ are three different collinear points’;

(iii) n(abed) < a #bAc# dAC(ach) A C(adb)
may be read as ‘ lines ab and cd coincide’;

(iv) o(ab) =p = (a=bAp=">b)V(a#bA (Vo p=ci(abb) Ap #b))
may be interpreted as ‘o(ab) is the reflection of b in a’;

(v) pe(ab) =m < (a=bAm =a)V (=C(abc) N m = i(ci(ao(bc)o(ac)b)ab))
V(C(abc) Na#bAm =c)

pie(ab) will be used only if ¢ # b A (\/2_, &;(cab) = b). It may be interpreted
as ‘e(ab) is the midpoint of the segment ab, provided a # b, and m = a if
a =0, and will be used only in the presence of a point ¢ equidistant from
a and b.
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Figure 1. Definition of R(abc)

For the definition of the operation ‘reflection of a point in a line’ we will
modify the construction of F(abc) in [6], where F'(abc) may be read as the
‘footpoint of the perpendicular line from ¢ to line ab’. To do this we have to
take into account that €1, €9 are orientation-blind operations (Figure 1). For ¢,
J € {1,2} let: ¢; = g;(ach), Bi(abc) = pa(cei(ach)), Qi(abec) = e1(gi(ach)ac),
Z;j(abe) = ej(gi(ach) B;(abc)a), Q! (abc) = o(Z;j(abe)Qi(abe)). We have:

(vi) —C(abc) — [Xi(abe) = d < Vlgjykg(sk(si(acb)@g(abc)a) =aANd =
Q! (abc))], for i = 1,2,

(vii) R(abc) = ¢ « (=C(abec) A ¢ = i(X1(abe)er(abe) Xa(abe)ea(abe)) V (a #
bAC(abc) N =¢c)V (a=bA[d =o(ac)),

which may be read as ‘R(abc) is the reflection of ¢ in line ab’.

To see that for three non-collinear points a, b, ¢ the definition of R(abc) holds
in neutral geometry, we will use the following abbreviations: for 7, j € {1, 2} let:
g; := gi(acb), B; := Bj(abe), Q; := Q;(abe), Z;j = Z;j(abe), Q] := Q] (abc), and
X; := X;(abc). B; may be read as the midpoint of segment ce;; @; is a point
on line ¢g; such that €;Q); = €;a; Z;; are points on line ab with Bje; = Zij€;
Qg is the reflection of Q; in Z;;; X; is one of the points Q}, Q?, which satisfies
X,e; = €;a. The points Q;, i = 1,2, could lie either on ray c_es{ or on ray 570 We
note that the construction of R(abc) is independent of the position of @1 and
Q2. We may assume w. 1. 0. g. that ); is on the ray g;c. For a unique j € {1,2},
the triangle AQ{ €iZ;; is congruent to the triangle AaB;e;. For that j the line



A constructive axiomatization hyperbolic geometry 5)

Q{ Z;; is perpendicular to ab and Q{ g; = ag;. Thus X; = Q{ and the point of
intersection of lines X7 and Xseq is the symmetric point of ¢ with respect to
line ab.

It is not very hard to see that the next five operation definitions hold in
absolute geometry if the operations €1, €9, ¢ have the desired interpretations
and ag, a1, ag are three non-collinear points.

(viii) a # b A F(abc) = q < (—C(abc) A g = i(abR(abc)c)) V (C(abe) A q = ¢)
may be read as ‘F (abc) is the footpoint of the perpendicular from point ¢
to line ab’;

(ix) a #bA P(ab) =p < \/izo(ﬂC(abak) Ap = pa(R(abag)o(aa))),
may be read as ‘P(ab) is a point on the perpendicular from point a to line
ab’;

(x) M(ab)=m < (a=bAm=a)
V(@ # b A (Vyey jogm = i(abei(abP(ab)e; (baP (ba)))),

may be read as ‘M (ab) is the midpoint of segment ab’;

(xi) z #yATi(pgry) =ti = (p=qAti=2z)V (p#q Nz =qAt;=cei(xpy))
Vip#gNhz # gt =¢ei(xo(M(qz)ei(gpr))y)), for i =1,2

may be read as ‘T (pqry), T>(pgxry) are two points on line Ty such that
the segments =T} (pgry) and xTs(pgry) are congruent to segment pq’.

The next operation definition rephrases in the language Ly of S. Guber’s
[3] ruler and gauge construction in absolute geometry of transport of an angle
to a half ray. If b # =z, let H(pbzr) := R(M (bx)P(M (bx)b)p), to be read as
‘the reflection of p in the perpendicular bisector of segment bz, and G(abxy) :=
M (H (abx)T(abxy)), to be read as ‘the midpoint of the segment determined by
the reflection of point @ in the perpendicular bisector of segment bz and one of
the points on line Ty obtained by laying off at = the segment ab’.

(xii) z #y A =C(abec) — [A(abcxy) =v < (b =z Av = R(xM(agi(zay))c)
V(b # x ANv = R(zG(abxy)H (cbz)))]
may be read, if a, b, ¢ are not collinear and x # y, as ‘A(abcry) is a point

such that be = zA(abcxy) and LA(abexy)zT)(abry) = Zcba'.

To see that these definitions hold in absolute geometry let a, b, ¢ be three
non-collinear points and z, y two distinct points, with b # x (for b = x we



6 V. Klawitter

Figure 2. Definition of operation a(xy)

reason analogously). The following abbreviations H, := H (abzx), H, := H(cbx),
G := G(abzry), A .= A(abexy), T := Ti(abxry) may then be read as: H,, H. are
the reflections of points a and c in the perpendicular bisector of segment bz, T
is a point on line Ty such that ab = 2T, and G is the midpoint of segment H,7T.
The line G is the bisector of angle /H,xT and the perpendicular bisector
of H,T. Since Zcab = ZH.xH, it follows that LH.xH, = £ZAxT. Thus the
definition of A holds in hyperbolic geometry.

The abbreviations I(zy), J(zy), N(xy), and operation a(zy) below are used
to translate in Ly Gafurov’s [1] construction of a pair of limiting parallel lines:

z#yN(zy) =p < p=ei(zM(zy)P(zy)),

v #yAJ(ey) =q o Vi (el (zy)rr) # A g = ei(I(zy)z)),

x#yAN(zy) =n < n=PMy)y).

(xiil) = #y Aa(ry) =r < r=F(M(zy)N(zy)J(zy))

may be read as ‘a(zy) is the footpoint of the perpendicular from point x
to the perpendicular bisector of segment zy’.

The operation «a(xy) will be used only when the angle of parallelism of
the segment zy is 7/3. In this case, the line za(zy) is limiting parallel to the
perpendicular line at y to Ty.

We show that in hyperbolic geometry, if the operations €1, €92, ¢ have the
desired interpretations, ag, a1, as are three non-collinear points, and z, y are
two points such that II(zy) = 7/3, then a(xy) has the desired interpretation.
We will use the following abbreviations: M := M (zy), I := I(xy), J := J(xy),
N := N(zy), a := a(zy), which may be read as: M is the midpoint of segment
zy; I, J are distinct points on the perpendicular line at z to line 7y and IJ =
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Ix = xM; N is a point on the perpendicular at M to line Ty; « is the footpoint
of the perpendicular from point J to the perpendicular bisector of segment xy.
Let 26 and « be the hyperbolic lengths of the segments xy and M «, respectively.
Let 6 denote the radian measure of angle Zyza. In the Lambert quadrilateral
JrxMa we have tanhy = tanh2d/coshd ([2] p.415). From the right triangle
AxMa we obtain tanf = tanh~y/sinh¢. It follows that tanf = 2/cosh20.
Since tanII(zy) = 1/ sinhxy and I(zy) = /3, we have that sinh26 = 1//3.
Hence 6 = 7/3. It follows that Zyxa is the angle of parallelism of the segment
xy and xa(zy) is limiting parallel to the perpendicular line at y to Zy.

We now come to the final step. We will use Strommer’s [11] construction of
a limiting parallel line through a point to a given line when in the hyperbolic
plane there is already given a pair of limiting parallel lines. We will need the
following abbreviations to be used only when —C'(abc) and z # y:

D(pabxy) = Ti(pF (abp)yz), E(pabry) = To(pF (abp)yzx),

S(pabzy) = R(ya(zy)D(pabzy)), W (pabzy) = R(yP(yx)S(pabzy)),

U(pabzy) = R(za(xy)E(pabxy)), and

V(pabxy) = F(U(pabxy)W (pabzy)D(pabzry)). Then

(xiv) =C(abp) Az # y — V1(pabay) := A(V (pabzy)D(pabxy)ypF (abp))

(xv) =C(abp) A\ x # y — Va(pabzry) := R(pF (abp)V(pabxy))

may be read as ‘p, a, b are three distinct non-collinear points, W1 (pabxy),
Uy (pabzy) are points on each of the two limiting parallel lines from point
p to line ab’, and will be used only when the distance between x and y is
26.

If the operations 1, €2, 7 have the desired interpretations, and ag, a1, as are
three non-collinear points, x, y are two points such that II(zy) = /3, then in
hyperbolic geometry the operations ¥ (pabzy), Ya(pabzry) construct points on
the limiting parallel lines from p to ab. Let F := F(abp), D := D(pabxy), E =
E(pabzy), S := S(pabxy), W := W (pabzxy), U := U(pabzxy), V := V(pabxy).
These abbreviations may be read as: F' is the footpoint of the perpendicular
from p to line ab; D and E are points on 7y such that Dy = Ey = Fp; S is the
reflection of D in the line za(zy); W is the reflection of S in the perpendicular
line at y to Ty; U is the reflection of F in the line za(xy); and V' is the footpoint
of the perpendicular from D to line UW. From the interpretation of a(zy) in
(xiii) above, the line za(zy) and the perpendicular line at y to Ty are limiting
parallel. Let X be their common rimpoint. If T = o3 o 09 0 01, where o7 is
the reflection in the perpendicular line at y to Ty, oo the reflection in the line
ra(ry), and o3 the reflection in the line DY, then Y=1(D) = W. As T is also a
reflection in a line (by the three-reflection theorem), we have Y(D) = Y~1(D).
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Hence W and U are symmetric with respect to the line DX. Thus D, V and ¥
are collinear. It follows that the angle ZV Dy is the angle of parallelism of the
segment Dy. Since Dy = F'p, when we transport the angle ZV Dy back to pF
with vertex at p, the line p¥;(pabxy) is limiting parallel to ab. By reflecting the
point W1 (pabxy) in pF we obtain that pW¥s(pabay) is the other limiting parallel
line. Finally, we define:

(xvi) =C(abp) — m;(pab) := ¥;(pabapa, ), for i = 1,2,

7i(pab) may be read when a, b, p are non-collinear as ‘7i(pab), 72(pab) are
points on the two limiting parallel lines from point p to line ab’.

We have shown above that the definitions of 7;(pab) in Ly are valid in
hyperbolic geometry if the operations €1, €3, ¢ have the desired interpretations,

and ag, a1, ag are three non-collinear points, with I1(aga;) = 7/3.

2 The axiom system

To define our axiom system we start with ¥ = {C1,...,C25, pas, pap, des}
from [7]. Let ¥’ = X\{C1,C2,C10}. We will first rephrase the axioms in ¥’ in
the language L. The individual variables that were interpreted as points in L
will be interpreted as points in Ly as well, but will be denoted by lower case
letters.

A careful reading of the axioms in ¥ and the abbreviations used to state
them shows that in each axiom, with the exception of C10, every line occurs
as a line determined by two distinct points, i.e. as ¢(a,b), with a # b; every
limiting parallel line as the parallel from a point to a line determined by two
distinct points, i. e. as m,(a, (b, ¢)), where b # ¢; every intersection of two lines
occurs only as the intersection of lines determined by two pairs of points, i. e. as
t(p(a,b),p(c,d)). In Lo we do not have an analogue of the operation ¢, but we
do have anologues of 7, and ¢. Henceforth, every occurrence in X’ of the form
mr(a, (b, c)) and t(p(a,b), p(c,d)) will be replaced with 7x(abc) and i(abed),
respectively.

The axioms in Y are expressed in terms of the following notions and their
negations: ‘three points are collinear’ and ‘two lines are equal’. To ensure that
we have the correct translations in £y, we will replace A(a, b, ¢) with C(abc) and
v(a,b) = ¢(c, d) with n(abed). For example, every term of the form my(a, (b, c))
= mj(x, p(y, z)) will be replaced with n(aw(abc)zm;(zyz)). Let X" denote the
axioms in X’ rephrased in £ as indicated.

Axiom C21 in [7] states that: if a, b, p are three non-collinear points, denote

by II, and II; the ends which are incident with rays pa and pb respectively,
let ¢, q, u, v, z be the intersection points of all, and bll,, ab and pc, ¢ll, and
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Figure 3. Definition of operation £(abc)

pb, bll, and qlly, uv and pc, respectively. Then x lies on II,II,. We denote by
w(pad) the point x given by axiom C21 rephrased in Ly.

To state axiom G8 of our system we will need the abbreviation o(p1, q1; p2, ¢2)
from [7], which may be read as ‘the rays piqi and pago have a rimpoint in
common’. In addition, we will use the operation &(abc) defined below. First, for
each i, j, k, l € {1,2} let:

Ti(abe) = 7;(w(abc)ab), (;i(abe) = i(acw(abe)Tiyi(abe)),

1/J§- (zabe) == 7j(zw(abe)T;(abe)),
P (abe) = T(Ci(abe) s (Cilabe)abe) by (babe)),
u}kl(abc) = ﬁl(ap;k(abc)ab). We define:

(xvii) =C(abc) — [{(abc) =y < V <;<5[(0(w(abe), Ti(abe); a, b)
V o(7i(abc), w(abc); a, b)) -
NV 1<jkica(y = Ui (abe)viy, (abe)w(abe)r;(abe))
A C(abyy, .1 (babe)) A C(acw§+1(gi(abc)abc))
A C’(go;k(abc)Q(abc)V;k(lH)(abc))))], which may be read as:
(*) ‘if a, b, ¢ are three distinct non-collinear points and A, €, II are the

endpoints of rays ab, ac, ba; and w(abc) is a point on A, then &(abc)
is a point on AQ such that w(abe)é(abe) = ab'.

The definition of operation £(abc) and axiom G8 below follow from Menger’s
definition of directed congruence and [9, Satz 4.62 (p. 305-309)]. Two directed
pairs < a,b > and < ¢,d > are directed congruent if the segments ab and cd
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Figure 4. Axiom G8

_ — _—  —

are congruent, and either the rays ab and cd or the rays ba and dc are limit-
ing parallel. We show that the interpretation (*) of £(abc) holds in hyperbolic
geometry, if 7, 71, 7o have the desired interpretation and ag, a1, as are three
non-collinear points. We consider the Beltrami-Klein inner-disc model. For three
non-collinear points a, b, ¢, for some 4, j, k, I € {1,2}, 7, := 7;(abc) is a point
on AQ such that A is the rimpoint of either ray w7 or ray 7w; ¢ := Gi(abe) is
the point of intersection of line @¢ with the parallel from w to line ab, which is
not incident with A; v, := 4% (babe) is a point on the limiting parallel from b
to w7;, which is incident with §; ¢¢ := w;'-(g(abc)abc) is a point on the limiting
parallel from ¢ to w7;, which is not incident with €2; ¢ := gp;k(abc) is the point
of intersection of lines by, and C—d)c; Vo= Vji.kl(abc) is a point on the parallel
from ¢ to ab, which is incident with II; ¢ := &(abe) is the intersection point
of wr; and Pv. Let t be the point of intersection of (p with IIQ. Using cross
ratios we have (ab, AIl) = (Cp, At) and (Cp, At) = (w&, AQ). It follows that
(ab, AIl) = (w€, AQ) and thus ab = wé.

The last abbreviations to be used in the statement of axiom G8 are the
following:

Bi(abe) = w(abei(abce)), vi(abe) := &(abe;(abe)),

wji-(abc) = I(aby;(abe)mj(vi(abe)ac)),

Xpj(abe) := U(B;(abe) Ty (B (abe)ac)e; (abe) T (ei(abe) Bi(abe)yi(abe))),

which may be read when —C'(abc) as:

(**) ‘let A, Q, T be the endpoints of rays ab, ae, ea; for each i € {1,2}, if
we denote ¢ := g;(acb), f := Bi(abc), v := v;(abc), then ¢ is a point on ac
such that ae = ab, § is a point on Af2, and + is a point on A2 such that
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ab = p; for some j € {1,2} w := wé(abc) is the point of intersection of
line ab with the parallel from v to @, which is not incident with A; for
some k, [ € {1,2} x := x4, (abc) is the point of intersection of the parallel
from (3 to @¢, which is not incident with €2, with the parallel from € to 37,
not incident with €’

We complete our axiom system by adding the following axioms:!

1 G.; gi(aac) =a

2G.,a#cNeg(abc)=a—a=0Db

3 G. a#bAa#c— ei(abe) # e2(abc)

4 G. a#b— Vi gi(abb) =b

5G.,a#bNa#c— \/32':1 gj(ei(abe)ac) = a

6 G.,a#tbNa#c— \/j2~:1 gj(cei(abe)a) = e;(abe)

7TG. a#bAp#qANC(apb) A C(agb) — C(paq)

8 G.; -C(abc) — Vlgj,k,ng Q(wé(abc),xﬁ;l(abc);a, e;i(ach))

9 G., a#bAa#cAC(abc) N ~C(abay) — VISk,jS2 er(aei(abc)ay)

= ¢j(aez(abc)ay)

10 G. R(apR(apaia(apar))R(apa(apar)R(agaia(agar)))) = alapay)

Informally, these axioms can be phrased as follows:

G1 states that by laying off the segment aa on line @¢ at a in both directions
we get a.

G2 states that: if laying off the segment ab on line ac¢ at a one of the new
points is a, then a = b.

G3 states that: laying off the segment ab on line ac at a we get two distinct
points.

G4 states that: laying off the segment ab on line ab at a one of the new
points coincides with b.

G5 states that: if 21, x9 are the points obtained by laying off the segment
ab on line @c at a, then laying off each of the segments z;a on line Z;¢ at x; one
of the new points obtained is a.

G6 states that: if 1, xo are the two points obtained by laying off the segment
ab on line ac¢ at a, then laying off each of the segments cz; on line ¢a at ¢ one
of the new points obtained is x;.

G7 states that: if points a, p, b are collinear and points a, g, b are collinear
then p, a, q are collinear.

G8 states (using the abbreviations in (**) above) that: if a, b, ¢ are three
distinct non-collinear points, then the rays w_;( and a have a common rimpoint.

!The index 4 is in {1,2}, while p € {0,1,2}.
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G9 states that: if a, b, ¢ are collinear points and a, b, a, are non-collinear
points; b; = g;(abc), i = 1,2, are the points obtained by laying off the segment
ab on the line @c; zy, = ex(abiay), k = 1,2, are the points obtained by laying off
aby on the line @ay; y; = €j(absay), j = 1,2, are the points obtained by laying
off aby on the line @ay,; then for some k, j € {1, 2}, z; = y;.

G10 states that the radian measure of angle Za(apay)apa; is 7/3.

Let 3o = X" U{G1, ...,G10}. We note that the actual number of axioms
in ¥y when expressed in the language Ly is in fact much larger. Sine the defini-
tion of 7;(zab) involves operations defined by cases (such as R, M, T;, A, etc.),
each axiom containing ;(xab) and R will be split into several axioms by list-
ing conjunctions of relevant combinations of conditions as the antecedent and
then state the consequent (the axiom). ¥y is an axiom system for hyperbolic
geometry. From [7] it follows that if 7, 71, 72 have the desired interpretations,
then the axioms in ¥” hold in hyperbolic geometry. If €1, €2 have the desired
interpretation, then G1 - G7 and G9 hold in fact in absolute geometry. To see
that axiom G8 holds in hyperbolic geometry, if 7, 71, 72 have the desired inter-
pretations, we will consider the Beltrami-Klein inner disc model. Let a, b, ¢ be
three distinct non-collinear points and i € {1, 2} fixed. Using the abbreviations
in (**), let ¢t be the intersection of @ with TA. We have ab = ae, and as the
interpretation of operation ¢ holds as intended in (*), ab = B~. Hence the (di-
rected) segments ae and /3 are congruent. Let x; be the intersection of eA with
0, x2 the intersection of ST with tQ. Then the following cross-ratios are equal:
(ag, ') = (w1, ) and (783, QA) = (wxaz, ). Since (ae, Q') = (75, QA) we
must then have x1 = x2 = x. Thus wx is incident with €. ([9] p. 308-309).
Finally, we note that we have shown in Section 2 that in hyperbolic geometry,
if €1, €9 have the desired interpretation and ag, a1, as are three non-collinear
points such that II(apa1) = 7/3, then Zajapa(apar) = /3. If we reflect the
point a(agay) in line agay, then reflect R(apaja(apay)) in apa(apay ), and finally
reflect this new point in agR(apaia(apay)) we get back a(apar). Thus G10 holds.

3 Adequacy of the axiom system

Pambuccian [7] proved that ¥ with the incidence predicate defined by
Plg= (3Q)P#QNg=¢(P,Q), (1)

implies the Skala axioms from [10]. Axiom C10 in [7], a universal axiom contain-
ing generic lines as individual variables, is necessary only to prove what we will
call statement L: for every line g there exist two distinct points P and ) such
that g = ¢(P, Q). Then Skala’s axiom A2: ‘each line is on at least one point’ is
an immediate consequence. Thus, it is in fact shown that the axiom system 3\
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{C10} U{(1), L} implies the Skala axioms. Since our axioms are expressed in
L, which contains only one-sort of individual variables, points, we first need to
define the notion of line. A pair of two distinct points a and b, a # b, will be
called a line and be denoted by ab. The incidence predicate, denoted by pl|ab,
to be read ‘point p is incident with line ab’, is defined by:

plab < a # b A C(apb). (2)

We define what it means for two lines ab and cd to be equal or coincide by
setting:

ab=cd < a#bAc#dA(¥)xC(axb) « C(cxd) (3)

To prove the adequacy of our system we show that ¥\ {C10} U{(1), L}
follows from 3¢ U{(2), (3)}. Let a, b, and ¢ be three collinear points, i.e. C(abc)
holds. We show that C' is symmetric. If a = ¢ and a # b, by G1 we have C(aab),
by G4 C(baa), while C'(aba) holds by definition. If a # ¢ and a # b, then for
some i € {1,2}, €;(abc) = b. By G5 C(bac), by G6 C(cba) is true. A repeated
application of G5 and G6 shows that C'(abc) is symmetric.

Let p and ¢ be two distinct points. We show that there exists a unique line
incident with both p and ¢. By G1 we have C(ppq), by G4 C(pgqq). Thus p and
q are incident with line pg. If @ # b, and ab is another line incident with p
and ¢, by G7 C(paq). Hence, a is incident with line pg. By symmetry of C' and
G7, b|pg. If now z is a point incident with pg, then C(pzq). Since we also have
C(paq) the antecedent of G7 is true, and thus C'(apz) holds. By the symmetry
of C, C(zap) is true. C(xbp) holds also. Applying again G7 we get C(axb). We
have shown that:

a#bAp#qAalpg A blpg A x|pg — x|ab. (4)

It follows that the points p and ¢ are incident with the line ab. Hence, if x is
a point incident with ab, by (4) we have x|pg. Thus the lines ab and pq coincide.
Moreover, if n(abed) holds, then by (4) alcd and bled. Applying (4) again we
obtain that the lines ab and cd coincide. Conversely, if ab = cd, then C(acb) and
C(adb) hold. We obtain that n(abed) is equivalent to ab = cd.

In [7] the operation symbol ¢ has the desired interpretation, i. e. ¢(a,b) is
the line determined by a and b, when a # b. This implies that A(a, b, ¢), where
Ma,b,¢) < a=0bVa=cVe(a,b) = p(a,c), may be read as ‘a, b, ¢ are collinear’.
We will use A for an equivalent definition in £ of ‘point p is incident with the
line determined by points a and b, a # b’. More precisely,

ple(a,b) < a # b A Xa,b,p). (5)
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From this it follows immediately that if we identify our notion of line ab with
¢(a,b), a # b, and p|ab with p|p(a,b), C is equivalent to A. Since we proved
above that the lines ab and ba coincide, we obtain axiom C1 in [7], which states
in £ that op(a,b) = p(b,a). Assume now that line ab, a # b, coincides with
line cd, ¢ # d, b # ¢, and d # b. Since b is incident with cd, by symmetry of
C we have C(bdc). Hence, d is incident with bc. As b is incident with be, and
every line is uniquely determined by two points, we have db = bc. We have thus
proved C2 in [7], which states that: a Z#bAb# cAb# d A p(a,b) = ¢(d,c) —
o(d,b) = ¢(b,c), i. e. if the line ab coincides with line dc, then so do lines db
and be. Since if a # b and ¢ # d, n(abed) may be read as ‘lines ab and cd
coincide’, n(abed) is equivalent to ¢(a,b) = ¢(c,d) in L. Thus our translations
of the axioms in ¥ are correct rephrasings in £y and may be read as they
were intended to be read in L. It is straightforward to see that the axioms in
Y follow from our system. As the statement L follows from our definition of
line, we are done. We obtain that ab and p|ab have the desired interpretation
whenever a # b, and thus C has the desired interpretation. Whenever ab and cd
are two intersecting lines the operation 7 has the desired interpretation. Finally,
a7, (xab) has the interpretation of one of the limiting parallel lines from point
x to line ab, whenever z is not incident with ab. Thus 7 (zab) has the desired
interpretation as a point on one of the limiting parallel lines from z to ab. (We
note that by C8 in [7] 71 (xab) and 72(zab) are not on the same parallel.)

Finally, we want to show that €; and €2 have the intended interpretation. If
a, b, c are three points with a # ¢ and a # b, by G2 ¢;(abc) # a, for i = 1,2, and
by G3, €1(abc) and e3(abe) are distinct. Let ¢ € {1,2} and € := ¢;(abc). By G8,
if a, b, c are non-collinear, then w, x, {2 are collinear. Let ¢ be the intersection of
@Q and TA. Since (wy, Qt) = (78, QA) and (wy, Qt) = (ag, OT), the segments
0 and ag; are congruent. As ab and (3 are congruent, it follows that ae; = ab.
Thus, if a, b, ¢ are non-collinear points, then ag;(abc) = ab, for i = 1,2. Axiom
C5 (rephrased in L) states that =C(apajae), i.e. the points ag, a1, ag are non-
collinear. Let a, b, ¢ be three points with a # ¢, a # b and a, b, ¢ collinear.
Then, for some p € {0, 1,2}, the points a, b, a, are non-collinear. Otherwise,
by G7 and the symmetry of C' we would have C(aaga;) and C(aagai). Then
by G7 C(apaiaz). Thus for some p the antecedent of axiom G9, holds. Let
b; = €i(abc), xp, = ep(abiay), and y; = ej(abaay), for i, j, k € {1,2}. As a
consequence of axiom G8, ab; = ax; = axa, aby = ay1 = ayz. By GY,, for some
k and j € {1, 2}, x, = y;. Thus aby = abs. (As C(abc) holds, for some i €
{1, 2} b; = €;(abc) = b.) Now that €1, €2, 7 have the desired interpretation and
ag, a1, ag are three non-collinear points, R has the desired interpretation by
(vi). Then by axiom G10 Zagaja(apa;) = 7/3. In the notation of Section 2,
definition (xiii), tan® = 2/cosh 2. Since § = /3, we have cosh2§ = 2/+/3.



A constructive axiomatization hyperbolic geometry 15

Hence tanT1(20) = /3 and TI(apa1) = 7/3. Thus ag, a1, ag are as desired.

We have thus proved the following:
1 Theorem. M is a model of X if and only if M is isomorphic to Ro(F),

the Beltrami-Klein model of 2-dimensional hyperbolic geometry, where F is a
Fuclidean ordered field and the operations €1, €2, I have the desired interpreta-
tions, and ag, a1, ay are three non-collinear points such that Il(aga;) = 7/3.
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