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Abstract. We investigate operator ideal properties of convolution operators Cλ (via mea-
sures λ) acting in L∞(G), with G a compact abelian group. Of interest is when Cλ is compact,
as this corresponds to λ having an integrable density relative to Haar measure µ, i.e., λ � µ.
Precisely then is there an optimal Banach function space L1(mλ) available which contains
L∞(G) properly, densely and continuously and such that Cλ has a continuous, L∞(G)-valued,
linear extension Imλ to L1(mλ). A detailed study is made of L1(mλ) and Imλ . Amongst other
things, it is shown that Cλ is compact iff the finitely additive, L∞(G)-valued set function
mλ(A) := Cλ(χ

A
) is norm σ-additive iff λ ∈ L1(G), whereas the corresponding optimal ex-

tension Imλ is compact iff λ ∈ C(G) iff mλ has finite variation. We also characterize when mλ

admits a Bochner (resp. Pettis) µ-integrable, L∞(G)-valued density.

Keywords: Convolution operator, vector measure, optimal domain, Bochner-Pettis density

MSC 2000 classification: primary 43A15, 46G10, 47B10, secondary 43A77

Dedicated to the memory of V.B. Moscatelli

1 Introduction and main results

Given an infinite compact abelian group G (with dual group Γ) and λ ∈ M(G) (the
space of regular Borel measures on G equipped with the variation norm �·�var) the linear

operator C(p)
λ

: Lp(G) → Lp(G) of convolution with λ is bounded for every 1 ≤ p ≤ ∞. Here
Lp(G) := Lp(µ) is equipped with its usual norm �·�

Lp(G) (where µ is normalized Haar measure

in G) and C(p)
λ

(f) := f ∗ λ ∈ Lp(G) is given by

f ∗ λ : x �→

�

G

f(x− y) dλ(y), x ∈ G, (1)
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for each f ∈ Lp(G), in which case �f ∗ λ�
Lp(G) ≤ �λ�var �f�Lp(G), [14, Theorem (20.12)],

i.e., �C(p)
λ

�op ≤ �λ�var. Certain operator ideal properties of C(p)
λ

(e.g., compactness, weak
compactness, complete continuity, etc.) are intimately connected to various properties of λ
(e.g., λ ∈ Lp(G), λ � µ, λ ∈ M0(G) := { ν ∈ M(G) | �ν ∈ c0(Γ) }, etc.).

Associated with C(p)
λ

is the finitely additive, Lp(G)-valued set function

m(p)
λ

: A �→C(p)
λ

(χ
A
) = χ

A
∗ λ, A ∈ B(G), (2)

with B(G) denoting the Borel σ-algebra in G. Whenever 1 ≤ p < ∞, the set function m(p)
λ

is
actually σ-additive (i.e., it is a vector measure) for every λ ∈ M(G) and so the well developed
theory of integration with respect to vector measures can be applied to give a finer analysis
of the operators C(p)

λ
. It turns out that the space L1(m(p)

λ
), consisting of all m(p)

λ
-integrable

functions, contains Lp(G) in the canonical way (continuously) and that the integration map

I
m

(p)
λ

: L1(m(p)
λ

) → Lp(G), given by

I
m

(p)
λ

: f �→

�

G

f dm(p)
λ

, f ∈ L1(m(p)
λ

), (3)

is an Lp(G)-valued extension of C(p)
λ

. The effects of I
m

(p)
λ

and of its operator ideal properties on

C(p)
λ

(hence, also on λ) have been thoroughly treated in [21], [22], [23, Chap. 7]. An important

feature is that L1(m(p)
λ

) is the optimal domain of C(p)
λ

in the following sense: if X(µ) is any
Banach function space over (G,B(G), µ) with σ-order continuous norm such that Lp(G)⊆X(µ)

continuously and C(p)
λ

has a continuous, linear, Lp(G)-valued extension to X(µ), say T , then

X(µ)⊆L1(m(p)
λ

) continuously and the restriction of I
m

(p)
λ

to X(µ) coincides with T .

Until now the case p = ∞ has not been treated, perhaps because it is rather different. For
instance, the finitely additive, L∞(G)-valued set function m(∞)

λ
as defined by (2), namely

m(∞)
λ

: A �→C(∞)
λ

(χ
A
) = χ

A
∗ λ ∈ L∞(G), A ∈ B(G), (4)

may fail to be norm σ-additive for certain λ ∈ M(G). Also, the map a �→τa(f) from G into
L∞(G), with τa being the translation operator (i.e., τa(f) : x �→f(x − a) for x ∈ G) is, unlike
for Lp(G) with 1 ≤ p < ∞, not continuous for every f ∈ L∞(G). Furthermore, whereas the
Banach function space L1(G) is weakly sequentially complete, each Banach function space
Lp(G), 1 < p < ∞, is reflexive, and all spaces Lp(G), 1 ≤ p < ∞, have σ-order continuous
norm, the space L∞(G) has none of these useful properties. If G is metrizable, then each
space Lp(G), for 1 ≤ p < ∞ is separable; not so for L∞(G). And so on. Despite such basic

differences, our aim is to study the operators C(∞)
λ

in detail. As to be expected, the results
differ significantly from those when 1 ≤ p < ∞.

To formulate some of the main results, let λ ∈ M(G) \ {0}. Let W (∞)(λ) denote the class
of all σ-order continuous Banach function spaces (over (G,B(G), µ)), briefly B.f.s., into which

L∞(G) is continuously embedded and to which C(∞)
λ

admits a continuous, linear, L∞(G)-
valued extension. Not having σ-order continuous norm, L∞(G) itself does not belong to
W (∞)(λ). Actually, it may happen that W (∞)(λ) = ∅; see Theorem 1 to follow. However,

if λ has the property that m(∞)
λ

is norm σ-additive, then m(∞)
λ

and µ have the same null sets

and L1(m(∞)
λ

) ∈ W (∞)(λ). As seen by the following result, this observation is decisive.
Concerning notation, given f ∈ L∞(G) we write f ∈ C(G), where C(G) is the space

of continuous functions on G, if there exists ψ ∈ C(G) with f(x) = ψ(x) for µ-a.e. x ∈ G.
Via the usual identification, C(G) can be considered as a closed subspace of L∞(G). Given a
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character γ ∈ Γ, let (·, γ) denote the function x �→ (x, γ) := γ(x) on G. For each subset ∆⊆Γ,
we define T (G,∆) := span{ (·, γ) | γ ∈ ∆ }. If ∆ = Γ, then we use the simpler notation T (G)
and refer to T (G) as the trigonometric polynomials on G. It is clear that T (G)⊆L∞(G) and
�(·, γ)�Lp(G) = 1 whenever 1 ≤ p ≤ ∞ and γ ∈ Γ. The space of all continuous linear operators
between Banach spaces E and F is denoted by L(E,F ) or, if E = F , by L(E). The dual
Banach space E∗ := L(E,C).

Theorem 1. Let λ ∈ M(G) \ {0}.

(I) The following assertions are equivalent.

(i) λ � µ, that is, there exists g ∈ L1(G) such that

λ(A) =

�

A

g dµ, A ∈ B(G). (5)

(ii) The set function m(∞)
λ

: B(G) → L∞(G) is norm σ-additive.

(iii) The convolution operator C(∞)
λ

∈ L(L∞(G)) is compact.

(iv) The convolution operator C(∞)
λ

∈ L(L∞(G)) is weakly compact.

(v) The range R(m(∞)
λ

) := {m(∞)
λ

(A) | A ∈ B(G) } of m(∞)
λ

is contained in the closed
subspace C(G)⊆L∞(G).

(vi) The class W (∞)(λ) �= ∅.

(II) Let λ satisfy any one of (i)–(vi) in part (I).

(i) The space L1(m(∞)
λ

) is the largest B.f.s. in the class W (∞)(λ). Moreover, the
continuous inclusions

L∞(G) � L1(m(∞)
λ

)⊆L1(G)

hold and we have

L1(m(∞)
λ

) = { f ∈ L1(G) | (fχ
A
) ∗ λ ∈ C(G), ∀A ∈ B(G) } (6)

with L1(m(∞)
λ

) a translation invariant subspace of L1(G).

(ii) The integration map I
m

(∞)
λ

: L1(m(∞)
λ

) → L∞(G) satisfies

I
m

(∞)
λ

(fχ
A
) :=

�

A

f dm(∞)
λ

= (fχ
A
) ∗ λ, f ∈ L1(m(∞)

λ
), A ∈ B(G). (7)

Moreover, I
m

(∞)
λ

is a continuous linear extension of C(∞)
λ

, takes its values in

C(G)⊆L∞(G) and commutes with all translations.

(iii) Both T (G) and C(G) are dense in L1(m(∞)
λ

).

(iv) The Banach space L1(m(∞)
λ

) is separable iff G is metrizable.

In view of Theorem 1, we will concentrate on the situation when λ � µ, i.e., there exists
a unique g ∈ L1(G) such that (5) holds, written briefly as λ = g dµ. In this case we simply

write C(∞)
g for C(∞)

λ
and m(∞)

g for m(∞)
λ

.

Fix g ∈ L1(G). A natural question is whether or not Lp(G)⊆L1(m(∞)
g ) for some 1 ≤ p <

∞, i.e., if Lp(G) ∈ W (∞)
λ

. This is answered by Proposition 1, namely Lp(G)⊆L1(m(∞)
g ) iff

g ∈ Lp
∗
(G) iff the operator C(∞)

g ∈ L(L∞(G)) is p-summing, where 1
p∗ + 1

p
= 1. In particular,
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L1(m(∞)
g ) = L1(G) is as large as possible (cf. (6)) iff g ∈ L∞(G), in which case I

m
(∞)
g

coincides

with the continuous convolution operator C(1,∞)
g : L1(G) → L∞(G) given via f �→f ∗ g, for

each f ∈ L1(G). Equivalently, the vector measure m(∞)
g admits an L∞(G) = L1(G)∗-valued

Gelfand µ-density; see Theorem 2.
As well as making a detailed study of the optimal domain space L1(m(∞)

g ), for g ∈ L1(G),
and of the associated integration map I

m
(∞)
g

, we also determine some intrinsic properties of

m(∞)
g . Indeed, since m(∞)

g � µ (if g �= 0), the question arises of whether m(∞)
g is given by

an L∞(G)-valued density relative to µ, say as a Gelfand, Pettis or Bochner µ-density; for
the definition of these three kinds of vector-integrals we refer to [5], for example. The crucial
point is that L∞(G) fails to have the Radon-Nikodým property, [5, p.219]. Since L∞(G) is a
Banach lattice, this is the same as failing the weak Radon-Nikodým property, [13, Theorem 5].

Accordingly, even when m(∞)
g has finite variation, there is no guarantee that it has a Bochner

or Pettis µ-density. Given any Gelfand (resp. Bochner, Pettis) µ-integrable function F : G →

L∞(G), its corresponding integral with respect to µ over A ∈ B(G), an element of L∞(G), is
denoted by

(w∗)-

�

A

F dµ ( resp. (B)-

�

A

F dµ, (P )-

�

A

F dµ ).

For g ∈ L∞(G), denote by Kg : G → L∞(G) the function x �→τx(g), for x ∈ G.

Theorem 2. For g ∈ L1(G) \ {0} the following assertions are equivalent.

(i) g ∈ L∞(G).

(ii) L1(m(∞)
g ) = L1(G).

(iii) m(∞)
g admits a Gelfand µ-density F : G → L∞(G), i.e.,

m(∞)
g (A) = (w∗)-

�

A

F dµ, A ∈ B(G).

(iv) The total variation measure |m(∞)
g | is finite on B(G).

(v) The convolution operator C(∞)
g is 1-summing.

In this case, Kg is a Gelfand µ-density of m(∞)
g and, for each f ∈ L1(G), the function fKg :

G → L∞(G) is Gelfand µ-integrable with

I
m

(∞)
g

(f) = C(1,∞)
g (f) = (w∗)-

�

G

fKg dµ, f ∈ L1(G) = L1(m(∞)
g ). (8)

To determine when m(∞)
g admits a Bochner or Pettis µ-density, recall that such densities

are necessarily Gelfand µ-densities. So, by Theorem 2, we may restrict attention to g ∈ L∞(G),

in which case L1(m(∞)
g ) = L1(G) as isomorphic B.f.s.’ and I

m
(∞)
g

= C(1,∞)
g .

Given g ∈ L∞(G), the following result shows that m(∞)
g admits a Bochner µ-density iff

g ∈ C(G). For g ∈ L∞(G), conditions connecting the requirement g ∈ C(G) with continuity
of Kg : G → L∞(G), have been studied by various authors, e.g., [8], [9], [29].

Theorem 3. Let g ∈ L∞(G) \ {0}.

(I) The following assertions are equivalent.

(i) The function g ∈ C(G).

(ii) m(∞)
g admits a Bochner µ-density F : G → L∞(G), i.e.,

m(∞)
g (A) = (B)-

�

A

F dµ, A ∈ B(G).
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(iii) The extended operator I
m

(∞)
g

= C(1,∞)
g : L1(G) → L∞(G) is compact.

(iv) The function Kg : G → L∞(G) is continuous.

(v) There is a set A0 ∈ B(G) of positive µ-measure such that Kg(A0) is separable in
L∞(G).

(II) If any one of (i)–(v) in part (I) holds, then Kg is actually a C(G)-valued Bochner

µ-density of m(∞)
g and

I
m

(∞)
g

(f) = C(1,∞)
g (f) = (B)-

�

G

fKg dµ, f ∈ L1(G) = L1(m(∞)
g ). (9)

The following result determines when m(∞)
g admits a Pettis µ-density, under the assump-

tion of Martin’s Axiom; see [12] for consequences of this axiom.

Theorem 4. Assume Martin’s Axiom and let g ∈ L∞(G) \ {0}. Then m(∞)
g admits a

Pettis µ-density iff there exists a bounded, Riemann measurable function ψ on G with g = ψ
µ-a.e. In this case, the bounded function Kg : G → L∞(G) is a Pettis µ-density of m(∞)

g and

I
m

(∞)
g

(f) = C(1,∞)
g (f) = (P )-

�

G

fKg dµ, f ∈ L1(G) = L1(m(∞)
g ). (10)

2 Preliminaries

Let G be an infinite compact abelian group and L0(µ) denote the vector space of all
C-valued, B(G)-measurable functions on G, where those functions which are µ-a.e. equal are
identified. Equipped with the µ-a.e. pointwise order for its positive cone, L0(µ) is a complex
vector lattice, namely the complexification of the real vector lattice { f ∈ L0(µ) | f is R-
valued}. The subspace simB(G) of all C-valued, B(G)-simple functions on G is a complex vector
sublattice of L0(µ). An order ideal X(µ) of L0(µ) is called a Banach function space (briefly,
B.f.s.) based on the positive, finite measure space (G,B(G), µ) if X(µ) contains simB(G) and
if it is equipped with a lattice norm (i.e., �f�

X(µ) ≤ �g�
X(µ) whenever f, g ∈ X(µ) satisfy

|f | ≤ |g|) for which X(µ) is complete. Being an order ideal of L0(µ), each B.f.s. X(µ) must
contain L∞(G) (because χ

G
∈ simB(G)⊆X(µ)). Moreover, the inclusion L∞(G)⊆X(µ) turns

out to be continuous, [23, Proposition 2.2(iv)]. A B.f.s. X(µ) is said to have σ-order continuous
norm if, for every positive decreasing sequence {fn}

∞
n=1 with infn∈N fn = 0 in the order of

X(µ), we necessarily have limn→∞ �fn�X(µ) = 0. In this case, we also say that X(µ) is a
σ-order continuous B.f.s. or simply that X(µ) is σ-order continuous. For each 1 ≤ p < ∞, the
B.f.s. Lp(G) = Lp(µ)⊆L0(µ) is σ-order continuous but the B.f.s. L∞(G) is not.

Let E be a Banach space (over C) with norm �·�
E
. Its closed unit ball is denoted by

B[E]. The duality between E and E∗ (with dual norm �·�
E∗) is given by �x, x∗

� := x∗(x), for
x ∈ E, x∗

∈ E∗. The operator norm of a continuous linear operator T between Banach spaces
is denoted by �T�op.

Let m : B(G) → E be a vector measure (i.e., a σ-additive set function). Its variation
measure |m| : B(G) → [0,∞] is defined analogous to that for a scalar measure, [5, Chap. I,
Definition 1.4]. Given x∗

∈ E∗, the set function �m,x∗
� : A �→�m(A), x∗

� on B(G) is a complex
measure. We say that a B(G)-measurable function f : G → C is m-integrable if

(I-1) f is �m,x∗
�-integrable for all x∗

∈ E∗, and

(I-2) given A ∈ B(G), there is a (unique) element
�
A
f dm ∈ E such that �

�
A
f dm, x∗

� =�
A
f d�m,x∗

� for all x∗
∈ E∗;
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see [17, Chap. II], [20]. The vector space L1(m) of all m-integrable functions is endowed with
the seminorm

�f�
L1(m) := sup

x∗∈B[E∗]

�

G

|f | d|�m,x∗
�|, f ∈ L1(m), (11)

for which L1(m) is complete and in which simB(G) is dense; see [10], [17, Chap. IV]. Moreover,
all bounded Borel functions are m-integrable, [20, Theorem 2.2]. A function f ∈ L1(m) is called
m-null if �f�

L1(m) = 0. We identify L1(m) with its quotient space modulo m-null functions.
The semivariation �m� : B(G) → [0,∞) is defined by �m� (A) := �χ

A
�L1(m) for A ∈ B(G).

Then we have
�m(A)�

E
≤ �m� (A) ≤ |m|(A) ≤ ∞, A ∈ B(G).

A set A ∈ B(G) is called m-null if �m� (A) = 0, which is equivalent to the condition that
�m(B)�

E
= 0 for all B ∈ B(G) with B⊆A. The m-null and |m|-null sets coincide and we have

the continuous inclusion
L1(|m|)⊆L1(m). (12)

Equip L1(m) with the µ-a.e. pointwise order for its positive cone. Then (11) implies that
�·�

L1(m) is a lattice norm. The integration operator Im : L1(m) → E associated with m is
defined by

Im : f �→

�

G

f dm, f ∈ L1(m).

Then Im is continuous and linear. Moreover, �Im�op = 1; [23, p.152]. We write m � µ whenever
m and µ have the same null sets.

Let L1
w(m) denote the vector space of all C-valued, B(G)-measurable functions on G

satisfying (I-1). We call such functions weakly m-integrable. The space L1
w(m) is a Banach

space with respect to the norm �·�
L1

w(m) defined by the right-hand side of (11) and L1(m) is a

closed subspace of L1
w(m). We refer to [23, Chap. 3] for general facts related to L1(m), L1

w(m)
and Im.

Lemma 1. Let m : B(G) → E be a Banach-space-valued measure such that m � µ. Then
L1(m) is a σ-order continuous B.f.s. over (G,B(G), µ) and L∞(G) � L1(m) continuously with
the natural embedding α∞ satisfying �α∞�op = �m� (G).

Proof. Since m and µ have the same null sets, it follows that L1(m) is a σ-order contin-
uous B.f.s., [23, Theorem 3.7]. In view of (11), it is clear that �α∞�op ≤ �m� (G). Actually,

�α∞�op = �m� (G) because
���α∞(χ

G
)
���
L1(m)

= �m� (G) and
���χ

G

���
L∞(G)

= 1. Since L∞(G)

does not have σ-order continuous norm, the inclusion L∞(G)⊆L1(m) is strict. QED

The following result will be required in Section 4. We omit the proof as it follows from the
definitions of Bochner, Pettis and Gelfand integrals, [5, Chap. II].

Lemma 2. (i) Let F : G → L∞(G) be a function.

(a) If F is Pettis µ-integrable, then it is Gelfand µ-integrable and

(P )-

�

A

F dµ = (w∗)-

�

A

F dµ, A ∈ B(G).

(b) If F is Bochner µ-integrable, then it is Pettis µ-integrable and

(B)-

�

A

F dµ = (P )-

�

A

F dµ = (w∗)-

�

A

F dµ, A ∈ B(G).



Ideal properties of convolution operators in L∞(G) 155

(ii) Let F and H be two L∞(G)-valued functions such that F (x) = H(x), as elements
of L∞(G), for µ-a.e. x ∈ G. If F is Gelfand (resp. Bochner, Pettis) µ-integrable,
then so is H and (w∗)-

�
A
F dµ = (w∗)-

�
A
H dµ (resp. (B)-

�
A
F dµ = (B)-

�
A
H dµ,

(P )-
�
A
F dµ = (P )-

�
A
H dµ) for A ∈ B(G).

The Fourier-Stieltjes transform �λ : Γ → C of λ ∈ M(G) is given by �λ(γ) :=
�
G
(x,−γ) dλ(x),

for γ ∈ Γ, in which case �λ ∈ �∞(Γ). If λ = g dµ, for g ∈ L1(G), then �λ coincides with
�g(γ) =

�
G
(x,−γ)g(x) dµ(x), for γ ∈ Γ. The Riemann-Lebesgue Lemma then ensures that

�g ∈ c0(Γ), [15, Theorem (28.40)]. The reflection �λ : B(G) → C of λ ∈ M(G), defined by
�λ(A) := λ(−A) for A ∈ B(G), also belongs to M(G). If λ = g dµ for some g ∈ L1(G),

then �λ = �g dµ, where �g ∈ L1(G) is the reflection of g, i.e., �g(x) := g(−x) for x ∈ G. Given

λ ∈ M(G), let supp(�λ) := { γ ∈ Γ | �λ(γ) �= 0 }. If λ = g dµ for some g ∈ L1(G), then we write

supp(�g) := supp(�λ).
Lemma 3. Let λ ∈ M(G) and Γλ be the subgroup generated by supp(�λ) in Γ. Then there

exists λ1 ∈ M(G) such that �λ1 = χ
Γλ

on Γ, i.e., λ ∗ λ1 = λ.

Proof. Let H⊆G be the annihilator of the open subgroup Γλ⊆Γ, i.e., H := {x ∈ G |

(x, γ) = 1, ∀γ ∈ Γλ }. Normalized Haar measure λ1 on the compact subgroup H of G is

regarded as an element of M(G) and satisfies �λ1 = χ
Γλ

, [26, p.59]. So, (λ1 ∗ λ)�= �λ1
�λ = �λ as

supp(�λ)⊆Γλ, i.e., λ ∗ λ1 = λ. QED

Let λ ∈ M(G). Since L1(G)∗ = L∞(G), for each h ∈ L1(G) we can define the C-valued,
finitely additive set function

�h,m(∞)
λ

� : A �→�h,m(∞)
λ

(A)� =

�

G

h · (χ
A

∗ λ) dµ, A ∈ B(G).

Lemma 4. Let λ ∈ M(G) \ {0}.

(i) Given h ∈ L1(G) , we have h ∗ �λ ∈ L1(G) and

�h,m(∞)
λ

�(A) =

�

A

(h ∗ �λ) dµ, A ∈ B(G), (13)

so that �h,m(∞)
λ

� ∈ M(G). Moreover,

|�h,m(∞)
λ

�|(A) =

�

A

|(h ∗ �λ)| dµ, A ∈ B(G). (14)

(ii) For every B(G)-measurable function f : G → C, we have

��λ��∞(Γ)

�

G

|f | dµ ≤ sup
h∈B[L1(G)]

�

G

|f | d|�h,m(∞)
λ

�|. (15)

(iii) Assume, in addition, that m(∞)
λ

(cf. (4)) is norm σ-additive.

(a) Given f ∈ L1(m(∞)
λ

) we have

sup
h∈B[L1(G)]

�

G

|f | d|�h,m(∞)
λ

�| = �f�
L1(m

(∞)
λ )

. (16)

(b) The measures m(∞)
λ

and µ have the same null sets, i.e., m(∞)
λ

� µ.

(c) The natural inclusion L1(m(∞)
λ

)⊆L1(G) is continuous and has norm 1/�m(∞)
λ

�(G).
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Proof. (i) That h ∗ �λ ∈ L1(G) is known; see Section 1. The definition of �h,m(∞)
λ

�

and Fubini’s Theorem proves (13). Since h ∗ �λ ∈ L1(G), it is clear from (13) that �h,m(∞)
λ

�

is σ-additive. Moreover, (14) is a consequence of a general fact on complex measures, [27,
Theorem 6.13].

(ii) Let f be as stated. Fix γ ∈ Γ. Since (·,−γ) ∈ B[L1(G)] as well as |(·,−γ) ∗ �λ| =
|�λ(γ)(·,−γ)| = |�λ(γ)| · χ

G
, it follows from (14) that

|�λ(γ)|
�

G

|f | dµ =

�

G

|f | · |(·,−γ) ∗ �λ| dµ =

�

G

|f | d|�(·,−γ),m(∞)
λ

�|

≤ sup
h∈B[L1(G)]

�

G

|f | d|�h,m(∞)
λ

�|.

So, (15) holds because γ ∈ Γ is arbitrary.
(iii) (a) Since B[L1(G)]⊆B[L∞(G)∗] in a canonical way, the left-hand side of (16) is

at most the right-hand side; see (11). To prove the reverse inequality, let ε > 0 and choose
s ∈ simB(G) with sup

x∈G
|s(x)| ≤ 1 such that

−ε+ �f�
L1(m

(∞)
λ )

<
���
�

G

sf dm(∞)
λ

���
L∞(G)

, (17)

[23, Lemma 3.11]. Since L∞(G) = L1(G)∗, we have
���
�

G

sf dm(∞)
λ

���
L∞(G)

= sup
h∈B[L1(G)]

����h,
�

G

sf dm(∞)
λ

�

���

= sup
h∈B[L1(G)]

���
�

G

sf d�h,m(∞)
λ

�

��� ≤ sup
h∈B[L1(G)]

�

G

|sf | d|�h,m(∞)
λ

�|

≤ sup
h∈B[L1(G)]

�

G

|f | d|�h,m(∞)
λ

�|.

As ε > 0 is arbitrary, this and (17) imply that the right-hand side of (16) is at most the
left-hand side, which establishes (16).

(b) If A ∈ B(G) is µ-null, then every B ∈ B(G) with B⊆A is also µ-null and hence,

m(∞)
λ

(B) = χ
B

∗ λ = 0 in L∞(G). So, A is m(∞)
λ

-null. Conversely, if A ∈ B(G) is m(∞)
λ

-null,

then ��λ��∞(Γ)µ(A) ≤ �m(∞)
λ

�(A) = 0 via (15) and (16) with f := χ
A
. Since, ��λ��∞(Γ) > 0 (as

λ �= 0), it follows that µ(A) = 0.

(c) The inclusion L1(m(∞)
λ

)⊆L1(G) follows from (15), (16) and (iii)(b). Moreover, since

C(∞)
λ

commutes with all translations and I
m

(∞)
λ

= C(∞)
λ

on simB(G), we have, for all a ∈ G,

that
(τa ◦ I

m
(∞)
λ

)(s) = (τa ◦ C(∞)
λ

)(s) = (C(∞)
λ

◦ τa)(s) = (I
m

(∞)
λ

◦ τa)(s) (18)

and hence, that
��(τa ◦ I

m
(∞)
λ

)(s)
��
L∞(G)

=
��(I

m
(∞)
λ

◦ τa)(s)
��
L∞(G)

for all s ∈ simB(G). In

other words, m(∞)
λ

is norm integral translation invariant, [4, Definition 3.1]. Recalling that

L1(m(∞)
λ

) is a closed subspace of L1
w(m

(∞)
λ

) (cf. Section 2) we can apply Theorem 4.4 of [4] to
give

�f�
L1(G) ≤ (1/�m(∞)

λ
�(G)) �f�

L1(m
(∞)
λ )

, f ∈ L1(m(∞)
λ

).

This, together with the fact that the function f0 := (1/�m(∞)
λ

�(G))·χ
G

∈ B[L1(m(∞)
λ

)] satisfies

�f0�L1(G) = 1/
���m(∞)

λ

��� (G), verifies that the natural embedding from L1(m(∞)
λ

) into L1(G)

has operator norm equal to 1/
���m(∞)

λ

��� (G). QED
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Remark 1. (i) It follows from (13) that m(∞)
λ

is σ-additive for the weak-∗ topology

in L∞(G) = L1(G)∗ for every λ ∈ M(G). Norm σ-additivity of m(∞)
λ

is characterized in
Theorem 1 (I).

(ii) Let λ ∈ M(G) \ {0}. Fix x ∈ G and A ∈ B(G). It follows from (18) that m(∞)
λ

(A +

x) = τx(m
(∞)
λ

(A)). Since τx is an isometry on L∞(G), we have
���m(∞)

λ
(A+ x)

���
L∞(G)

=
���m(∞)

λ

���
L∞(G)

, i.e., |m(∞)
λ

| is translation invariant. So, whenever m(∞)
λ

has finite variation,

|m(∞)
λ

| = |m(∞)
λ

|(G) · µ is a multiple of µ.

3 Proof of Theorem 1 and further consequences

Before proving Theorem 1 we recall some facts. Given λ ∈ M(G), it follows from a result

of Akemann, [1, Theorem 4], that �λ � µ iff the convolution operator C(1)
�λ

∈ L(L1(G)) is

compact iff C(1)
�λ

is weakly compact. Moreover, the adjoint operator (C(1)
�λ

)∗ ∈ L(L∞(G))

equals the convolution operator C(∞)
λ

∈ L(L∞(G)), [23, Lemma 7.34].
Given 1 ≤ p ≤ r ≤ ∞, we denote the natural imbedding of Lr(G) into Lp(G) by J(r,p).

The natural isometric imbedding of C(G) onto a closed subspace of L∞(G) is denoted by
J(c,∞).

Proof of Theorem 1. Part (I). (i) ⇔ (iii) ⇔ (iv). Since C(∞)
λ

= (C(1)
�λ

)∗, it follows from

Schauder’s Theorem, [2, Theorem 16.2], (resp. Gantmacher’s Theorem, [2, Theorem 17.2]),

that C(∞)
λ

is compact (resp. weakly compact) iff C(1)
�λ

is compact (resp. weakly compact).

This, together with Akemann’s result, verifies the equivalences (i) ⇔ (iii) ⇔ (iv) because

λ � µ is equivalent to �λ � µ.
(iii) ⇒ (ii). Let B(G)An ↓ ∅. To prove that limn→∞ m(∞)

λ
(An) = 0 in the norm, it suffices

to show that m(∞)
λ

(An) converges to 0 in the weak-∗ topology. This is because m(∞)
λ

(An) =

C(∞)
λ

(χ
An

) ∈ C(∞)
λ

(B[L∞(G)]) for n ∈ N and because C(∞)
λ

(B[L∞(G)]) is, by assumption,

a relatively norm compact subset and so the norm topology and the weak-∗ topology are
equivalent on it. But, for each h ∈ L1(G), it follows from (13) that limn→∞�h,m(∞)

λ
(An)� =

limn→∞
�
An

(h ∗ �λ) dµ = 0.

(ii) ⇒ (iv). Since B[L∞(G)] is contained in the closed, balanced, convex set 4bco {χ
A

|

A ∈ B(G) } and C(∞)
λ

is continuous, it follows that

C(∞)
λ

(B[L∞(G)])⊆4C(∞)
λ

(bco {χ
A

| A ∈ B(G) })

⊆4bco {C(∞)
λ

(χ
A
) | A ∈ B(G) }⊆4bcoR(m(∞)

λ
).

On the other hand, the range R(m(∞)
λ

) is relatively weakly compact, [5, Chap. I, Corollary 2.7],

and hence, 4bcoR(m(∞)
λ

) is weakly compact in L∞(G) via Krein’s Theorem, [18, §24, 5(4)].
Consequently, C(∞)

λ
is weakly compact.

(i) ⇒ (v). By (i) and [14, Theorem (20.16)] we have (χ
A

∗ λ)(x) exists for every x ∈ G

with χ
A

∗ λ ∈ C(G), whenever A ∈ B(G). So, (v) holds.

(v) ⇒ (i). It follows from (v) that the continuous linear operator C(∞)
λ

maps the dense
subspace simB(G) of its domain space L∞(G) into the closed subspace C(G) of its codomain

space L∞(G) and so R(C(∞)
λ

)⊆C(G). Let C(∞)
λ

: L∞(G) → C(G) denote C(∞)
λ

considered

with C(G) as its codomain space. Since C(∞)
λ

(f) = f ∗ λ ∈ C(G), for all f ∈ L∞(G), the
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operator C(∞)
λ

commutes with all translations, i.e., C(∞)
λ

is a multiplier operator. Hence, there

is g ∈ L1(G), [15, Theorem (35.13)], satisfying f ∗ λ = C(∞)
λ

(f) = f ∗ g, for f ∈ L∞(G), which

implies that �λ = �g. The injectivity of the Fourier-Stieltjes transform, [26, p.29], now gives (5).

(i) ⇒ (vi). By Lemma 1 we have the continuous inclusion L∞(G)⊆L1(m(∞)
λ

). To show

that I
m

(∞)
λ

is a continuous linear extension of C(∞)
λ

, consider the vector measure m(1)
λ

:

B(G) → L1(G); see (2). Then, m(1)
λ

= J(∞,1)
◦ m(∞)

λ
. Since J(∞,1) is injective, we have

L1(m(∞)
λ

)⊆L1(m(1)
λ

) and J(∞,1)
� �

A
f dm(∞)

λ

�
=

�
A
f dm(1)

λ
, for f ∈ L1(m(∞)

λ
) and A ∈ B(G),

[23, Lemma 3.27]. On the other hand, [23, Proposition 7.35 & Remark 7.36(ii)] imply that

L1(m(1)
λ

) = L1(G) and I
m

(1)
λ

= C(1)
λ

. Thus J(∞,1)
� �

A
f dm(∞)

λ

�
= I

m
(1)
λ

(fχ
A
) = (fχ

A
)∗λ and

hence, J(∞,1) being the natural injection, gives
�
A
f dm(∞)

λ
= (fχ

A
)∗λ whenever f ∈ L1(m(∞)

λ
)

and A ∈ B(G). Therefore, I
m

(∞)
λ

: f �→f ∗ g, for f ∈ L1(m(∞)
λ

), is a continuous, linear, L∞(G)-

valued extension of C(∞)
λ

and hence, L1(m(∞)
λ

) belongs to the class W (∞)(λ).
(vi) ⇒ (ii). Choose any B.f.s X(µ) belonging to W (∞)(λ) and a continuous linear extension

T : X(µ) → L∞(G) of C(∞)
λ

. Let B(G)A(n) ↓ ∅. Since χ
A(n)

↓ 0 in the order of X(µ)+, it

follows that χ
A(n)

→ 0 in the topology of the σ-order continuous B.f.s. X(µ). Therefore,

m(∞)
λ

(A(n)) = C(∞)
λ

(χ
A(n)

) = T (χ
A(n)

) → 0 in L∞(G) as T is continuous, i.e., m(∞)
λ

is norm

σ-additive.
Part (II). (i) Let X(µ) be a σ-order continuous B.f.s. belonging to W (∞)(λ) and T :

X(µ) → L∞(G) be a continuous linear extension of C(∞)
λ

. Since m(∞)
λ

� µ, we can apply [23,

Theorem 4.14] to conclude that X(µ)⊆L1(m(∞)
λ

) continuously and that I
m

(∞)
λ

extends T as

m(∞)
λ

(A) = C(∞)
λ

(χ
A
) = T (χ

A
) for A ∈ B(G). In order words, L1(m(∞)

λ
) is the largest space

in W (∞)(λ).

The strict, continuous inclusion L∞(G) � L1(m(∞)
λ

) was established in Lemma 1 and the

continuous inclusion L1(m(∞)
λ

)⊆L1(G) is Lemma 4(iii)(c).
Next we establish (6). Theorem 3.5 of [23] implies that R(I

m
(∞)
λ

) lies within the closed

linear hull spanR(m(∞)
λ

) in L∞(G). On the other hand, by part (I), R(m(∞)
λ

)⊆C(G), so that

R(I
m

(∞)
λ

)⊆C(G). Given f ∈ L1(m(∞)
λ

) and A ∈ B(G), we have already established that

I
m

(∞)
λ

(fχ
A
) = (fχ

A
) ∗ λ in the proof of (i) ⇒ (vi) in part (I) and hence, (fχ

A
) ∗ λ ∈ C(G).

Thus, the left-hand side of (6) is contained in the right-hand side.
To prove the reverse containment, fix f ∈ L1(G) satisfying (fχ

A
) ∗ λ ∈ C(G) for all

A ∈ B(G). Define a C(G)-valued, finitely additive set function ηf : A �→(fχ
A
)∗λ on B(G). We

shall show that ηf is σ-additive. To this end, recall that �λ = �g ∈ c0(Γ) from (i) of part (I), so

that supp(�λ) is countable. Consequently, the subgroup Γλ generated by supp(�λ) in Γ is also
countable. In particular, the closure T (G,Γλ) of T (G,Γλ) in C(G) is separable. Given γ ∈ Γ,
the measure (·,−γ) dµ belongs to M(G) = C(G)∗ and the function

A �→�ηf (A), (·,−γ) dµ� =
�
(fχ

A
) ∗ λ

�
�(γ) = �λ(γ)

�

A

f · (·,−γ) dµ, A ∈ B(G),

is σ-additive. Since { (·,−γ) dµ | γ ∈ Γ } is a total subset of M(G) = C(G)∗ (by injectivity
of the Fourier-Stieltjes transform) and since R(ηf ) lies in the separable subspace T (G,Γλ)
of C(G), it follows from [5, Chap. 1, Corollary 3.7] that ηf is σ-additive. To show that f ∈

L1(m(∞)
λ

), let A(n) := {x ∈ G | |f(x)| ≤ n } for n ∈ N. Then the bounded functions fχ
A(n)

,
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for n ∈ N, necessarily m(∞)
λ

-integrable, converge pointwise to f . Moreover, the σ-additivity of
ηf yields, for every A ∈ B(G), that

lim
n→∞

�

A

fχ
A(n)

dm(∞)
λ

= lim
n→∞

�
fχ

A∩A(n)

�
∗ λ = lim

n→∞
ηf (A ∩A(n)) = ηf (A),

exists in the norm of C(G). So, f ∈ L1(m(∞)
λ

) and
�
A
f dm(∞)

λ
= ηf (A) for A ∈ B(G), [23,

Theorem 3.5], and hence, the equality (6) is established.
(ii) The identity (7) was established in the proof of (i) ⇒ (vi) in part (I). That I

m
(∞)
λ

commutes with all translations is then an easy consequence of (7).

(iii) As noted in the proof of Lemma 4(iii)(c), m(∞)
λ

is norm integral translation invariant.

So, Corollary 3.9 in [4] ensures T (G) is dense in L1(m(∞)
λ

). Since T (G)⊆C(G)⊆L1(m(∞)
λ

), it

follows C(G) is also dense in L1(m(∞)
λ

).

(iv) Suppose that L1(m(∞)
λ

) is separable. Select a countable dense subset P of L1(m(∞)
λ

).

Since L1(m(∞)
λ

)⊆L1(G) continuously (see (i) of part (II)), the set P is also dense in L1(G). We

claim that Γ =
�

f∈P
supp( �f). In fact, Γ clearly contains the right-side. To show the reverse

containment, let γ ∈ Γ. Choose a sequence {fn}
∞
n=1 from P converging to ϕ := (·, γ) in L1(G).

Then limn→∞ �fn(γ) = �ϕ(γ) = 1, so that �fn(γ) �= 0 for some n ∈ N, i.e., γ ∈ supp( �fn). This
establishes the identity Γ =

�
f∈P

supp( �f). Consequently, Γ is countable because each �fn ∈

c0(Γ) and hence, has countable support. Via [26, Theorem 2.2.6], the group G is metrizable.
Conversely, suppose that G is metrizable. Then, C(G) is separable, [26, A16, p.251]. Recall

that C(G) is dense in L1(m(∞)
λ

) via (iii) of part (II). So, we can conclude that L1(m(∞)
λ

) is
separable. QED

Remark 2. For any λ ∈ M(G) \ {0}, each of the following conditions is also equivalent
to any one of (i)–(vi) in part (I) of Theorem 1. Recall that a continuous linear operator
between Banach spaces is completely continuous if it maps weakly convergent sequences to
norm convergent sequences, [6, p.49].

(vii) The operator C(∞)
λ

∈ L(L∞(G)) is completely continuous.

(viii) R(m(∞)
λ

) is relatively compact in L∞(G).

(ix) R(m(∞)
λ

) is relatively weakly compact in L∞(G).

(x) R(m(∞)
λ

) is a separable subset of L∞(G).

In fact, a Banach-space-valued, continuous linear operator defined on L∞(G) is weakly
compact if and only if it is completely continuous because L∞(G) is an AM-space and hence,
has both the Dunford-Pettis property and the reciprocal Dunford-Pettis property, [2, Theo-
rem 19.6 and p.347]. This establishes (iv) ⇔ (vii). The implications (iii) ⇒ (viii) ⇒ (ix) are
clear. Moreover, we can establish (ix) ⇒ (iv) as in the proof of (ii) ⇒ (iv) in part (I). The
implication (viii) ⇒ (x) is clear. Finally, given (x), we can derive (ii) similar to the proof
of (6). Indeed, the subset { (·,−γ) | γ ∈ Γ }⊆L1(G)⊆L∞(G)∗ is a total subset of L∞(G)∗

via injectivity of the Fourier transform. Furthermore, given γ ∈ Γ, the finitely additive set
function A �→�(·,−γ),m(∞)

λ
(A)� = �λ(γ)

�
A
(·,−γ) dµ on B(G) is σ-additive. According to (x),

m(∞)
λ

takes its values in a closed separable subspace X of L∞(G). Since X cannot contain an
isomorphic copy of �∞, we can apply [5, Chap. I, Corollary 3.7] to obtain (ii). QED

In view of Theorem 1, we will concentrate on those λ ∈ M(G) for which m(∞)
λ

is norm
σ-additive. Given such a λ, there is g ∈ L1(G) with λ = g dµ (cf. Theorem 1 (I)) and

I
m

(∞)
g

(f) = f ∗ g, f ∈ L1(m(∞)
g ). (19)
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For 1 ≤ p < ∞, we first determine exactly when Lp(G)⊆L1(m(∞)
g ), i.e., when Lp(G) ∈

W (∞)(λ).

Proposition 1. Let 1 ≤ p < ∞. The following assertions for a function g ∈ L1(G) \ {0}
are equivalent.

(i) g ∈ Lp
∗
(G).

(ii) Lp(G)⊆L1(m(∞)
g ).

(iii) Lp(G) ∗ g⊆C(G).

(iv) Lp(G) ∗ g⊆L∞(G).

(v) The convolution operator C(∞)
g is p-summing.

In this case, I
m

(∞)
g

is a continuous linear extension of the convolution operator C(p,∞)
g ∈

L(Lp(G), L∞(G)).

Proof. (i) ⇒ (ii). By (i) we have Lp(G) ∗ g⊆C(G)⊆L∞(G) continuously; see [14, Theo-

rem (20.16)] and its proof. So, C(p,∞)
g is a continuous linear extension of C(∞)

g and hence, its

domain space Lp(G) is necessarily contained in the optimal domain L1(m(∞)
g ) via Theorem 1

(II)(i). That is, (ii) holds.
(ii) ⇒ (iii). This implication is valid via (6).
(iii) ⇒ (iv). Clear.

(iv) ⇒ (v). Let us denote by C(p,∞)
g the linear operator of convolution with g (it exists by

(iv)) from Lp(G) into L∞(G). A closed graph argument ensures the continuity of C(p,∞)
g . Since

C(∞)
g = C(p,∞)

g ◦J(∞,p) and J(∞,p) is p-summing, [6, Example 2.9(d)], also C(∞)
g is p-summing.

(v) ⇒ (i). The restriction C(∞)
g |C(G) of C(∞)

g to the closed subspace C(G) of L∞(G) is
also p-summing, [6, p.37]. By the Theorem on p.56 of [6] (see also [25, Lemma 4.3]) applied to

the p-summing operator C(∞)
g : C(G) → C(G), i.e., to C(∞)

g |C(G) considered with codomain
C(G)⊆L∞(G), there is K > 0 such that

���C(∞)
g (f)

���
L∞(G)

=
���C(∞)

g (f)
���
C(G)

≤ K �f�
Lp(G) , f ∈ C(G)⊆Lp(G).

This enables us to extend C(∞)
g |C(G) to a unique continuous linear operator T : Lp(G) →

L∞(G). Such an extension T satisfies T ◦ τa = τa ◦ T for each a ∈ G (i.e., T is a multiplier

operator from Lp(G) into L∞(G)) because (C(∞)
g ◦τa)(f) = (τa ◦C

(∞)
g )(f) for every f ∈ C(G).

Therefore, T = C(p,∞)
h

for some h ∈ Lp
∗
(G); see [15, Theorem (35.12)], [19, Theorem 3.3.1].

Now, �g(γ)(·, γ) = C(∞)
g ((·, γ)) = T ((·, γ)) = C(p,∞)

h
((·, γ)) = �h(γ)(·, γ) and hence, �g(γ) = �h(γ)

for all γ ∈ Γ. So, g = h ∈ Lp
∗
(G). QED

Remark 3. (i) In the notation of Proposition 1, if g ∈ Lp
∗
(G), then the inclusion

Lp(G)⊆L1(m(∞)
g ) is actually continuous. To see this, fix f ∈ Lp(G). Via (14) and (16), with

λ := g dµ, and Hölder’s inequality we have

�f�
L1(m

(∞)
g )

= sup
h∈B[L1(G)]

�

G

|f | · |h ∗ �g| dµ (20)

≤ sup
h∈B[L1(G)]

�f�
Lp(G) �h ∗ �g�

Lp∗ (G) ≤ �f�
Lp(G) �g�Lp∗ (G)

because, for each h ∈ L1(G), it follows from [14, Theorem (20.12)] that

�h ∗ �g�
Lp∗ (G) ≤ �h�

L1(G) ��g�Lp∗ (G) = �h�
L1(G) �g�Lp∗ (G) .
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So, the operator norm of the inclusion Lp(G)⊆L1(m(∞)
g ) is at most �g�

Lp∗ (G).

(ii) Let 1 ≤ p < ∞ and λ ∈ M(G) \ {0}. Then C(∞)
λ

is p-summing iff λ = g dµ for

some g ∈ Lp
∗
(G). Indeed, if λ = g dµ with g ∈ Lp

∗
(G), then C(∞)

λ
= C(∞)

g is p-summing by

Proposition 1. Conversely, if C(∞)
λ

is p-summing, then it is weakly compact, [6, Theorem 2.17],
and hence, λ = g dµ for some g ∈ L1(G); see Theorem 1. Then Proposition 1 implies that
g ∈ Lp

∗
(G).

Corollary 1. Let g ∈ L1(G) \ {0}.

(i) The function g ∈ L∞(G) iff L1(m(∞)
g ) = L1(G).

(ii) There is no p ∈ (1,∞) satisfying Lp(G) = L1(m(∞)
g ).

Proof. (i). Always L1(m(∞)
g )⊆L1(G) by Lemma 4(iii)(c). On the other hand, for p := 1

we see from Proposition 1 that g ∈ L∞(G) iff L1(G)⊆L1(m(∞)
g ).

(ii). Assume, on the contrary, that Lp(G) = L1(m(∞)
g ) for some p ∈ (1,∞), in which

case g ∈ Lp
∗
(G) by Proposition 1. Since the identity map from Lp(G) onto L1(m(∞)

g ) is

continuous (cf. Remark 3), the Open Mapping Theorem ensures that Lp(G) and L1(m(∞)
g )

are isomorphic Banach spaces. So, I
m

(∞)
g

= C(p,∞)
g is the continuous convolution operator (via

g ∈ Lp
∗
(G)) of Lp(G) into L∞(G); see Theorem 1 (II)(ii). Observe that C(p,∞)

g =
�
C(1,p∗)

�g
�∗
,

where C(1,p∗)
�g : L1(G) → Lp

∗
(G) is compact, [23, Theorem 7.50]. According to Schauder’s

Theorem, also I
m

(∞)
g

= C(p,∞)
g is compact. Then L1(m(∞)

g ) = L1(|m(∞)
g |) and m(∞)

g has finite

variation, [23, Theorem 7.50]. By Remark 1(ii), L1(|m(∞)
g |) = L1(G), i.e., Lp(G) = L1(G),

which implies that L∞(G) = Lp
∗
(G). Since µ is non-atomic, [23, Lemma 7.97], it follows that

Lp
∗
(G) is infinite-dimensional; by a result of Grothendieck, [5, p.178], this is a contradiction.

So, no such p ∈ (1,∞) exists. QED

Given 1 ≤ p < ∞, we denote by Πp(L
∞(G)) the vector space of all p-summing operators

from L∞(G) into itself, [6, p.31].

Corollary 2. Let g ∈ L1(G) \ {0}.

(i) The following conditions are equivalent.

(a) g ∈
��

1≤q<∞ Lq(G)
�
\ L∞(G).

(b)
�

1<p<∞ Lp(G) � L1(m(∞)
g ) � L1(G).

(c) C(∞)
g ∈

��
1<p<∞ Πp(L

∞(G))
�
\Π1(L

∞(G)).

(ii) Given 1 < r < ∞, the following conditions are equivalent.

(a) g ∈
��

1≤q<r∗ L
q(G)

�
\ Lr

∗
(G).

(b)
�

r<p≤∞ Lp(G) � L1(m(∞)
g ) and Lr(G) � L1(m(∞)

g ).

(c) C(∞)
g ∈

��
r<p<∞ Πp(L

∞(G))
�
\Πr(L

∞(G)).

(iii) Given 1 < r < ∞, the following conditions are equivalent.

(a) g ∈ Lr
∗
(G) \

��
r∗<q<∞ Lq(G)

�
.

(b) Lr(G)⊆L1(m(∞)
g ) and Lp(G) � L1(m(∞)

g ) for each 1 ≤ p < r.

(c) C(∞)
g ∈ Πr(L

∞(G)) \
��

1≤p<r
Πp(L

∞(G))
�
.
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The proof of Corollary 2 is a routine application of the repeated use of various equivalences
in Proposition 1, together with Corollary 1. The only point of a different nature is to check,
in part (i)(b), that the inclusion

�
1<p≤∞ Lp(G)⊆L1(m(∞)

g ) cannot be an equality. But, for

each 1 < p ≤ ∞, the natural inclusion Lp(G)⊆L1(m(∞)
g ) is injective and continuous (by

Remark 3(i)). Moreover, the Banach spaces Lp(G), 1 < p ≤ ∞, are all distinct (as µ is
non-atomic) and satisfy Lp(G)⊆Lq(G) whenever q ≤ p. Consequently, for the Banach space

L1(m(∞)
g ), the equality L1(m(∞)

g ) =
�

1<p≤∞ Lp(G) is impossible. A similar argument applies
to part (ii)(b).

It is also possible to give detailed information about the surjectivity and injectivity of the
extended operator I

m
(∞)
g

: L1(m(∞)
g ) → L∞(G).

Proposition 2. Let g ∈ L1(G) \ {0}.

(i) R(I
m

(∞)
g

) � C(G).

(ii) The following assertions are equivalent.

(a) R(I
m

(∞)
g

) is dense in C(G).

(b) supp(�g) = Γ.

(c) The integration map I
m

(∞)
g

: L1(m(∞)
g ) → L∞(G) is injective.

If any one of (a)–(c) holds in part (ii), then R(C(∞)
g ) � R(I

m
(∞)
g

).

The previous result, for 1 ≤ p < ∞, occurs in [21, Theorem 1.3] and is based on Lemma 5.1
of [21]. A careful examination of the proof of both Lemma 5.1 and Theorem 1.3 of [21] shows
that they can be adapted to the present case where p := ∞. Note that part (c) of Lemma 5.1
in [21] is not used in the proof of Theorem 1.3 in [21].

Let us indicate the modifications needed to establish Proposition 2. First, (6) and (7) from
Section 1 show that R(I

m
(∞)
g

) lies in the closed subspace C(G) of L∞(G) and hence, also its

closure R(I
m

(∞)
g

) (formed in L∞(G)) belongs to C(G). To formulate the required analogue (for

p := ∞) of Lemma 5.1 in [21] (without part (c)) we only need to replace Lp(G) in its statement
with C(G). The proof of parts (a), (b) of this analogue then carry over easily, after noting in
the proof of (iii) ⇒ (i) in Lemma 5.1(b) of [21] that the series

�∞
n=1 n

−2(·, γn) specifying the
function h given there is now absolutely convergent in C(G). Moreover, the proof of part (d)

of Lemma 5.1 in [21] is also easily adapted, provided that T (G) is dense in L1(m(∞)
g ) which

is the case (cf. Theorem 1 (II)(iii)). Of course, the formula (cf. (7)) I
m

(∞)
g

(f) = f ∗ g, for

f ∈ L1(m(∞)
g ), is often needed.

The proof of Proposition 2 above now follows the lines of that of Theorem 1.3 in [21],
modulo the following additional points. To verify part (i) of Proposition 2 one now needs the
fact that C(G) is infinite-dimensional; this follows from L1(G) being infinite-dimensional (as
µ is non-atomic) and that C(G) is dense in L1(G), [26, E8, p.268]. For the proof of (a) ⇔

(b) in part (ii) of Proposition 2, the density of T (G) in C(G) is required, [26, p.24]. Finally,

to establish R(C(∞)
g ) � R(I

m
(∞)
g

) in part (ii) of Proposition 2, given that g satisfies one of

(a)–(c), it is necessary to know that L∞(G) � L1(m(∞)
g ); this is the case via Theorem 1 (II)(i).

4 Bochner, Gelfand and Pettis µ-densities.

The aim of this final section is to present the proofs of Theorems 2–4. We begin with
a technical result. Given a function F : G → L∞(G) and h ∈ L1(G), we denote the scalar-
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valued function x �→�h, F (x)�, for x ∈ G, by �h, F �, where �h, F (x)� :=
�
G
h(y)F (x)(y) dµ(y)

for x ∈ G.

Lemma 5. Let g ∈ L1(G). Suppose that the vector measure m(∞)
g : B(G) → L∞(G)

admits a Gelfand (resp. Bochner, Pettis) µ-density. Then g ∈ L∞(G) and the L∞(G)-valued

function Kg : x �→τx(g) on G is also a Gelfand (resp. Bochner, Pettis) µ-density of m(∞)
g .

Proof. The subgroup Γg of Γ generated by the countable subset supp(�g)⊆Γ is also count-

able. Lemma 3 applied to λ := g dµ allows us to find λ1 ∈ M(G) satisfying �λ1 = χ
Γg

on Γ and

g ∗ λ1 = g.
Consider first the case when m(∞)

g admits a Gelfand µ-density, say F : G → L∞(G).

Define H : G → L∞(G) by H := C(∞)
λ1

◦ F . For each f ∈ L1(G) we have �f,H� = �C(1)
�λ1

(f), F �

and so �f,H� ∈ L1(G), i.e., H is Gelfand µ-integrable, [5, p.53]. Given A ∈ B(G) the function

ϕA := C(∞)
λ1

�
(w∗)-

�
A
F dµ

�
∈ L∞(G) satisfies �f,ϕA� =

�
A
�f,H� dµ, for f ∈ L1(G), and so

(w∗)-
�
A
H dµ = ϕA. Moreover, for A ∈ B(G) we have

(w∗)-

�

A

H dµ = ϕA = λ1 ∗

�
(w∗)-

�

A

F dµ
�
= λ1 ∗m

(∞)
g (A) (21)

= λ1 ∗ (χ
A

∗ g) = χ
A

∗ g = m(∞)
g (A),

via the identity g ∗ λ1 = g. Thus, H is also a Gelfand µ-density of m(∞)
g .

Next we claim there exists a set A(g) ∈ B(G) with µ(A(g)) = 1 such that

τx(g) = H(x), x ∈ A(g), (22)

with equality as elements of L1(G). To see this fix γ ∈ Γg and observe that [τx(g)]�(γ) =
�g(γ)(x,−γ) for x ∈ G. Accordingly,

�

A

[τx(g)]�(γ) dµ(x) = �g(γ)�χ
A
(γ) = (χ

A
∗ g)�(γ) = �(·,−γ),m(∞)

g (A)�

=
�
(·,−γ), (w∗)-

�

A

H dµ
�
=

�

A

�(·,−γ), H(x)� dµ(x)

=

�

A

[H(x)]�(γ) dµ(x),

for every A ∈ B(G). So, there is Aγ ∈ B(G) with µ(Aγ) = 1 such that [τx(g)]�(γ) = [H(x)]�(γ)
for all x ∈ Aγ . As Γg is countable, the Borel set A(g) :=

�
γ∈Γg

Aγ satisfies µ(A(g)) = 1 and
we have

[τx(g)]�(γ) = [H(x)]�(γ), x ∈ A(g), γ ∈ Γg. (23)

On the other hand, for x ∈ A(g), it follows that [τx(g)]�(γ) = �g(γ)(x,−γ) = 0 and also that

[H(x)]�(γ) = [λ1 ∗ F (x)]�(γ) = �λ1(γ)[F (x)]�(γ) = χ
Γg

(γ)[F (x)]�(γ) = 0

whenever γ ∈ (Γ \ Γg)⊆(Γ \ supp(�g)). This and (23) imply, given x ∈ A(g), that [τx(g)]�(γ) =
[H(x)]�(γ) for all γ ∈ Γ, i.e., τx(g) = H(x) as elements of L1(G). So, (22) is established.

Since µ(A(g)) = 1, the set A(g) �= ∅ and so we can select a ∈ A(g). Then, by (22) with
x := a, we have g = (τ−a◦τa)(g) = τ−a(H(a)). SinceH(a) ∈ L∞(G), also τ−a(H(a)) ∈ L∞(G),
i.e, g ∈ L∞(G). This enables us to consider the L∞(G)-valued function Kg on G. Then (22)
means that

Kg(x) = H(x), µ-a.e. x ∈ G. (24)

This, with (21) and Lemma 2(ii), imply Kg is a Gelfand µ-density of m(∞)
g .
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Next assume that F is a Bochner µ-density of m(∞)
g . Since C(∞)

λ1
∈ L(L∞(G)), it is routine

to verify from the definition of Bochner integrals, [5, Chap. II, §2], that H := C(∞)
λ1

◦F is also
Bochner µ-integrable. In particular, H is also Gelfand µ-integrable; see Lemma 2(i). Moreover,

(B)-
�
A
H dµ = (w∗)-

�
A
H dµ = m(∞)

g (A), for A ∈ B(G); see (21) and Lemma 2(i). So, H is

also a Bochner µ-density of m(∞)
g . Now (24) and Lemma 2(ii) ensure Kg is a Bochner µ-density

of m(∞)
g .

Finally suppose that F is a Pettis µ-density of m(∞)
g . Since C(∞)

λ1
∈ L(L∞(G)), it is again

routine to verify from the definition of Pettis integrals, [5, Chap. II, §3], that H := C(∞)
λ1

◦F is
also Pettis µ-integrable. By Lemma 2(i) we see that H is also Gelfand µ-integrable. Moreover,

(P )-
�
A
H dµ = (w∗)-

�
A
H dµ = m(∞)

g (A), for A ∈ B(G); see (21) and Lemma 2(i). Then Kg

is a Pettis µ-density of m(∞)
g by (24) and Lemma 2(ii). QED

Given h ∈ L1(G) and g ∈ L∞(G) we have

�h,Kg(x)� =

�

G

h(y)g(y − x) dµ(y) = (h ∗ �g)(x), x ∈ G.

This and [14, Corollary (20.14) & Theorem (20.16)] imply the next result.

Lemma 6. Let h ∈ L1(G) and g ∈ L∞(G). Then �h,Kg� = h ∗ �g ∈ C(G) and

��h,Kg��L∞(G) = �h ∗ �g�
L∞(G) ≤ �h�

L1(G) �g�L∞(G) . (25)

We know from Corollary 1 that g ∈ L1(G) belongs to L∞(G) iff L1(m(∞)
g ) = L1(G).

Moreover, L1(m(∞)
g ) = L1(G) are isomorphic Banach spaces because
���m(∞)

g

��� (G) · �f�
L1(G) ≤ �f�

L1(m
(∞)
g )

≤ �g�
L∞(G) �f�L1(G) , (26)

for every f ∈ L1(G) = L1(m(∞)
g ). Indeed, the left inequality has been established in Lemma 4

(iii)(c). On the other hand, the estimates in (20) for p := 1 yield �f�
L1(m

(∞)
g )

≤ �g�
L∞(G)·

�f�
L1(G) which is the right inequality in (26). So, we can write I

m
(∞)
g

= C(1,g)
g as elements of

L(L1(G), L∞(G)).
Proof of Theorem 2. (i) ⇔ (ii). See Corollary 1(i).
(i) ⇔ (v). This follows from Proposition 1 with p := 1.
(i) ⇒ (iii). Because of (i) we have, via Lemma 6, that �h,Kg� = h ∗ �g ∈ L1(G) for

h ∈ L1(G), i.e., Kg is Gelfand µ-integrable. With λ := g dµ, (13) yields

�h,m(∞)
g (A)� =

�

A

�h,Kg� dµ = �h, (w∗)-

�

A

Kg dµ�, h ∈ L1(G), A ∈ B(G),

which implies that Kg is a Gelfand µ-density of m(∞)
g . So, (iii) holds.

(iii) ⇒ (i). See Lemma 5.
(i) ⇒ (iv). Condition (i) implies that

���m(∞)
g (A)

���
L∞(G)

=
���χ

A
∗ g

���
L∞(G)

≤ �g�
L∞(G)

���χ
A

���
L1(G)

= �g�
L∞(G) µ(A),

for each A ∈ B(G), [14, Corollary (20.14)]. Thus, |m(∞)
g |(A) ≤ �g�

L∞(G) µ(A) for A ∈ B(G).
This establishes (iv).

(iv) ⇒ (ii). By Remark 1(ii) we have that |m(∞)
g | is a positive multiple of µ. So, L1(G) =

L1(|m(∞)
g |)⊆L1(m(∞)

g )⊆L1(G); for the two inclusions we refer to (12) and Lemma 4(iii)(c).
So, (ii) holds.
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This completes the proof of the mutual equivalence of (i)–(v).
So, assume now that any one of (i)–(v) hold. In the proof of (i) ⇒ (iii) it was established

that Kg is a Gelfand µ-density of m(∞)
g . Consequently,

I
m

(∞)
g

(s) = (w∗)-

�

G

sKg dµ, s ∈ simB(G). (27)

Fix f ∈ L1(G). If h ∈ L1(G), then �h,Kg� ∈ C(G) gives �h, fKg� = f�h,Kg� ∈ L1(G). Hence,
fKg is Gelfand µ-integrable. Moreover,

��h, fKg��L1(G) ≤ �f�
L1(G) ��h,Kg��L∞(G) ≤ �f�

L1(G) �g�L∞(G) �h�L1(G) ;

see (25). It follows that
����(w

∗)-

�

G

fKg dµ

����
L∞(G)

= sup
h∈B[L1(G)]

|�h, (w∗)-

�

G

fKg dµ�|

= sup
h∈B[L1(G)]

��
�

G

�h, fKg� dµ
�� ≤ sup

h∈B[L1(G)]

��h, fKg��L1(G) ≤ �g�
L∞(G) �f�L1(G) .

Consequently, the L∞(G)-valued, linear operator T : f �→(w∗)-
�
G
fKg dµ on L1(G) is contin-

uous. Via (27) we see that I
m

(∞)
g

= T on the dense subspace simB(G) of L1(G) and hence,

I
m

(∞)
g

= T on L1(G). So, (8) holds.

This completes the proof of Theorem 2. QED

Remark 4. Whenever g ∈ L∞(G) we point out that I
m

(∞)
g

: L1(G) → L∞(G) is neces-

sarily completely continuous. This is the case because { I
m

(∞)
g

(χ
A
) | A ∈ B(G) } = R(m(∞)

g )

is relatively compact in L∞(G) (cf. Remark 2) and because the domain space of I
m

(∞)
g

is

L1(G), [23, Corollary 2.42]. QED

Proof of Theorem 3. Part (I). Recall from Theorem 2 that necessarily L1(m(∞)
g ) =

L1(G).
(i) ⇔ (iv). See [8, Theorem].
(iv) ⇒ (iii). By compactness of G the continuous function Kg is Bochner µ-integrable and

has compact range in L∞(G). Since fKg is clearly strongly µ-measurable, [5, Chap. II, §1],
and �f(x)Kg(x)�L∞(G) ≤ M |f(x)| for x ∈ G and some constant M > 0 the function fKg is

also Bochner µ-integrable, for each f ∈ L1(G). It follows from [5, Chap. III, Theorem 2.2] that
the L∞(G)-valued linear operator T : f �→(B)-

�
G
fKg dµ on L1(G) is compact. On the other

hand, T = I
m

(∞)
g

via (8) and Lemma 2(i), which thereby establishes (iii).

(iii) ⇒ (ii). By [5, Chap. III, Theorem 2.2] there exists a bounded, Bochner µ-integrable
function F : G → L∞(G) such that I

m
(∞)
g

(f) = (B)-
�
G
fF dµ for f ∈ L1(G). Substituting

f := χ
A
, for A ∈ B(G), gives (ii).

(ii) ⇒ (v). It follows from Lemma 5 that Kg is also a Bochner µ-density of m(∞)
g . In

particular, Kg is strongly µ-measurable and so there exists A0 ∈ B(G) with µ(A0) = 1 such
that Kg(A0) is norm separable in L∞(G), [5, Chap. II, Theorem 1.2].

(v) ⇒ (i). Assume first that (v) holds with A0 := G, so that Kg(G) is contained in
a separable, closed subspace Y of L∞(G). Let Y ∗

1 := { ξh | h ∈ L1(G) } denote the vector
subspace of Y ∗ defined by ξh : f �→

�
G
fh dµ, for f ∈ Y , as h varies in L1(G). Given h ∈ L1(G),

it follows that �ξh,Kg� = �h,Kg� is B(G)-measurable on G because �h,Kg� ∈ C(G); see
Lemma 6. Since Y ∗

1 is total in Y ∗ and since Kg(G) lies in the separable Banach space Y
(necessarily a Suslin space), we have as two consequences of [30, Theorem 1 & Remark] that
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Kg is the pointwise norm-limit (everywhere on G) of a sequence of Y -valued, B(G)-simple
functions (hence, being bounded, is also Bochner µ-integrable) and that K−1

g (U) ∈ B(G) for
every Borel subset U of Y . Of course, Kg is then also Bochner µ-integrable as an L∞(G)-valued
function and satisfies K−1

g (B) ∈ B(G) for every Borel subset B of L∞(G). The first mentioned
consequence together with (8) and Lemma 4(i) give

I
m

(∞)
g

(f) = (w∗)-

�

G

fKg dµ = (B)-

�

G

fKg dµ, f ∈ L1(G). (28)

Since Kg(G) lies in the separable Banach space Y , it follows from the second consequence
and [28, Theorem 5, p.26] that Kg is Lusin µ-measurable. Accordingly, there is a compact set
W⊆G, with µ(W ) > 0, on which the Y -valued function Kg is continuous, [28, Definition 9,
p.25]. In particular,Kg(W ) is compact in Y and hence, also compact in L∞(G). Via (28) and [5,
Chap. III, Theorem 2.2], the restriction of I

m
(∞)
g

to the complemented subspace L1(W ) :=

{ f ∈ L1(G) | fχ
W

= f }, denoted by SW , is an L∞(G)-valued, compact operator. On the

other hand, Theorem 1 (II) implies that R(SW )⊆R(I
m

(∞)
g

)⊆C(G) so that SW = J(c,∞)
◦ TW ,

where TW : L1(W ) → C(G) is the compact operator denoting SW when interpreted with C(G)
as its codomain space. By [5, Chap. III, Theorem 2.2], there is a bounded, Bochner µ-integrable
function F : W → C(G) satisfying TW (f) = (B)-

�
W

fF dµ, for f ∈ L1(W ). Hence, (28) yields

(B)-

�

W

fKg dµ = SW (f) = (J(c,∞)
◦ TW )(f) = (B)-

�

W

f · (J(c,∞)
◦ F ) dµ,

for every f ∈ L1(W ). Consequently, Kg(x) = (J(c,∞)
◦ F )(x) for µ-a.e. x ∈ W . Select such

an x ∈ W , possible as W �= ∅ because of µ(W ) > 0, to obtain g = τ−x(Kg(x)) = (τ−x ◦

J(c,∞)
◦ F )(x) = J(c,∞)((τ−x ◦ F )(x)). This yields g ∈ C(G) because x ∈ W implies that

(τ−x ◦ F )(x) = τ−x(F (x)) ∈ C(G) as F (x) ∈ C(G).
Consider now the case when A0 in (v) is a proper Borel subset of G with µ(A0) > 0.

The argument for the case when A0 = G can be adapted to deduce that the restriction
Kg|A0 : A0 → L∞(G) is Lusin µ-measurable when A0 is equipped with the relative topology
induced from G. So, there is a compact subset W0⊆A0 on which Kg is continuous and we
can again conclude that g = J(c,∞)((τ−x ◦ F0)(x)) for some x ∈ W0 and some C(G)-valued,
Bochner µ-integrable function F0 on W0. Again we have that g ∈ C(G).

Part (II). That Kg is a C(G)-valued, Bochner µ-density of m(∞)
g was established in the

proof of part (I). Furthermore, (9) has been verified in (28). This completes the proof of
Theorem 3. QED

At this stage we recall some notions concerning measurability. Let B(G)
µ

denote the

completion of B(G) with respect to µ; elements in B(G)
µ

are called Haar measurable sets.

The extension of µ to the σ-algebra B(G)
µ

is denoted by µ, [16, p.155], and is still called

Haar measure. A Borel set of µ-measure zero is called µ-null. Similarly, an element of B(G)
µ

is

called µ-null if it has µ-measure zero. A basic fact is that if A ∈ B(G)
µ

is µ-null, then there is
C ∈ B(G) such that A⊆C and µ(C) = 0, i.e., C is µ-null. A scalar function f : G → C is called

µ-measurable if it is B(G)
µ

-measurable, i.e., f−1(U) ∈ B(G)
µ

for each U ∈ B(C). Equivalently,
there is a µ-null set A ∈ B(G) such that the restriction f |G\A : G \ A → C is B(G \ A)-
measurable, where B(G \A) := {C ∩ (G \A) | C ∈ B(G) }. There is no difference between the
integration of B(G)-measurable scalar functions and µ-measurable scalar functions, [16, p.186].

Consider a Banach-space-valued function F : G → E. Then F is said to be scalarly µ-
measurable if, for each ξ ∈ E∗, the scalar function x �→�F (x), ξ� on G is µ-measurable. On

the hand, F is called µ-measurable if F−1(B) ∈ B(G)
µ

for each Borel set B⊆E, where E is
considered with its norm topology. This is in agreement with the case when E := C.
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Remark 5. (I) Each of the following conditions is equivalent to (i)–(v) of Theorem 3 (I).

(vi) There is a bounded, Bochner µ-integrable function F : G → L∞(G) with

I
m

(∞)
g

(f) = C(1,∞)
g (f) = (B)-

�

G

fF dµ, f ∈ L1(G).

(vii) The integration map I
m

(∞)
g

: L1(G) → L∞(G) is weakly compact.

(viii) The function Kg : G → L∞(G) is continuous when L∞(G) is equipped with its weak
topology σ(L∞(G), L∞(G)∗).

(ix) The function Kg : G → L∞(G) is µ-measurable.

(x) The function Kg : G → L∞(G) is Lusin µ-measurable.

Indeed, we have (i) ⇒ (vi) or, to be precise, (9) implies (vi). Clearly (vi) ⇒ (ii) and
the implication (iii) ⇒ (vii) is obvious. Recalling that weakly compact subsets of L∞(G) are

norm separable, [5, Chap. VIII, Theorem 4.13], we have (viii) ⇒ (v). Since R(m(∞)
g )⊆L∞(G)

is relatively weakly compact, it is norm separable and hence, I
m

(∞)
g

has separable range in

L∞(G). So, (vii) ⇒ (vi) by [5, Chap. III, Lemma 2.9]. Clearly (iv) ⇒ (viii) and also (iv) ⇒

(ix). The equivalence (ix) ⇔ (x) is a special case of [11, Theorem 2B]. Finally, (x) ⇒ (i) has
been shown in the proof of (v) ⇒ (i).

(II) As already noted, (i) ⇔ (iv) is a special case of [8, Theorem]. Moreover, (iv) ⇒ (i)
and (x) ⇒ (i) occur in Corollary 3 and the discussion prior to it in [9]. The equivalence (i)
⇔ (ix) is in [29, Theorem 21]; its proof there also verifies (x) ⇒ (iv) ⇒ (i). Our arguments
in the proof of Theorem 3 (I) are based on the methods of this paper and differ from those
in [9], [29]. QED

The standing assumption in Theorem 3 is that g ∈ L∞(G) \ {0}. Beginning with the
weaker requirement that g ∈ L1(G) \ {0}, we can still obtain (i) ⇔ (iii). A precise statement
is:

Corollary 3. A function g ∈ L1(G) belongs to C(G) iff the integration map I
m

(∞)
g

:

L1(m(∞)
g ) → L∞(G) is compact.

Proof. If g ∈ C(G), then I
m

(∞)
g

is compact by Theorem 3 (I). Conversely, assume that

I
m

(∞)
g

: L1(m(∞)
g ) → L∞(G) is compact. Then m(∞)

g has finite variation, [23, Proposition 3.48],

and hence, g ∈ L∞(G) via Theorem 2. Then Theorem 3 (I) gives g ∈ C(G). QED

In connection with Theorem 3 we note that for g ∈ L1(G), and not just for g ∈ L∞(G),

it is still the case that (i) ⇔ (ii) holds, i.e., g ∈ C(G) iff m(∞)
g admits a Bochner µ-density.

Indeed, the existence of a Bochner µ-density already implies that g ∈ L∞(G) via Lemma 5.
In Theorem 1, Remark 2 and Remark 3(ii) we have determined, for λ ∈ M(G), exactly

when C(∞)
λ

is completely continuous, compact, weakly compact or p-summing for 1 ≤ p < ∞.
A further contribution in this direction is as follows. Part of the proof follows ideas from the
proof of Theorem 4.7 in [25].

Proposition 3. Let λ ∈ M(G). Then the convolution operator C(∞)
λ

∈ L(L∞(G)) is
nuclear iff λ = g dµ for some g ∈ C(G).

Proof. Of course, we may (and do) assume that λ �= 0.

Suppose that C(∞)
λ

is nuclear. Then C(∞)
λ

is also 1-summing, [31, III. F Proposition 22],
and so there is g ∈ L∞(G) satisfying λ = g dµ; see Remark 3(ii) with p := 1. Furthermore,

|m(∞)
g | is finite (cf. Theorem 2) and there is c > 0 such that |m(∞)

g | = cµ (cf. Remark 1(ii)).

Of course, L1(m(∞)
g ) = L1(G); see Theorem 2.
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Given ξ ∈ L∞(G)∗, the scalar measure �m(∞)
g , ξ� is a regular Borel measure (as �m(∞)

g , ξ� �
µ) and, for f ∈ C(G), we have via (8) that

�

G

f d
�
m(∞)

g , ξ
�
=

�
I
m

(∞)
g

(f), ξ
�
=

��
C(∞)

g ◦ J(c,∞)�(f), ξ
�
.

Thus, m(∞)
g is the representing measure of the nuclear operator C(∞)

g ◦J(c,∞) = C(∞)
λ

◦J(c,∞)
∈

L(C(G), L∞(G)) in the sense of [5, Chap. VI, Definition 2.2]. Accordingly, the vector measure

m(∞)
g admits a Bochner density relative to |m(∞)

g |, say F : G → L∞(G), such that

m(∞)
g (A) = (B)-

�

A

F d|m(∞)
g | = (B)-

�

A

cF dµ, A ∈ B(G),

[5, Chap. VI, Theorem 4.4]. So, cF is a Bochner µ-density of m(∞)
g and hence, g ∈ C(G) via

Theorem 2.
Conversely, let λ = g dµ for some g ∈ C(G) \ {0}. By Theorem 3, the function Kg : G →

L∞(G) is a Bochner µ-density of m(∞)
g . Select a sequence {ϕn}

∞
n=1⊆L∞(G) and a sequence

{A(n)}∞n=1⊆B(G), not necessarily pairwise disjoint, such that
(a) for µ-a.e. x ∈ G we have Kg(x) =

�∞
n=1 ϕnχ

A(n)
(x) with the series absolutely

convergent in L∞(G), i.e.,
�∞

n=1 �ϕn�L∞(G) χA(n)
(x) < ∞, and

(b)

�

G

�Kg(x)�L∞(G) dµ(x) ≤

∞�

n=1

�ϕn�L∞(G) µ(A(n)) < ∞, [5, Chap. VI, Lemma 4.3].

Given f ∈ L∞(G)⊆L1(G), we have from (a), (b) and (9) that

C(∞)
g (f) = I

m
(∞)
g

(f) = (B)-

�

G

fKg dµ

= (B)-

�

G

f(x)
� ∞�

n=1

ϕnχ
A(n)

(x)
�
dµ(x) =

∞�

n=1

��

G

fχ
A(n)

dµ
�
ϕn

=
∞�

n=1

�
χ
A(n)

, f
�
ϕn.

As
�∞

n=1

���χ
A(n)

���
L1(G)

�ϕn�L∞(G) < ∞ (cf. (b)), the operator C(∞)
g is nuclear. QED

A function ψ : G → C is called Riemann-measurable if ψ is continuous at each point in a set
of full µ-measure, [29, p.39]. A typical non-trivial example of a Riemann-measurable function
is the characteristic function of any non-µ-null Borel subset of G whose boundary is µ-null.
Let R∞(G) denote the subspace of L∞(G) consisting of all bounded, Riemann-measurable
functions on G. To be precise, to say that g ∈ L∞(G) belongs to R∞(G) means that g is
µ-a.e. equal to some bounded, Riemann-measurable function on G. Then, R∞(G) is a closed
subspace of L∞(G) and

C(G)⊆R∞(G)⊆L∞(G). (29)

The following result is a special case of [29, Theorem 16].

Lemma 7. Suppose that Martin’s Axiom holds. A function g ∈ L∞(G) belongs to R∞(G)
iff Kg : G → L∞(G) is scalarly µ-measurable.

A scalarly µ-measurable function F : G → L∞(G) is called Pettis µ-integrable if �F, ξ� ∈
L1(G) for each ξ ∈ L∞(G)∗ and if, for every A ∈ B(G), there is a vector (P )-

�
A
F dµ ∈ L∞(G)

satisfying �(P )-
�
A
F dµ, ξ� =

�
A
�F, ξ� dµ, for ξ ∈ L∞(G)∗.
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Proof of Theorem 4. Assume that m(∞)
g admits a Pettis µ-density. By Lemma 5,

also Kg is a Pettis µ-density of m(∞)
g . In particular, Kg is scalarly µ-measurable and hence,

g ∈ R∞(G); see Lemma 7.
Conversely, suppose that g = ψ µ-a.e. for some ψ ∈ R∞(G). Then Kg is scalarly µ-

measurable, again via Lemma 7. Since Kg(x) = Kψ(x) as elements of L∞(G), for each x ∈ G,
we may as well assume that g itself is a bounded, Riemann measurable function. Suppose
first that g is R-valued, in which case also m(∞)

g (A) = g ∗ χ
A

is R-valued, for A ∈ B(G). Fix

A ∈ B(G). Let ξ be any positive linear functional belonging to the dual Banach lattice L∞(G)∗.
Then

�m(∞)
g (A), ξ� ≤

�

A

�Kg(x), ξ� dµ(x). (30)

To see this, fix ε > 0 and select R-valued continuous functions g1 and g2 on G such that
g1 ≤ g ≤ g2 (pointwise on G) and

�
G
(g2 − g1) dµ < ε, [29, Lemma 2]. Since g1 ∈ C(G), we

have from Theorem 3 (I) applied to g1 that Kg1 is a Bochner µ-density of m(∞)
g1 and hence, is

also a Pettis µ-density of m(∞)
g1 ; see Lemma 2(i). So,

�m(∞)
g1

(A), ξ� = �(P )-

�

A

Kg1 dµ, ξ� =

�

A

�Kg1(x), ξ� dµ(x) ≤

�

A

�Kg(x), ξ� dµ(x),

where we need that g1 ≤ g implies Kg1(x) ≤ Kg(x), for x ∈ G. Moreover,
���(g ∗ χ

A
)− (g1 ∗ χ

A
)
���
L∞(G)

≤ �g − g1�L1(G)

���χ
A

���
L∞(G)

≤

�

G

(g − g1) dµ ≤

�

G

(g2 − g1) dµ < ε.

Accordingly, we have that

�m(∞)
g (A), ξ� = �(g ∗ χ

A
)− (g1 ∗ χ

A
), ξ�+ �g1 ∗ χ

A
, ξ�

≤

���(g ∗ χ
A
)− (g1 ∗ χ

A
)
���
L∞(G)

�ξ�
L∞(G)∗ + �m(∞)

g1
(A), ξ�

≤ ε �ξ�
L∞(G)∗ +

�

A

�Kg(x), ξ� dµ(x),

from which (30) follows because ε > 0 is arbitrary. Replacing g1 with g2, a similar argument

yields �m(∞)
g (A), ξ� ≥

�
A
�Kg(x), ξ� dµ(x). This inequality and (30) imply that

�m(∞)
g (A), ξ� =

�

A

�Kg(x), ξ� dµ(x). (31)

The same identity is valid for an arbitrary ξ ∈ L∞(G)∗ because L∞(G) is the complexification
of the real Banach lattice L∞

R (G), where L∞
R (G) consists of all R-valued functions in L∞(G),

and because each continuous linear functional on L∞
R (G) is the difference of two positive

continuous linear functionals.
Suppose now that g is C-valued. Then its real part Re(g) and its imaginary part Im(g) are

also bounded and Riemann-measurable. Moreover, m(∞)
g (A) = m(∞)

Re(g)(A) + im(∞)
Im(g)(A) and

Kg(x) = KRe(g)(x) + iKIm(g)(x), for x ∈ G. Since (31) holds with Re(g) and Im(g) in place of
g, whenever ξ ∈ L∞(G)∗, it follows that (31) is also valid for g. Thus, Kg is a Pettis µ-density

of m(∞)
g .
It remains to establish (10), under the assumption that g ∈ R∞(G). Observe that

�Kg(x)�L∞(G) = �g�
L∞(G) for all x ∈ G. Therefore, given ξ ∈ L∞(G)∗, the scalar function



170 S. Okada, W.J. Ricker

�Kg, ξ� on G is bounded and satisfies sup
x∈G

|�Kg(x), ξ�| ≤ �g�
L∞(G) �ξ�L∞(G)∗ . So, for each

f ∈ L1(G), we have
�

G

|�fKg, ξ�| dµ =

�

G

|f(x)| · |�Kg(x), ξ�| dµ(x) ≤ �f�
L1(G) �g�L∞(G) �ξ�L∞(G)∗

and hence, the linear functional ξg : f �→
�
G
�fKg, ξ� dµ on L1(G) is continuous. Since Kg is a

Pettis µ-density of m(∞)
g it follows, given s ∈ simB(G), that the function sKg is also Pettis

µ-integrable and satisfies

�I
m

(∞)
g

(s), ξ� = �(P )-

�

G

sKg dµ, ξ� =

�

G

�sKg, ξ� dµ = �s, ξg�.

So, the continuous linear functionals �I
m

(∞)
g

(·), ξ� and ξg, both defined on L1(G), coincide

on the dense subspace simB(G) and hence, must be equal. In other words, �I
m

(∞)
g

(f), ξ� =

ξg(f) =
�
G
�fKg, ξ� dµ for f ∈ L1(G). Thus, fKg is Pettis µ-integrable and (10) holds because

ξ ∈ L∞(G)∗ is arbitrarily fixed. The proof of Theorem 4 is thereby complete. QED

Remark 6. (i) The inclusions in (29) can be strict. Indeed, consider the circle group T,
which we identify with the interval [−π,π) in the usual way. Then χ

[−π,0]
∈ R∞(T) but, there

is no function in C(T) which coincides with χ
[−π,0]

µ-a.e. Accordingly, C(T) � R∞(T).
According to [7, Theorem], the closed subspace R∞(T) of L∞(T) contains a complemented

copy of c0 and so is not a Grothendieck space whereas L∞(T) is known to be a Grothendieck
space, [2, Theorem 13.13]. So, R∞(T) � L∞(T).

(ii) The inclusion C(G) � L∞(G) is proper for every infinite compact abelian group
G, [15, Lemma (37.3)]. QED

For g ∈ L∞(G), Theorem 3 and Remark 5 show that the integration map I
m

(∞)
g

is com-

pact iff it is weakly compact iff g ∈ C(G); see also Corollary 3. We conclude with a result
characterizing further operator ideal properties of I

m
(∞)
g

.

Proposition 4. For g ∈ L1(G), the following assertions are equivalent.

(i) �g ∈ �1(Γ), that is,
�

γ∈Γ |�g(γ)| < ∞.

(ii) The integration map I
m

(∞)
g

: L1(m(∞)
g ) → L∞(G) is nuclear.

(iii) The integration map I
m

(∞)
g

: L1(m(∞)
g ) → L∞(G) is 1-summing.

(iv) The Fourier series
�

γ∈Γ �g(γ)(·, γ) of g is unconditionally convergent in L∞(G).

Proof. (i) ⇒ (ii). Since g coincides with its absolutely convergent Fourier series (in

C(G)), we see that g ∈ C(G)⊆L∞(G). In particular, L1(m(∞)
g ) = L1(G) via Theorem 2. Then

we can write
I
m

(∞)
g

(f) = f ∗ g =
�

γ∈Γ

�g(γ)�f, (·, γ)�(·, γ), f ∈ L1(G),

with the series absolutely convergent in C(G)⊆L∞(G). As �g ∈ �1(Γ), we have supp(�g) is
countable. So, (ii) is valid, [6, Proposition 5.23], [31, pp.216–217].

(ii) ⇒ (iii). See [31, III.F Proposition 22].
(iii) ⇒ (i). According to Example 2.61 and Proposition 3.74 in [23] the integration map

I
m

(∞)
g

is necessarily 1-concave and hence, L1(m(∞)
g ) = L1(|m(∞)

g |). By Remark 1(ii) we then

have L1(m(∞)
g ) = L1(G) and so g ∈ L∞(G) with I

m
(∞)
g

= C(1,∞)
g ; see Theorem 2. Since
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the convolution operator C(1,∞)
g = I

m
(∞)
g

is 2-summing (as it is 1-summing, [6, Inclusion

Theorem 2.8]), it factors through a Hilbert space, [6, Corollary 2.16]. So, we can obtain (i) by
adapting the proof of Lemma 4.12 in [24].

(i) ⇒ (iv). Clear as �(·, γ)�
L∞(G) = 1, for each γ ∈ Γ.

(iv) ⇒ (i). The inclusion map J(∞,1) : L∞(G) → L1(G) is 1-summing, [6, Example 2.9(d)],
equivalently, it is absolutely summing, [6, pp.34–35], and hence, maps unconditionally conver-
gent series to absolutely convergent series, [6, p.15]. So, recalling that supp(�g) is countable, we
have from (iv) that

�

γ∈Γ

|�g(γ)| =
�

γ∈Γ

���J(∞,1)��g(γ)(·, γ)
����

L1(G)
< ∞,

i.e., (i) holds. QED

We note that (i) ⇔ (iv) in Proposition 4 is stated in [3, Theorem 1].
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