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Introduction

The theory and the results of Quantum Mechanics are firmly established from more then
half a century and no man of science would have the least doubt that QM ”works”, however
what is usually called the ”interpretation” of the rules of QM is still controversial. An exhaus-
tive discussion of this problem is contained in the books by R.B. Griffiths (2002) and by R.
Omnès (1999) (references [6], [8]). An attempt to state the principles of QM in an axiomatic
form is presented also in introductory books, for an example of clear and useful description
see [9], ch 4. Omnès states in [8] as fundamental for QM four ”Principles”, we quote the first
one (ch 8, page 91)
One can associate with every isolated physical system a definite Hilbert space. Every physical
concept entering in the description or analysis of the system should be expressible in a mathe-
matical language into which only notions involving this Hilbert space can enter.
Our goal is to discuss the nature of this principle from a mathematical point of view.

1 The superposition principle

If the first statement in an exposition of QM is (as it often happens) ”the state of a
quantum system is represented by a vector in a Hilbert space..”, then there is no point of
speaking of a superposition principle since by definition in a vector space we sum vectors: this
is trivial! Of course it is intended that the big novelty will be in the physical interpretation of
the superposed states: an a posteriori motivation.
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1.1 Quotations from Dirac

We shall follow Dirac’s view: the superposition principle should be regarded as fundamen-
tal. All the following quotations from Dirac are found in reference [4] (at the beginning of the
book).
For this purpose [to provide any quantitative basis for the building up of QM] a new set of
accurate laws of nature is required. One of the most fundamental and most drastic of these is
the Principle of Superposition of States.
After having explained what should be meant by ”state” of a quantum system, Dirac says:
When a state is formed by the superposition of two other states, it will have properties that
are in some vague way intermediate between those of either of them according to the greater
or less ”weight” attached to this state in the superposition process. The new state is completely
defined by the two original states when their relative weights in the superposition process are
known, together with a certain phase difference, the exact meaning of weights and phases being
provided in the general case by the mathematical theory.
About the role of probability we quote
The non-classical nature of the superposition process is brought out clearly if we consider the
superposition of two states, A and B, such that there exists an observation which, when made
on the system in the state A, is certain to lead to one particular result, a say, and when made
on the system in the state B, is certain to lead to some different result, b say. What will be
the result of the observation when made on the system in the superposed state? The answer is
that the result will be sometimes a and sometimes b, according to a probability law depending
on the relative weights of A and B in the superposition process. It will never be different from
both a and b.
Here is Dirac’s conclusion of the discussion (which contains the above quotations):
It is important to remember, however, that the superposition that occurs in QM is of an essen-
tially different nature from any occuring in the classical theory, as is shown by the fact that
the quantum superposition principle demands indeterminacy in the results of observations in
order to be capable of a sensible physical interpretation. The analogies are thus liable to be
misleading.

1.2 The space of states as a free vector space

We see that the ”states”, whatever they can be, should be intended from the mathematical
point of view as abstract objects of unspecified nature. We take these objects and put them
randomly in the emptiness of some ”space”, none of them may have a favoured position.
Now comes the superposition principle and tell us that these objects (pure states, eigenstates of
some operator or whatever they are) can be associated in a group of two or more: anticipating
the language of vector spaces we create all possible formal linear combinations of these objects
(the surprising fact that we allow complex coefficients we do not discuss here). We learn also
that the original objects must be ”independent” otherwise it could happen that one of them
is a superposition of other companions (this will just mean that the set of all the primitive
objects is something like a basis for the space). This procedure leads to the construction of
what the mathematicians call ”free vector space”.

1.3 Assigning a norm in the space

Since the results of measurements must be numbers we need a metric structure on the
vector space and this is most easily done if we require to have a norm on the space. Let us call
E the space, we consider the set S = {Ai} of primitive objects as a basis for E. It is natural
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to assume that all the Ai have the same norm, 1 say; also for symmetry reasons it can be
assumed that the mutual distance among them is constant, that is i �= j ⇒ �Ai − Aj�E = k
(a positive constant). We shall see later that S could be a symmetric basis or a symmetric
Schauder basis.

1.4 Norm is conditioned by probability

Let A �= B be objects in S and consider a vector v in a superposition state: v = λA+ µB
where λ and µ are nonzero complex numbers: how do we know the values of the coefficients in
the linear combination? After measurement the state of the system will be A with probability
p or B with probability (1− p) (for an exhaustive discussion on measurements in QM see [6,
ch. 17 and 18]). The value of p may be determined empirically after many measurements. The
way of assigning (a posteriori) a norm on the space and the values of the coefficients of the
linear combination may be considered to some extent conventional. It is however natural to
assume a priori that if the states A and B will result with the same probability, then then the
values taken by some function on these coefficients must be equal, if it is known a priori that
in the superposition state the coefficients are equal (for example because of some symmetry)
then the probabilities must be equal; moreover if the resulting of the state A is certain then
the coefficient of B is zero and that of A has any nonzero value (and vice-versa). Incidentally
these remarks suggest why the physical meaning of a state is unchanged when multiplied by a
nonzero (complex) scalar.
Consider a general superposition state v =

�
j
λjAj : we assume that a probability law for the

transition from v to Aj (which implies the relation between the coefficient λj and the proba-
bility pj) must be the same for every j; we also assume that for a given state Aj coefficients
of the same modulus depend on the same probability. In order to specify this relation between
λj and pj it is necessary to have some normalization: this will be done using the norm of the
state v =

�
k
λkAk. Let us set

pj =
h(|λj |)
h(�v�)

(1)

where h is a positive increasing function with h(0) = 0, h(1) = 1 and the norm is such that
|λj | = �λjAj� ≤ �v�. Note that since

�
k
pk = 1 and since a state multiplied by a nonzero

scalar does not change his physical meaning and consequently the underlying probabilities,
from (1) we get for any t �= 0

�

k

h(|λk|) = h(�v�) and
h(|λj |)
h(�v�)

=
h(|t||λj |)
h(|t|�v�)

(2)

taking �v� = 1 we obtain h(|λj |)h(|t|) = h(|t||λj |), thus h is a homogeneous function, that is,
h(x) = xs for some s > 0. Thus we have

pj =
|λj |

s

�v�s
and |λj | = �v�(pj)

1/s (3)

So if we want to recover the wave function from the probabilities empirically determined, all
we can say about the coefficients λj is that

λj = eiθj�v�(pj)
1/s

where θj is any real number. The factor �v� is of no importance but the phases (dependent
on j) eiθj cause an enormous indetermination!
We can give a ”negative” motivation for the use of complex scalars in QM: the wave function is
such a mysterious thing that it must be impossible to recover it! A more serious (a posteriori)
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reason given by S. Caser is discussed in [8] (ch.5 page 42).
We will show that the probability law determines or severely restricts the possible choices of
a norm in E.

2 Localization on [0,1]

We assume that the state of a particle is represented by a vector in a (complex) normed
space E of (Lebesgue measurable) functions defined on the interval [0, 1]. Let A be any (mea-
surable) subset of [0, 1], χA the characteristic function of A and µ = µ(A) the (Lebesgue)
measure of A (0 ≤ µ ≤ 1). We assume that

�χ[0,1]�E = 1 (4)

Let f ∈ E be the wave function of a particle αf : we will describe its relation with probability
in two different ways.

2.1 1st method - Rearrangement invariant spaces

If we define PAf = fχA then PA is a projection onto the subspace of E of functions
vanishing in [0, 1]\A = Ac; also (I−PA)f = PAcf = fχAc (where I is the identity projector).
The meaning of the state PAf is ”particle αf is localized on A”, that of PAcf is ”particle αf is
localized on Ac ”. We assume that for a particle αf the probability that {αf is localized in A}

is ”true” (we will write for simplicity {αf ∈ A}) is a function φ of the quantity �PAf�E
�f�E

, thus

0 ≤ φ( �PAf�E
�f�E

) ≤ 1.

Note that the condition that for any (complex) λ �= 0 the functions f and λf represent the
same state for a particle α is fulfilled by this definition. If {αf ∈ A} is ”true” then {αf ∈ Ac

}

is ”false” and vice-versa, hence

φ(
�PAf�E
�f�E

) + φ(
�(I − PA)f�E

�f�E
) = 1 (5)

If A ⊂ B ⊂ [0, 1] we must have p {αf ∈ A} ≤ p {αf ∈ B} that is

φ( �fχA�E
�f�E

) ≤ φ( �fχB�E
�f�E

) and for f = χ[0,1], using (4), we obtain

φ(�χA�E) ≤ φ(�χB�E). On the other hand by (5) we also have
φ(�χA�E) + φ(�χAc�E) = 1 thus 0 ≤ φ(t) ≤ 1 and φ is (strictly) increasing.
Note that if the particle αf is in the state f = χ = χ[0,1] we have no information on its
localization, therefore we have

p {αχ ∈ A} = µ(A) = φ(�χA�E)

so that �χA�E = φ−1(µ(A)) depends only on the measure of A. This is a condition that the
norm on E must satisfy.
Two functions f, g in E are called equimeasurable if they have the same distribution function,
the distribution function Dh of a function h ∈ E being defined by

Dh(y) = µ{t : |h(t)| > y} (y ≥ 0).

Recall also the following

Definition. A Banach space E of measurable functions on [0, 1] is called rearrangement
invariant (or symmetric) if:
i) from |x(t)| ≤ |y(t)|, y ∈ E, it follows that x ∈ E and �x�E ≤ �y�E ;
ii) from the equimeasurability of the functions x, y and from y ∈ E it follows that x ∈ E and
�x�E = �y�E .
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Standard examples of such spaces are Lp , Orlicz, Lorentz and Marcinkievicz spaces. We
can now prove

Theorem 1. The quantum space E must be a rearrangement invariant (symmetric) space.

Proof. It will be enough to prove that the following two properties hold for every f and
g in E

i) |f | ≤ |g| ⇒ �f�E ≤ �g�E

ii) f and g equimeasurable ⇒ �f�E = �g�E

It will be enough to consider simple functions.
i) Assume that

f =
�

i

ciχAi ; g =
�

i

diχAi

where {Ai} is a partition of [0, 1] and |ci| ≤ |di|. Using formula (5) when generalized to
partitions we obtain

1 =
�

i

φ(
�ciχAi�E

�f�E
) =

�

i

φ(
|ci|�χAi�E

�f�E
) =

�

i

φ(
|di|�χAi�E

�g�E
)

since |ci| ≤ |di| and φ is increasing we have 1 ≤
�

i
φ(

|di|�χAi
�E

�f�E
); if it were �g�E < �f�E we

would have 1 <
�

i
φ(

|di|�χAi
�E

�g�E
) = 1 : a contradiction.

ii) Assume that

f =
n�

i=1

ciχAi ; g =
n�

i=1

diχBi

where {Ai} and {Bi}are partitions of [0, 1]. The functions f and g will be equimeasurable if
|ci| = |di| and µ(Ai) = µ(Bi).
As above we have

1 =
�

i

φ(
|ci|�χAi�E

�f�E
) =

�

i

φ(
|di|�χBi�E

�g�E
)

Since we know that �χAi�E = �χBi�E the last argument in i) shows here that �f�E =
�g�E . QED

2.2 2nd method -Lp spaces

We assume that the probability that the particle αf is found in A is given by

p {αf ∈ A} =
φ(�fχA�E)
φ(�f�E)

(6)

where φ is a positive real function. For f = χ = χ[0,1] we get

p {αχ ∈ A} =
φ(�χA�E)

φ(1)
(7)

and it is natural to assume in this case that p {αχ ∈ A} = µ(A). Thus we have that

φ(�χA�E) = φ(1)µ(A) (8)

Since for any (complex) λ �= 0 the functions f and λf represent the same state for the particle,
using (7) for f = χ = χ[0,1] we get

p {αχ ∈ A} =
φ(�χA�E)

φ(1)
=

φ(|λ|�χA�E)
φ(|λ|)
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that is in general one has φ(ab)φ(1) = φ(a)φ(b). Assuming that φ is differentiable we see that φ
must be of the form φ(x) = kxp where p is positive and k (= φ(1)) ≥ 1. We therefore conclude
that

φ(x) = kxp ; �χA�E = µ1/p (µ = µ(A))

Note that there is no restriction in assuming that k = 1 = φ(1).

Lemma. Assume that two elements f and g of E have disjoint supports, then

φ(�f + g�E) = φ(�f�E) + φ(�g�E) (9)

Proof. With no restriction we assume that supp(f) = A, supp(g) = Ac. We have that
f + g = fχA + gχAc . For the particle αf+g we must have p {αf+g ∈ A}+ p {αf+g ∈ Ac

} = 1
so that by (6) we get

φ(�f�E)
φ(�f + g�E)

+
φ(�g�E)

φ(�f + g�E)
= 1

and the assertion follows immediately. QED

For x ∈ [0, 1] and f ∈ E let us define

Qf (x) = Q(x) = φ(�fχ[0,x]�E) = φ(�f�) p {αf ∈ [0, x]}.

Note that since fχ[0,x+h] = fχ[0,x] + fχ[x,x+h] (here h > 0) we have by (9)

φ(�fχ[0,x+h]�E) = φ(�fχ[0,x]�E) + φ(�fχ[x,x+h]�E)

and consequently Q(x + h) − Q(x) = φ(�fχ[x,x+h]�E), this last quantity, assuming some
regularity for f and recalling (8), is approximated by

φ(�|f(x)|χ[x,x+h]�E) = φ(|f(x)|φ−1(h)) = h|f(x)|p

Theorem 2. We have p ≥ 1 and for f ∈ E

�f�E = �f�p = (

� 1

0

|f(t)|pdt)1/p

and consequently E = Lp[0, 1].

Proof. From the above calculation we get immediately that Q�(x) = |f(x)|p, conse-
quently

Q(x) =

�
x

0

|f(t)|pdt = (�fχ[0,x]�E)
p Q(1) = �f�p

E
=

� 1

0

|f(t)|pdt

�f�E = (

� 1

0

|f(t)|pdt)1/p

and the last formula defines a norm in E only if p ≥ 1 . QED

2.3 Which norm on E ?

The conditions imposed in the first method force E to be a rearrangement invariant space,
imposing the more restrictive conditions of the second method results in E being a Lp space.
Up to this point we have seen that a space E for a quantum system, also taking the more
restrictive point of view, can have any Lp or lp norm. Apparently there is no a priori reason
that p should be equal to 2, all the p-norms are likely to give a correct description (see 6.2 in
the Appendix). In order to find a possible a priori motivation for using the euclidean norm we
will perform some further steps.
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2.4 What is a property ?

Once it is established that the state of a quantum particle is somehow represented by a
vector in a (possibly infinite dimensional) complex normed vector space E, one might want to
define what it is meant by a specific ”property” of the particle.
Recall that an operator P : E → A where A is a (closed) subspace of E is a projection if it is
linear continuous and acts as the identity on A.
J. von Neumann first suggested to identify a ”property” with such a projection P or, equiva-
lently, with the subspace A. This point of view has been exhaustively described in the books
[6, ch 4] and [8, ch 9].
Let P be a (physically meaningful) projection from E onto a (closed) subspace, (we have
already considered such an example in 2.1 and 2.2). We assume that for a particle αf the
probability that the ”property” P is ”true” depends only on the two vectors f and Pf . If
property P is true its negation must also be a property and must be false: the negation of P
must be the projection (I −P ). For particle αf the union of the two ”events” P, (I −P ) must
give the event certain: indeed we have P +(I−P ) = I (see [6] for a complete discussion); thus
passing to the probabilities we must have

p{Pf}+ p{(I − P )f} = 1. (10)

From (10) it follows the

Result 1. If P is a physically meaningful property (projection) then

�P�E = �I − P�E = 1

Proof. If (for example) �I−P�E > 1 there exists an f with �f�E = 1 and �(I−P )f�E >
1 but by (5) this is impossible since φ is positive. QED

Calling now the properties ”subspaces” one has to keep in mind that the two subspaces
P (E) and (I−P )(E) do not exhaust E: there are vectors of E which belong to neither subspace:
the property for a vector to belong to a different subspace is meaningless and unrelated with
our P (see again [6, 4.4 page 56]). One has also to consider the following: is it true that any
(closed) subspace or any (norm one) projection can be considered as a physically meaningful
property? This can be questionable.

3 Characterizations of Hilbert spaces

Since we are interested in possible a priori motivations for the use of Hilbert spaces in
QM, it is natural to ask which are the characteristic properties of Hilbert spaces that are
meaningful for this purpose. Many Hilbert space characterizations are known, see for example
[1] for references up to 1985.

3.1 Kakutani’s characterization of Hilbert spaces

The Jordan-von Neumann parallelogram equality (1935) is perhaps the best known char-
acterization:

Theorem 3. A normed space E is an inner product space (ips) if and only if for every
x, y ∈ E one has

�x+ y�2 + �x− y�2 = 2�x�2 + 2�y�2 (11)
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This is essentially a 2-dimensional characterization: E is ips if and only if every plane in E is
ips and a plane is ips if and only if (11) holds. From (11) many 2-dimensional characterizations
are deduced, but we must look to a different type of characterizations.
In a ips space E every (closed) subspace is the range of a norm-1 projection, namely the
orthogonal projection (note that ”norm-1 projection” is a meaningful concept in every normed
space, not so the concept of ”orthogonal projection”), the converse is also true but much more
can be said. Here we state a case of the celebrated Kakutani’s theorem

Theorem 4. A normed space E of dimension at least 3 is a Hilbert space if and only if
every closed hyperplane V of E is range of a norm-1 projection P of E .

In this characterization a dimension greater than 2 is needed for the following reason: if
E is 2-dimensional the hyperplanes are just the 1-dimensional subspaces but, as it is easily
seen, a 1-dimensional subspace is 1-complemented in any normed space. So this is essentially
a 3-dimensional characterization. From now on 2 and 1-dimensional Hilbert spaces will be
ruled out from our considerations. Incidentally there is another good reason for this: in fact it
has been proved that no universal value functional defined on the collection of all observable
or Hermitian operators satisfying certain two natural conditions can exist in a QM space of
dimension at least 3, thus the ”paradoxical” feature of QM can be detected only in spaces of
dimension at least 3, spaces of lesser dimension having no QM interest (see [6] 22.2 page 299
and 22.3 page 301).

Kakutani’s theorem above and Result 1 imply immediately the following

Result 2. If all the hyperplanes of a quantum space E are physically meaningful proper-
ties (projections) then E must be a Hilbert space.

Indeed one can do much better: if the space E has some symmetry properties one can
prove that it is Hilbert even assuming that just one of its hyperplanes is 1-complemented. Let
E be a rearrangement invariant space, then

Pf = (

� 1

0

f(t) dt)χ[0,1] (12)

defines a projection P of E onto the 1-dimensional subspace of the constant functions. In every
E we have �P�E = 1; (I−P ) is a projection onto the hyperplane of the null average functions,
(I − P ) is minimal and 1 ≤ �I − P�E ≤ 2. The following characterization is known:

Theorem 5. (see [5],[7]) Let E be a rearrangement invariant space of measurable func-
tions on [0, 1] such that �I − P�E = 1. Then E = L2[0, 1].

As a consequence of Result 1 and of the above theorem we have

Result 3. If the projection P (or the projection I − P ) defined in (12) is a physically
meaningful property then the quantum space E must be Hilbert.

Unfortunately we do not know whether P (or I−P ) is related with a physically meaningful
”property” for a particle.

4 The finite dimensional case

We assume that the state of a particle is represented by a vector x in a n-dimensional
(complex) normed space E with canonical basis {ei} so that x =

�
xiei.

The results of section 3 apply with the obvious modifications. Regard E as a space of functions
defined on X = {1, 2, .., n} with the counting measure and the normalization �χ{i}� = 1.
The conditions imposed in the first method force E to be a symmetric space with respect the
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canonical basis: explicitly this means

�

n�

i=1

|ai|ei� = �

n�

i=1

aπ(i)ei�

for every scalar ai and every permutation π of {1, 2, .., n}.

Second method restricts E to be a lp(n) space: write f =
n�

k=1

fχk, by (9) we get φ(�f�) =

n�

k=1

φ(�fχk�), �f�
p =

n�

k=1

|f(k)|p . The projection defined in (12) takes now the form

Px = (
1
n

n�

i=1

xi)u (13)

where u is the constant vector (1, 1,..,1), (I − P ) is a projection onto the hyperplane of the
null average vectors. The symmetry of the basis implies that in any such space E we have
�P�E = 1, we also have 1 ≤ �I − P�E ≤ 2. However the condition �I − P�E = 1 does not
imply that E is Hilbert since there exist non Hilbert symmetric spaces E with �I − P�E = 1
(this is proved in [3, Theorem 5]). We see here a difference between the infinite and the finite
dimensional case. If however we assume by hypothesis that E has a p-norm (as it happens via
the second method), then

Theorem 6. If E = lp(n) for some p ≥ 1 then the condition �I − P�E = 1 implies that
E is Hilbert.

Using again Result 1 and the above theorem (which we prove in 6.1 in the Appendix) we
obtain

Result 4. If the projection P (or the projection I − P ) defined in (13) is a physically
meaningful property then the quantum space E must be Hilbert.

4.1 A special case

In order to investigate the relevance of the projector onto the null average functions we
consider a special case.
Let us first recall that a square matrix H = {hij} is a Hadamard matrix of order n if |hij | = 1
and HHT = nI. Beside the trivial cases n = 1, 2 a Hadamard matrix must have order 4n,
existence is known for infinitely many n, the existence for any n is still an open conjecture.
Let the integer n be such that there exists a Hadamard matrix H of order 4n, it is known that
H can be normalized in such a way that in the first row and in the first column all the entries
are 1; let hi = (σi1,σi2, ..,σi4n) be the rows of H (|σij | = 1, h1 = (1, 1, .., 1)), for i > 1 (2n)
entries of hi are equal to 1 and (2n) to -1, any two rows have exactly 2n matches (they are
mutually orthogonal).
Consider the space E = R4n with a norm symmetric with respect to the standard basis and let
H be a Hadamard matrix as above. Note that {hi} is a basis for E. Let Pi be the projection
onto the span of hi defined by

Pix = (
1
n

4n�

k=1

σikxk)hi

The symmetry of the space implies that �Pi� = 1; note that (I − P1) is the projector onto
the hyperplane of the null average functions, {h2, h3, .., h4n} being a basis for this hyperplane.
Assume that E has a lp-norm, then Result 4 implies
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Result 5. If (I − P1) or at least one of the projections Pi is a physically meaningful
property then the quantum space E must be Hilbert.

5 Final remarks

Two basic facts of QM, the superposition principle and the probabilistic nature of phe-
nomena, seem to imply that the quantum space E has to be a rearrangement invariant space
or more specifically a Lp space. E will become a Hilbert space as soon as one can show that
some special projections define ”properties” which possibly have ”physical meaning” (see for
example 4.1 above).
In conclusion there is some evidence that the axiom ”E is a Hilbert space” could be removed
from the list of axioms of QM and replaced with a weaker one or even deduced from the others
(here the term ”axiom” should not be intended as mathematicians and/or logicians do but in
a somewhat looser way).

6 Appendix

6.1 Proof of Theorem 3

Indeed the result is practically contained in [2, section 3] where it is proved that, setting

hp(t) = [(t1/p)q + [(1− t)1/p]q]1/q[(t1/q)p + [(1− t)1/q]p]1/p (1/p+ 1/q = 1)

one has
�I − P�p = max{hp(k/n), 0 ≤ k ≤ n} .

Clearly �I − P�p ≥ 1, however it is not shown explicitly when inequality is strict. In fact we
prove that for n > 2 and p �= 2 we have �I − P�p > 1.
Using obvious notations we can write

hp(t) = �(t1/p, (1− t)1/p)�q�(t
1/q, (1− t)1/q)�p

by the Hölder inequality we obtain

hp(t) ≥ �(t1/p+1/q, (1− t)1/p+1/q)�1 = �(t, 1− t)�1 = 1

It is easily seen that we have equality in the Hölder inequality for any t for p = 2; for p �= 2
equality holds only in the points t = 0, 1/2, 1 but if n > 2 the max{hp(k/n), 0 ≤ k ≤ n} cannot
be attained in such points.

6.2 A toy model

Consider the toy Mach-Zehnder interferometer discussed in [6] (13.2, pages 178-179), we
try to show that the model could be worked also with a p-norm in the space making the nat-
ural modifications. We start defining in a parallel way an operator S which will be the time
”unitary” transformation in the p-generalized sense; keeping the same notations as in [6] we
set:
S |mz� = |(m+ 1)z� with the exceptions

S |0a� = 2−(1/p)(|1c�+ |1d�) , S |0b� = 2−(1/p)(− |1c�+ |1d�) ,

S |2c� = eiφ |3c� , S |2d� = eiψ |3d� ,
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S |3c� = 2−(1/p)(|4e�+ eiα |4f�) , S |3d� = 2−(1/p)(− |4e�+ eiβ |4f�) .

A particle (photon) which enters the a channel undergoes a unitary time evolution of the form
(we just quote from [6] every time it is possible)

|0a� �→ 2−(1/p)(|1c�+ |1d�) �→ 2−(1/p)(|2c�+ |2d�) �→ 2−(1/p)(eiφ |3c�+ eiψ |3d�)

�→ 2−(2/p)
�
(eiφ − eiψ) |4e�+ (ei(φ+α) + ei(ψ+β)) |4f�

�
(14)

Set τ = (φ− ψ)/2 , θ = (α− β)/2 and note that
���eiφ − eiψ

��� = 2| sin(τ)| ,
���ei(φ+α) + ei(ψ+β)

��� = 2| cos(τ + θ)|

S will be p-unitary if the p-norm of the term in (14) is 1, that is if

| sin(τ)|p + | cos(τ + θ)|p = 2(2−p) . (15)

For every p ≥ 1 there are solutions of (15) in τ and θ.
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