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Introduction

The class of all (bounded linear) operators between arbitrary Banach spaces is denoted
by L, while L(E,F ) stands for the space of those operators acting from E into F , equipped
with the usual operator norm

‖S‖ = ‖S : E → F‖ := sup{‖Sx‖F : ‖x‖ ≤ 1}.

E′ denotes the set of all functionals on a Banach space E. The closed unit ball of E′ is denoted
by U◦ and the identity map of E is denoted by IE .

We refer to [11] for definitions and well-known facts about operator ideals.

Let A be an operator ideal. Then Space(A) is the class of all Banach spaces E such that
IE ∈ A.

An operator T ∈ L(E,F ) is called absolutely (q, p)-summing (1 ≤ p ≤ q < ∞) if there
exists a constant c ≥ 0 such that

(
n∑

i=1

‖Txi‖qF

)1/q

≤ c sup





(
n∑

i=1

|〈xi, a〉|p
)1/p

: a ∈ U◦





for every finite family of elements x1, . . . , xn ∈ E. The set of these operators is denoted by
Πq,p(E,F ). For T ∈ Πq,p(E,F ) we define πq,p(T ) := inf c, and then [Πq,p, πq,p] is a normed
operator ideal. We put [Πp,p, πp,p] = [Πp, πp]. Further information is also given in [8] and [11].

An E-valued sequence (xi) is said to be absolutely p-summable (1 ≤ p <∞) if (‖xi‖E) ∈ lp.
The set of these sequences is denoted by [lp, E]. For (xi) ∈ [lp, E] we define

‖(xi)‖[lp,E] :=

( ∞∑

i=1

‖xi‖pE

)1/p

.
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An E-valued sequence (xi) is said to be weakly p-summable (1 ≤ p < ∞) if (〈xi, a〉) ∈ lp
for all a ∈ E′. The set of these sequences is denoted by [wp, E]. For (xi) ∈ [wp, E] we define

‖(xi)‖[wp,E] := sup





( ∞∑

i=1

|〈xi, a〉|p
)1/p

: a ∈ U◦



 .

Let us recall (see [8, p. 218], or [16, p. 94]) that a Banach space E is said to have cotype
q, with 2 ≤ q <∞, if there exists a constant c ≥ 0 such that

(
n∑

i=1

‖xi‖qE

)1/q

≤ c

∫ 1

0

‖
n∑

i=1

ri(t)xi‖ dt

for all finite families of elements x1, . . . , xn ∈ E, where ri denotes the i-th Rademacher function.
It is well-known (see [8, p. 224]) that if E is of cotype q then IE ∈ Πq,1(E,E).

If 1 < p <∞, then the dual exponent p′ is determined by 1/p+ 1/p′ = 1.
In all what follows almost all definitions concerning approximation spaces are adopted

from [13].
An approximation scheme (E,An) is a Banach space E together with a sequence of subsets

An such that the following conditions are satisfied:
(i) A1 ⊆ A2 ⊆ . . . ⊆ E.
(ii) λAn ⊆ An for all scalars λ and n = 1, 2, . . . .
(iii ) Am +An ⊆ Am+n for m,n = 1, 2, . . . . We put A0 := {0}.
Let 1 ≤ p < ∞. Let (E,An) be an approximation scheme. If [wp, An] and [lp, An] consist

of all An-valued sequences of [wp, E] and [lp, E], respectively, then we get the approximation
schemes

([wp, E], [wp, An]) and ([lp, E], [lp, An]).

Let (E,An) be an approximation scheme. For x ∈ E and n = 1, 2, . . . , the n-th approxi-
mation number is defined by

αn(x,E) := inf {‖x− a‖E : a ∈ An−1}.

Let σ > 0 and 1 ≤ u ≤ ∞. Then the approximation space Eσ
u , or more precisely (E,An)

σ
u,

consists of all elements x ∈ E such that

(nσ−1/uαn(x,E)) ∈ lu,

where n = 1, 2, . . . . We put

‖x‖Eσ
u
:= ‖(nσ−1/uαn(x,E))‖lu for x ∈ Eσ

u .

Then Eσ
u is a Banach space.

Theorem 1 (Representation Theorem (cf [13])). Let (X,An) be an approximation scheme.
Then f ∈ X belongs to Xρ

u if and only if there exist ak ∈ A2k such that

f =

∞∑

k=0

ak and (2kρ‖ak‖) ∈ lu.

Moreover,
‖f‖rep

X
ρ
u
:= inf ‖(2kρ‖ak‖X) ∈ lu,

where the infimum is taken over all possible representations, defines an equivalent quasi-norm
on Xρ

u.
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An approximation scheme (E,An) is called linear if there exist a uniformly bounded
sequence of linear projections Pn mapping E onto An. Then it follows that

‖x− Pn−1x‖E ≤ cαn(x,E)

for all x ∈ E and n = 1, 2, . . . , where

c := 1 + sup
n

‖Pn‖L(E,E).

With the help of the projections

Qk := P2k+1−1 − P2k−1

we can formulate the

Theorem 2 (Linear Representation Theorem (cf.[13])). Let (X,An) be a linear approxi-
mation scheme. Then f ∈ X belongs to Xρ

u if and only if

(2kρ‖Qkf‖X) ∈ lu

In this case we have

f =
∞∑

k=0

Qkf.

Moreover,

‖f‖linX
ρ
u
:= (2kρ‖Qkf‖X)‖lu

is an equivalent quasi-norm on Xρ
u.

1 (q, p)-summing operators

We state the

Lemma 1. Let ρ > 0 and 1 ≤ u ≤ r < ∞. Let (E,An) be an approximation scheme.
Then

([lr, E], [lr, An])
ρ
u ⊆ [lr, E

ρ
u].

Proof. Let x ∈ ([lr, E], [lr, An])
ρ
u with x := (xn). Then, by the representation theorem of [13],

there exist xk ∈ [lr, A2k ] such that (2kρ‖xk‖[lr,E]) ∈ lu and x =
∑∞

k=0 x
k (convergence in

[lr, E]). If xk := (xkn), then for k = 0, 1, . . . and n = 1, 2, . . . we have

xn =
∞∑

k=0

xkn,

(2kρ‖xkn‖E) ∈ lu,

and

xkn ∈ A2k .

Hence, and also from the representation theorem of [13], we get a constant c > 0 such that

‖xn‖Eρ
u
≤ c

( ∞∑

k=0

[2kρ‖xkn‖E ]u
)1/u
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for n = 1, 2, . . . . Therefore, since 1 ≤ u ≤ r <∞, we obtain

( ∞∑

n=1

[‖xn‖Eρ
u
]r
)1/r

≤ c





∞∑

n=1

( ∞∑

k=0

[2kρ‖xkn‖E ]u
)r/u





1/r

≤ c





∞∑

k=0


2kρ

[ ∞∑

n=1

‖xkn‖rE

]1/r


u


1/u

<∞

and then x ∈ [lr, E
ρ
u]. Consequently

([lr, E], [lr, An])
ρ
u ⊆ [lr, E

ρ
u],

and the continuity of the inclusion follows from the closed graph theorem.
QED

Throughout this section we consider (see [12, p. 39]) the metric isomorphisms

Sp
E : L(lp′ , E) → [wp, E]

and
S1
E : L(c0, E) → [w1, E],

with 1 < p < ∞. In both cases, the E-valued sequence (xi) is identified with the operator
R(αi) :=

∑∞
i=1 αixi. Hence, if (E,An) is an approximation scheme, then we have the approx-

imation schemes
(L(lp′ , E), (Sp

E)
−1([wp, An]))

and
(L(c0, E), (S1

E)
−1([w1, An])),

for 1 < p < ∞. The corresponding approximation spaces will be denoted by L(lp′ , E)σu and
L(c0, E)σu, respectively.

Next we prove the

Lemma 2. Let µ > 0 and 1 < p < ∞. Let (E,An) be a linear approximation scheme.
Then

L(lp′ , E
µ
∞) ⊆ L(lp′ , E)µ∞

and
L(c0, E

µ
∞) ⊆ L(c0, E)µ∞.

Proof. We consider the first inclusion, since the proof of the second case is analogous.
Let T ∈ L(lp′ , E

µ
∞). Then Pn−1T ∈ (Sp

E)
−1([wp, An−1]), and therefore

αn(T,L(lp′ , E)) ≤ ‖T − Pn−1T‖L(lp′ ,E)

for n = 1, 2, . . . , where Pn are the corresponding projections from E onto An.
If x ∈ lp′ then

‖Tx− Pn−1Tx‖E ≤ cαn(Tx,E)

for n = 1, 2, . . . , where
c := 1 + sup

n
‖Pn‖L(E,E).

Hence
nµ‖Tx− Pn−1Tx‖E ≤ cnµαn(Tx,E) ≤ c sup

n
nµαn(Tx,E) = c‖Tx‖Eµ

∞
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and
nµ‖T − Pn−1T‖L(lp′ ,E) ≤ c‖T‖

L(lp′ ,E
µ
∞)

for n = 1, 2, . . . .
Combining the observations above, we obtain

‖T‖
L(lp′ ,E)

µ
∞

= sup
n

nµαn(T,L(lp′ , E))

≤ sup
n

nµ‖T − Pn−1T‖L(lp′ ,E) ≤ c‖T‖
L(lp′ ,E

µ
∞)

QED

Now we are ready to establish a general result.

Theorem 3. Let σ > τ > 0 and 1 ≤ u, v ≤ ∞. Let (E,An) and (F,Bn) be approximation
schemes, and suppose that (E,An) is linear. Let T ∈ Πq,p(E,F ), with 1 ≤ p ≤ q <∞. If

T (An) ⊆ Bn for n = 1, 2, . . . ,

then T ∈ Πq,p(E
σ
u , F

τ
v ).

Proof. We assume that 1 < p <∞, since the case p = 1 can be treated similarly.
In view of T (An) ⊆ Bn for n = 1, 2, . . . , we have T ∈ L(Eσ

u , F
σ
u ). By Proposition 3 of [13] we

get Fσ
u ⊆ F τ

v , and then T ∈ L(Eσ
u , F

τ
v ).

Since T ∈ Πq,p(E,F ), from [11, (17.2.3)] if T̂ is defined by

T̂ : (xi) → (Txi),

then T̂ ∈ L([wp, E], [lq, F ]).
We have

T̂ Sp
E((S

p
E)

−1([wp, An])) = T̂ ([wp, An]) ⊆ [lq, Bn] for n = 1, 2, . . . ,

and this yields the operator

T̂ Sp
E : L(lp′ , E)σ∞ → ([lq, F ], [lq, Bn])

σ
∞.

We choose ρ with σ > ρ > τ and w with 1 ≤ w ≤ q. Then, using Proposition 3 of [13], we
obtain

([lq, F ], [lq, Bn])
σ
∞ ⊆ ([lq, F ], [lq, Bn])

ρ
w.

From Lemma 1., we get
([lq, F ], [lq, Bn])

ρ
w ⊆ [lq, F

ρ
w].

Consequently, we have the inclusions

([lq, F ], [lq, Bn])
σ
∞ ⊆ [lq, F

ρ
w] ⊆ [lq, F

τ
v ].

QED

Now we also consider (see the comments before Lemma 2) the metric isomorphism

Sp
Eσ

∞

: L(lp′ , E
σ
∞) → [wp, E

σ
∞].

Hence, by Lemma 2. and the observations above, we have the operators

[wp, E
σ
∞]

(S
p
Eσ

∞

)−1

−→ L(lp′ , E
σ
∞)

J1−→ L(lp′ , E)σ∞
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and

L(lp′ , E)σ∞
T̂S

p
E−→ ([lq, F ], [lq, Bn])

σ
∞

J2−→ [lq, F
τ
v ],

where J1 and J2 denote the corresponding inclusions.
Finally, if U := J2T̂ S

p
EJ1(S

p
Eσ

∞

)−1 then

U ∈ L([wp, E
σ
∞], [lq, F

τ
v ])

is of the form
U : (xn) → (Txn)

for (xn) ∈ [wp, E
σ
∞]. Therefore, since Eσ

u ⊆ Eσ
∞ we also have

U ∈ L([wp, E
σ
u ], [lq, F

τ
v ]),

and from [11, (17.2.3)] we conclude that T ∈ Πq,p(E
σ
u , F

τ
v ).

Remark 1. We mention that in the case of interpolation spaces, a theorem of the above
type goes back to J. Peetre [10].

Remark 2. We observe that the observations above can be obtained in the case of (E,An)
to be quasicomplemented in the sense of [4].

Remark 3. Other more general approximation spaces are found in [1], [2] and [3].

Now, we give some applications.
Let 1 ≤ p <∞. For any measure space (Ω,Σ, µ) with µ positive we define Lp(Ω,Σ, µ) to be

the space of all (equivalence classes of) Σ-measurable functions such that
∫
Ω
|f(ω)|p dµ(ω) <

∞. Such functions are called p-integrable. It is a Banach space with the norm ‖f‖p :=
(
∫
Ω
|f(ω)|p dµ(ω))1/p. In the important example of the real line equipped with the Lebesgue

measure, we simply write Lp(R). Is well-known (see for example [16, p. 98]) that the space
Lp(Ω,Σ, µ) is of cotype max (2, p).

In the following we consider complex-valued 2π-periodic functions on the real line. Then
the periodic analogous of Lp(R) is denoted by Lp(2π). Its norm is

‖f‖p :=

(
1

2π

∫ 2π

0

|f(x)|p dx
)1/p

.

The space Lp(2π) is also of cotype max (2, p).
A trigonometric polynomial of degree n is a function t which can be represented in the

form
t(ξ) =

∑

|k|≤n

γk exp (ikξ) for all ξ ∈ R,

where γ−n, . . . , γn ∈ C and |γ−n|+ |γn| > 0. If so, then we write deg(t) = n.
Let 1 < p < ∞. We denote by Tn the subset of Lp(2π) which consist of all trigonometric

polynomials such that deg(t) ≤ n. Then we have the linear approximation scheme (Lp(2π), Tn).
If σ > 0 and 1 ≤ u ≤ ∞, we put

Bσ
p,u(2π) := (Lp(2π), Tn)

σ
u.

It can be seen from approximation theory that Bσ
p,u(2π) are the Besov function spaces (see

[5], [7]).
We are now prepared to give the

Theorem 4. Let σ > τ > 0, 1 < p < ∞ and 1 ≤ u, v ≤ ∞. Let q := max (2, p). Then,
the embedding operator IB(2π) from Bσ

p,u(2π) into Bτ
p,v(2π) satisfies

IB(2π) ∈ Πq,1(B
σ
p,u(2π), B

τ
p,v(2π)).
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Proof. Since the space Lp(2π) is of cotype q, then

ILp(2π) ∈ Πq,1(Lp(2π), Lp(2π)).

Hence, from Theorem 3 we obtain

IB(2π) ∈ Πq,1((Lp(2π), Tn)
σ
u, (Lp(2π), Tn)

τ
v)

with
(Lp(2π), Tn)

σ
u = Bσ

p,u(2π) and (Lp(2π), Tn)
τ
v = Bτ

p,v(2π),

and this completes the proof.
QED

Remark 4. The (v, 1)-summing property for embedding operators between some function
spaces, was also studied in a different context in [15].

It is well-know, that every function f ∈ L1(2π) induces a convolution operator

Cf
op : g(η) →

∫ 2π

o

f(ξ − η) g(η) dη

on C(2π) and Lp(2π) with 1 ≤ p ≤ ∞.

Theorem 5. Let f ∈ Lp(2π) with 1 < p <∞. Then

Cf
op ∈ Πp′(B

ρ
p′,u(2π), B

σ
p′,w)

with 1 ≤ u, v ≤ ∞ and ρ > σ > 0.

Proof. We consider the factorization

T f
op = IT f

op : Lp′(2π)
Tf
op→ L∞(2π)

I→ Lp′(2π)

and, by [12,(1.3.9)], we know that

I ∈ Πp′(L∞(2π), Lp′(2π)).

Since Cf
op(Tn) ⊂ Tn for every n, the result follows from 3. QED

Let I be the interval [0,1] and let m be an integer, m ≥ −1. We consider the orthonormal

systems {f (m)
n : n ≥ −m} of spline functions of order m defined on I (for the definition and

main properties see [6]) . This system is a basis in C(I) and Lp(I) for 1 ≤ p <∞
The best approximation error in Lp(I) for 1 ≤ p <∞ and in C(I) for p = ∞ is defined by

E(m)
n,p (f) := inf

{a−m,...,an}
‖f −

n∑

j=−m

ajf
(m)
j ‖p.

Let 0 < α < m + 1 + 1/p, 1 ≤ θ < ∞. Then Bα,m
p,θ (I) denotes the Banach space of all

functions which belong to Lp(I) for 1 ≤ p < ∞ and to C(I) for p = ∞, equipped with the
norm

‖f‖Bα,m
p,θ

(I) := ‖f‖+
( ∞∑

n=0

[2nαE
(m)
2n,p(f)]

θ

)1/θ

(see [14]). We have
C(I)αθ = Bα,m

∞,θ (I) Lp(I)
α
θ = Bα,m

p,θ (I)

for 1 ≤ p < ∞. Using that the imbedding i : C(I) →֒ Lp(I) is p-summing, from Theorem 3,
we obtain

Theorem 6. The imbedding j : Bα,m
∞,θ (I) →֒ Bβ,m

p,θ with α > β is p-summing.
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2
∑

p-property

Let 1 ≤ p <∞. An operator ideal A satisfies the Σp-condition if and only if for arbitrary
Banach spaces En, Fn (n = 1, 2, . . .) the following holds

(Σp) : If T ∈ L
(
(ΣEn)p, (ΣFn)p

)
, and QnTPm ∈ A(Em, Fn)

(m,n = 1, 2, . . .), then
T ∈ A((ΣEn)p, (ΣFn)p).

Examples (cf.[9]). The following ideals are injective and surjective and satisfy the
∑

p-condition.

(i) weakly compact operators.

(ii) Rosenthal operators.

(iii) Banach-Saks operators.

(iv) Decomposing operators.

Now we can formulate the following

Theorem 7. Let (X,An) be a linear approximation scheme such that An is finite dimen-
sional for n = 1, 2, . . .. Let A be an injective and surjective operator ideal which satisfies the
Σu-condition for 1 < u <∞. Then

(Xρ
u, ‖ · ‖linX

ρ
u
) ∈ Space(A)

Proof. (a) The surjection Q.

Let Ek be the Banach space A2k with the norm

‖x‖Ek := 2kρ‖x‖X (x ∈ Ek

Let Q :
(∑∞

k=0 Ek

)
u
−→ Xρ

u be the mapping defined by

Q(ak) :=
∞∑

k=0

ak ((ak)) ∈
( ∞∑

k=0

Ek

)

u

By the Representation Theorem the series
∑∞

k=0 ak is convergent in

(
Xρ

u, ‖ · ‖repX
ρ
u

)
,

therefore in (
Xρ

u, ‖ · ‖linX
ρ
u

)
.

By the same reason, Q is a surjection.

(b) The injection J .

Let Qk := P2k+1 − P2k−1 and let Fk := Qk(X) be equipped with the norm

‖x‖Fk := 2kρ‖x‖X (x ∈ Fk)

Let J : Xρ
u −→

(∑∞
k=0 Fk

)
u
be the mapping

J(f) := (Qk(f) (f ∈ Xρ
u)

Then, by the Linear Representation Theorem, we obtain

‖J(f)‖(∑∞

k=0
Fk)u

= ‖f‖(
X

ρ
u,‖·‖lin

X
ρ
u

),
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so that J is a injection.

Finally, we have the composition

Em
Qm−→

( ∞∑

k=0

Ek

)

u

Q−→ Xρ
u

J−→
( ∞∑

k=0

Fk

)

u

Pn−→ Fn

where Qm(x) := (0, 0, . . . , 0, x, 0, . . .) where the only nonzero entry is the n-th coordi-
nate, and Pn(xi) := Qn(xn). Hence

PnJQQn = Qn ∈ F(Em, Fn),

(F is the set of finite rank operator) consequently

PnJQQn = Qm ∈ A(Em, Fn)

(n,m = 1, 2, . . .) and, by the
∑

u-condition, we get

JQ = JXρ
u
Q ∈ A(Xρ

u, X
ρ
u).

This implies
IXρ

u
∈ A(Xρ

u, X
ρ
u)

since A is injective and surjective.
QED
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