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Introduction

The class of all (bounded linear) operators between arbitrary Banach spaces is denoted
by L, while L(E, F) stands for the space of those operators acting from E into F, equipped
with the usual operator norm

ISI =115 : E = F|| := sup{[|Sz|[r : [l«]| <1}

E’ denotes the set of all functionals on a Banach space E. The closed unit ball of E’ is denoted
by U° and the identity map of E is denoted by Ig.

We refer to [11] for definitions and well-known facts about operator ideals.

Let A be an operator ideal. Then Space(A) is the class of all Banach spaces E such that
Ip € A.

An operator T' € IL(E, F) is called absolutely (q,p)-summing (1 < p < g < o0) if there
exists a constant ¢ > 0 such that

1/p

n 1/q n
(Z ||sz-|qp> < csup (Z |<xi,a>|'?) cae U
=1 i=1

for every finite family of elements z1,...,z, € E. The set of these operators is denoted by
Iy »(E,F). For T € 11y ,(E, F) we define 7q,(T) := inf ¢, and then [Ily ,, 7q,p] is a normed
operator ideal. We put [I, ,, 7, p] = [IIp, 7p]. Further information is also given in [8] and [11].

An E-valued sequence (z;) is said to be absolutely p-summable (1 < p < 00) if (||z:||g) € lp.
The set of these sequences is denoted by [l,, E]. For (z;) € [lp, E] we define

oo 1/p
@)y, ) = (Z Ixil%> :
=1
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An E-valued sequence (z;) is said to be weakly p-summable (1 < p < o0) if ((z;,a)) € Ip
for all a € E’. The set of these sequences is denoted by [w,, E]. For (z;) € [wp, E] we define

oo 1/p
(@)l ) == sup (Z |<xi,a>|”> racU”
i=1

Let us recall (see [8, p. 218], or [16, p. 94]) that a Banach space E is said to have cotype
q, with 2 < ¢ < o0, if there exists a constant ¢ > 0 such that

n 1/q 1 n
(Z ||xz~|%> <e [ I o
i=1 i=1

for all finite families of elements 1, ..., x, € E, where r; denotes the i-th Rademacher function.
It is well-known (see [8, p. 224]) that if F is of cotype ¢q then Ig € I1,1(E, E).

If 1 < p < oo, then the dual exponent p’ is determined by 1/p+ 1/p’ = 1.

In all what follows almost all definitions concerning approximation spaces are adopted
from [13].

An approzimation scheme (E, Ay,) is a Banach space E together with a sequence of subsets
A,, such that the following conditions are satisfied:

(i) Ay C A, C...CE.

(ii) A, C A, for all scalars A and n=1,2,....

(iii ) Am + Ap C Appgn for myn=1,2,... . We put 4o := {0}.

Let 1 < p < oo. Let (E, A,) be an approximation scheme. If [wy, A,] and [l,, Ay] consist
of all An-valued sequences of [wp, E] and [Ip, F], respectively, then we get the approximation
schemes

([wp E) [wp, Aal) — and— ([ly, B, [, An]).

Let (E, An) be an approximation scheme. For x € E and n = 1,2,... , the n-th approwi-
mation number is defined by

an(z, E):=inf{||z —a||lg :a € Ap_1}.

Let 0 > 0 and 1 < u < co. Then the approzimation space E;, or more precisely (F, A,)S,
consists of all elements x € E such that

(n" M an (2, B)) € L,
where n =1,2,... . We put
l2lleg = I(n" " “an(z, E))[1,  for  x€ .

Then E; is a Banach space.

Theorem 1 (Representation Theorem (cf [13])). Let (X, A,) be an approzimation scheme.
Then f € X belongs to X£ if and only if there exist ay € Aqr such that

]

f= Zak and  (2°||ax]|) € L.

k=0

Moreover,

115 = inf [|(2" lax ]| x) € Lu,

where the infimum is taken over all possible representations, defines an equivalent quasi-norm
on X£.
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An approximation scheme (E,Ay) is called linear if there exist a uniformly bounded
sequence of linear projections P, mapping E onto A,. Then it follows that

lz = Poazlle < can(z, E)
forallz € Fand n=1,2,..., where

¢:=1+sup |[PrllLie.p)-

With the help of the projections
Qr = Por+1_1 — Py _4

we can formulate the

Theorem 2 (Linear Representation Theorem (cf.[13])). Let (X, A,) be a linear approxi-
mation scheme. Then f € X belongs to X£ if and only if

(2" |Qx fllx) € Lu

In this case we have
F=Y Quf
k=0

Moreover,
li k
1f1xe = 1@k fllx)le

s an equivalent quasi-norm on X£.

1 (gq,p)-summing operators

We state the

Lemma 1. Let p > 0 and 1 < u < r < co. Let (E,Ayn) be an approzimation scheme.
Then
({lr, E), [lr, AnD)? C I, EX].

Proof. Let x € ([lr, E], [I», An])%, with © := (2,). Then, by the representation theorem of [13],
there exist =¥ € [l,, Ayx] such that (2°°||z% ||, 5)) € lu and = = 327° 2" (convergence in
[lr, E]). If 2" := (2%), then for k = 0,1,... and n = 1,2,... we have

[*S)
_ k
Tn = T,
k=0

2" |lznllE) € b,

and

Hence, and also from the representation theorem of [13], we get a constant ¢ > 0 such that

o 1/u
k k
@]y < c (Z[Q ”II%IEY‘)

k=0
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for n =1,2,.... Therefore, since 1 < u < r < 0o, we obtain
0o 1/r . I r/u 1/r
(Sotontecr) < ed 3 (St
n=1 n=1 \k=0
o - e\ 1/u
< ¢ Z ke |:Z ||xfl|}:;:| < 00
k=0 n=1

and then z € [I,, Ef]. Consequently
([l'm EL [l7'7 An])z g [lm EEL

and the continuity of the inclusion follows from the closed graph theorem.
QED

Throughout this section we consider (see [12, p. 39]) the metric isomorphisms
St L(ly , B) = [wp, E]

and
Sk : L(co, E) — [un, E],
with 1 < p < oo. In both cases, the E-valued sequence (x;) is identified with the operator
R(a;) =32, ayx;. Hence, if (E, A,) is an approximation scheme, then we have the approx-
imation schemes
(Ll B), (S5) ™" ([wp, An)))
and

(L(co, B), (SB) ™ ([w, An))),
for 1 < p < oo. The corresponding approximation spaces will be denoted by L(l,/, E); and
L(co, E)%, respectively.
Next we prove the
Lemma 2. Let p > 0 and 1 < p < oo. Let (E, A,) be a linear approzimation scheme.
Then
L(l,, E%) CL(ly, E)%
and
L(Co, Ego) g ]L(Co, E)'go

Proof. We consider the first inclusion, since the proof of the second case is analogous.
Let T € L(l, EX). Then P, T € (S%) 7! ([wp, An—1]), and therefore

an(TvL(lp’7 E)) S ”T - P’nflT”]L(lp/,E)

for n =1,2,..., where P, are the corresponding projections from E onto A,,.
If x € 1,/ then
| Tz — Poo1Tz||E < can(Tz, E)
forn=1,2,..., where

c:=1+sup ||PrllE k-

Hence
nH||Tx — Pooi1Tx||p < enfan(Tx, E) < ¢ sup n*an (T2, E) = || Tx|| gu
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and
T = PoaTllLq,, ) < cllTllq,,,mx)

forn=1,2,....
Combining the observations above, we obtain

||T||1L(zp,,E)go = Sup n”an(Ta ]L(lp'v E))
n
< sup n"(|T = PoaTllLq,, ) < cllTllq,, me)
QED

Now we are ready to establish a general result.

Theorem 3. Leto > 7 >0 and 1 < u,v < 0. Let (E, A,) and (F, By) be approzimation
schemes, and suppose that (E, Ay) is linear. Let T € Iy ,(E, F), with 1 <p < g < co. If

T(A,) C B, for n=12,...,
then T € I, ,(ES, F7).

Proof. We assume that 1 < p < oo, since the case p = 1 can be treated similarly.
In view of T(A,) C By forn=1,2,... , we have T € L(Ey, F]). By Proposition 3 of [13] we
get F C Fy, and then T € L(E;, Fy).

Since T € I, ,(E, F), from [11, (17.2.3)] if 7" is defined by

T (i) = (T),

then T € L([wp, E, [lg, F]).
We have

TS5 ((S5) ™" ([wp, An])) = T([wp, An]) C [lg; Ba] ~ for  n=1,2,...,
and this yields the operator
TS5 : Lly, B)S = ([lg, FI, [lg, Ba]) %

We choose p with o > p > 7 and w with 1 < w < ¢. Then, using Proposition 3 of [13], we
obtain
(llgs F1, [lgy Bal)Zo € ([lg, FT, [lg, Bul)%-
From Lemma 1., we get
(llg, F], [lg; Bn])% € [lg, Fi].

Consequently, we have the inclusions
([la, F, [lg, Bal)3o € [lg, FiE] € [lg, FY-

QED

Now we also consider (see the comments before Lemma 2) the metric isomorphism
Sggo : ]L(lp’a Ego) - [w;lN Ego]
Hence, by Lemma 2. and the observations above, we have the operators
SP )71

(EU

[wp, BZ] 2% L(ly, BL) 5 L(ly, B)%
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and

, TSt . J -
L(lp’vE)oo — ([lqu]ﬂ [ZCNBTL])OO = [ZQ7Fv]7

where J; and Jo denote} the corresponding inclusions.
Finally, if U := J2T'S%,J1(S%, )~ " then

U e L([wpaEgoL [lq,FJ])

is of the form
U:(zn) = (Tzn)

for (zn) € [wp, EL)]. Therefore, since Ey, C EZ, we also have
U € L([wp, E7], g, ),
and from [11, (17.2.3)] we conclude that T € 11, ,(Eg, Fy).

Remark 1. We mention that in the case of interpolation spaces, a theorem of the above
type goes back to J. Peetre [10].

Remark 2. We observe that the observations above can be obtained in the case of (E, Ar)
to be quasicomplemented in the sense of [4].

Remark 3. Other more general approximation spaces are found in [1], [2] and [3].

Now, we give some applications.

Let 1 < p < co. For any measure space (2, X, u) with p positive we define L, (€, X, 1) to be
the space of all (equivalence classes of) ¥-measurable functions such that [, [f(w)[? du(w) <
co. Such functions are called p-integrable. It is a Banach space with the norm ||f|, :=
(Jo 1f ()P dp(w))*?. In the important example of the real line equipped with the Lebesgue
measure, we simply write L,(R). Is well-known (see for example [16, p. 98]) that the space
L,(Q, %, 1) is of cotype max (2, p).

In the following we consider complex-valued 27-periodic functions on the real line. Then
the periodic analogous of L,(R) is denoted by Ly (27). Its norm is

i = (& [ swra)”

The space L,(2) is also of cotype max (2, p).

A trigonometric polynomial of degree n is a function ¢ which can be represented in the
form

t€) = > exp(ik§) forall E€R,
|k|<n

where v_n,...,7n € C and |y—n| + |yn| > 0. If so, then we write deg(t) = n.

Let 1 < p < co. We denote by T}, the subset of L,(27) which consist of all trigonometric
polynomials such that deg(¢) < n. Then we have the linear approximation scheme (L, (27), T5).
If o >0and 1 <u < oo, we put

Bp.u(2m) i= (Lp(2), Tn) -

It can be seen from approximation theory that By ,(27) are the Besov function spaces (see

Bl [7])-

We are now prepared to give the
Theorem 4. Let o > 7> 0,1 <p < oo and 1 < u,v < oo. Let ¢ := max (2,p). Then,
the embedding operator Ip2xy from By ,(27) into By ,(2m) satisfies

IB(27r) € Hl]vl(Bz,u(Zﬂ—)? B;71,(27T)).
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Proof. Since the space Lp(27) is of cotype ¢, then
Ip,2m) € Mg,1(Lp(27), Lp(27)).
Hence, from Theorem 3 we obtain
Ipr) € g1 (Lp(27), Tn)u, (Lp(27), Tn)y)
with
(Lp(27m),Th)e = By (2m) and  (Lp(27),Th),, = By, (27),

and this completes the proof.

Remark 4. The (v, 1)-summing property for embedding operators between some function
spaces, was also studied in a different context in [15].
It is well-know, that every function f € Li(27) induces a convolution operator
27

clygln) — F(§&—=m)g(n)dn

on C(27) and Ly(27) with 1 < p < oo.
Theorem 5. Let f € L,(27) with 1 < p < co. Then
Cgp € Hp’(BZ/,u(Qﬂ’)r By w)
with 1 < wu,v < o0 and p > o > 0.

Proof. We consider the factorization
T,
TS, =IT! . Ly(27) ¥ Leo(27) 5 Ly (27)
and, by [12,(1.3.9)], we know that
Iell /(LOO(QW),L /(271')).

Since CZ,(T) C T, for every n, the result follows from 3. QED

Let I be the interval [0,1] and let m be an integer, m > —1. We consider the orthonormal
systems {f\™ : n > —m} of spline functions of order m defined on I (for the definition and
main properties see [6]) . This system is a basis in C'(I) and L,(I) for 1 < p < o0

The best approximation error in L, (I) for 1 < p < oo and in C(I) for p = oo is defined by

EV ()= b f = Y aif™
{ommeman}
Let 0 < a <m+1+1/p,1 <0 < oco. Then B, ;"(I) denotes the Banach space of all
functions which belong to L,(I) for 1 < p < oo and to C(I) for p = oo, equipped with the

norm
oo

1/0
1l = 171+ <Z[2”“E§Tfp(f)}9>

n=0
(see [14]). We have
C(g =BL(I) Ly = B,3"(I)
for 1 < p < 0. Using that the imbedding i : C'(I) — Lp(I) is p-summing, from Theorem 3,
we obtain

Theorem 6. The imbedding j : B3y (I) — Bﬁ’é” with a > B is p-summing.
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2 ) ,-property

Let 1 < p < oo. An operator ideal A satisfies the X,-condition if and only if for arbitrary
Banach spaces E,, F, (n =1,2,...) the following holds
(Sp) : It T €L((SEn)p, (SFn)p), and QTP € A(Epm, Fy)
(m,n=1,2,...), then
T € A(SEn)p, (SFa)y).
Ezamples (cf.[9]). The following ideals are injective and surjective and satisfy the 3~ -condition.

(i) weakly compact operators.

(ii) Rosenthal operators.
(iii) Banach-Saks operators.
(iv) Decomposing operators.
Now we can formulate the following

Theorem 7. Let (X, Ay) be a linear approzimation scheme such that A, is finite dimen-
sional forn = 1,2,.... Let A be an injective and surjective operator ideal which satisfies the
Yu-condition for 1 < u < co. Then

(X ||Z)Z(Z/%) € Space(A)

Proof.  (a) The surjection Q.
Let Ex be the Banach space A,r with the norm

lz)ls, =2"||zlx (v € Ex

Let Q : (Z?’ZO Ek)u — X/ be the mapping defined by

Qar) =d o ((w)) € (Z E)
k=0 k=0 w

By the Representation Theorem the series > 77, ax is convergent in

(X2 1-1%2)
therefore in
(20152
By the same reason, @) is a surjection.
(b) The injection J.
Let Qg := Port1 — Por—1 and let Fj := Qx(X) be equipped with the norm

Izllm, :=2"llelx  (z € Fy)
Let J: X — (352, Fk)u be the mapping
J(f) = @Q(f)  (f €XD)
Then, by the Linear Representation Theorem, we obtain

70 iz, ), =91

XL )
L



Operators between Approximation Spaces 163

so that J is a injection.

Finally, we have the composition

En &m (ZEk> 9 xr <2Fk> LN
k=0 k=0

u u

where Q,,

(z) == (0,0,...,0,z,0,...) where the only nonzero entry is the n-th coordi-
nate, and P,

(z:) := Qn(zn). Hence
P,JQQ, = Q, €EF(En, F,),
(F is the set of finite rank operator) consequently
PrJQQ, = Qm € A(En, F,)
(n,m =1,2,...) and, by the )", -condition, we get
JQ = JxpQ € A(XE, XE).

This implies

since A is injective and surjective.
QED
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