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Abstract. Let (G, +) be a group of prime exponent p = 2n + 1. In this paper we prove that
(G, +) is nilpotent of class at most 2 if and only if one of the following properties is true:

1) G is also the support of a commutative group (G, +’) such that (G,+) and (G, +')
have the same cyclic cosets [cosets of order p].

1) the operation @ defined on G by putting x ® y = /2 + y + /2, gives G a structure
of commutative group.
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1 Some remarks on the nilpotent groups of class at
most 2

We will call quasi-commutative any group (G, +) with the following property:

WVr,2€G:—z—z4+z+z=0+2z—x— 2

Now we recall that a group (G,+) is nilpotent of class at most 2 if and only if the
commutator subgroup G’ of (G, +) is included in the center Zg of (G, +). Obviously, this
property is equivalent to the following one:

2)Va,y,2€ G:—z—z+zx+z+ty=y—zxz—z+x+ 2

Therefore any nilpotent group of class at most 2 is quasi-commutative. Indeed, if in 2) we
put y = z + x, then we easily get property 1).

Remark 1. We point out that a group (G, +) is nilpotent of class at most 2 if and only
if the following property holds:

) Ve,y,z€eG:z+z4+y+z+x=z+x+y+ax+z.

Indeed, by 1), property 2) is equivalent to the following one:

HVr,y,2z€eG:—x—z4+zx+z+y=y+ax+z—x— =z

Moreover, it is clear that 4) and 3) are equivalent.

In the sequel (G, +) shall be a torsion group with non zero elements of odd order. Thus,
if a € G, there is a unique d € G, denoted by a/2, such that 2d = a. Then we can define on
G an operation @ by putting, for any a,b € G:

6)adb=a/2+b+a/2.

Clearly, + and & coincide on the commutative subgroups of (G, +); in particular on the
cyclic subgroups. Thus, for any z € G, 2 @ (—z) = 0= (—z) & z.
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Theorem 1. If (G,®) is a commutative group, then (G,+) and (G,®) have the same
cyclic cosets.

PROOF. Indeed (G, +) and (G, ®) have the same cyclic subgroups. Therefore, if H is such
a subgroup, then we have:

adH=0a/2+H+a/2=a+ (—a/2+H+a/2);
a+H=0a/24+ (a/24+H—-0a/2)+a/2=a® (a/2+H —a/2).

QED

Theorem 2. Let the group (G,+) be nilpotent of class at most 2. Then (G,®) is a
commutative group.

PROOF. Being (G, +) nilpotent of class at most 2, 4 is quasi-commutative and hence @ is
commutative. Therefore, since + and @ coincide on the cyclic subgroups of (G, +), in order to
prove that (G, @) is a group, it remains to see that, for any a,b,c € G, a® (c®b) = c® (aDb);
ie.a/2+4¢/24+b+c/2+a/2=c/2+a/2+ b+ a/2+ c/2. This equality is true by Remark
1.

2 Some remarks on the groups of exponent p

In the sequel we shall consider only groups of prime exponent p = 2n + 1. We recall that
if (G, +) is such a group, then the subgroups of order p represent a group partition of (G, +)
[wiz. they encounter only in 0; moreover, their union is G (see [1], p.16)]. Therefore, the set
L4+ of the cyclic cosets determines a line space (G, L4) on G; precisely, for any two distinct
elements a,b € G, there is a unique cyclic coset containing them.

The elements of G and £, are respectively called points and lines of (G, L£4). Points on
a same line are said collinear.

A subspace of (G, L4) is a subset K of G such that either its cardinality is less than 2,
or it contains the lines connecting pairs of its distinct points. Thus the set of the subspaces of
(G, L4+) is a closure system of G.

If K is a set of points, we will represent by ((K)) [((a1, ..., an)), whenever K = {a1, ..., an }]
the minimum subspace containing K [the subspace generated by K]. Whenever a and b are
points, it is clear that ((a,b)) =a + < —a+0b >.

A plane is the subspace ((a, b, ¢)) generated by three non collinear points a, b and c. Points
and lines in a same plane are said coplanar.

Obviously, if 1 is a line and a is a point not belonging to 1, then the lowest subspace
containing a and 1 [in symbols, ((a,1))] is a plane. Indeed, for any distinct points b and ¢ of 1,
we have ((a,1)) = ((a, b, c)).

Theorem 3. Let the group (G,+) be nilpotent of class at most 2. Then (G,®) is a
commutative group of exponent p. Moreover, (G, L4+) and (G, Lg) coincide.

PROOF. (G, ®) is a commutative group by Theorem 2. The remaining part of the proof
is trivial by Theorem 1. QED

If a € G, both the left translation I, and the right translation r, of (G, +) are bijective
functions on G that map cyclic cosets in cyclic cosets. This means that [, and r, are automor-
phisms of (G, L), hence they map subspaces in subspaces. Also the function [—] that maps
any b € G in —b is an automorphism.

Clearly, any coset K of (G, +) is a subspace. But there can be subspaces which are not
cosets (see Remark 3 below).
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If a and b are two points, then a 4+ (—a+b)/2 € ((a,b)). Indeed a+ (—a+b)/2 € a + <
(—a+b)/2>=a+ < —a+b>=((a,b)).

Remark 2. Now assume that the group (G, +) is commutative. We have the following
properties:

a) Any subspace Ko containing 0 is a subgroup. Indeed, if a,b € Kg, then —a € < a > =
((0,a)) € Ko; moreover, a + (—a+b)/2 € ((a,b)) C Ko, hence a+b=2[a+ (—a+1b)/2] €
((0,a+ (=a+1b)/2)) € Ko.

As a consequence, since the translations are automorphisms of (G, £4), any subspace is
a coset of (G, +). Thus in the commutative case all the planes have p* points.

a') In L4 there is a natural equivalence relation //: the parallelism. Precisely, two lines 1
and 1’ of (G, L) are said to be parallel [in symbols, 1//1'] if and only if 1 and 1" are cosets of
a same [cyclic] subgroup of (G, +).

Since now any plane of (G, £) has p® points, it is easy to verify that 1 and 1’ are parallel
if and only if they either coincide or are disjoint and coplanar.

Let the group (G, +) be nilpotent of class at most 2; thus (G, L+) = (G, Lg). Now if
a,be G,then <b>//a®<b>=a+ (—a/2+ <b>+a/2). Hencea + <b>// <b>if
and only if a belongs to the normalizer of < b >.

Remark 3. Now assume that (G, +) is a non abelian group of prime exponent p = 2n+1
and order p®. Thus (G, +) is an extraspecial p-group (see [3], p.145); hence, since in this case
G’ = Zg, (G, +) is nilpotent of class 2. Therefore, if 0, a and b are not collinear points, the
plane ((0,a,b)) has p* point. Indeed, by a) of Remark 2, ((0, a,b)) is the subgroup generated
by a and b in the group (G, ®). On the other hand, ((0,a,b)) is not a coset of (G, +). Indeed,
0 € ((0,a,b)), but ((0,a,b)) is not a subgroup of (G, +), since < a,b > = G and (G, +) has
order p°.

3 The characterization

In this section we will prove that, being (G, +) a group of a prime exponent p = 2n + 1,
(G, +) is nilpotent of class at most 2 if and only if one of the properties i) and i) in Abstract
is true.

We emphasize that Theorem 3 above already ensures that if (G, +) is such a group, then
both the properties i) and i) hold [in i) the operation +' is given by ®]. Conversely, if 7i) is
true, then also i) [with +' = @] is true by Theorem 1. Thus, it remains to prove that property
i) implies that (G, +) is nilpotent of class at most 2.

Remark 4. We point out that property 4) is equivalent to the following one:

i0) G is also the support of a commutative group (G,+') such that (G, +) and (G, +')
have the same zero and the same cyclic cosets.

Indeed, if the zero of (G, +’) is the element a, then we can replace the group (G, +) with
the group (G, +,), where +, is defined by putting b+.c = b — a + ¢, for any b,c € G. Thus,
since (G, +) and (G, +,) are isomorphic and have the same cosets, the claim is true.

We assume that in the sequel the group (G, +) fulfills property io. Moreover, being (G, +')
commutative, we will consider — with respect to (G, £/,) — the parallelism // of a’) in Remark
2.

Now consider the function dqo = la 0 74 o [—]. Since lq, rq and [—] are automorphisms of
(G, L4), also d, is an automorphism. It is easy to verify that d, is an involution; moreover,
since p is an odd number, a is the unique fixed point of d,.
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Remark 5. Let a,b € G. Then d.b € ((a,b)). Indeed dab=a—-b+a€a+ < —b+a >
= ((a,0)).

Consequently, if K is a subspace of (G, £L4) and a,b € K, then dob € K. a

Theorem 4. IfK is a subspace of (G, L+) and if a is a point, consider the subspace d. K.
The following properties hold:

1) If a € K, then d.K = K;

2) if a ¢ K, then doK and K are disjoint.

PROOF. Let b be an arbitrary point of K.

1) If a € K, then d,K C K by Remark 5. Thus, being d, an involution, d,K = K.

2) If a ¢ K, then a # b and hence d,b # b; moreover, the line ((a, b)) intersects K only in
b. Therefore d.b ¢ K; whence the claim.

We point out that in the sequel we will tacitly use the fact that // is an equivalence
relation.

Theorem 5. The functions dq, [—] and la o 7q are dilatations [wiz. they map any line 1
in a line 1’ parallel to 1].

PROOF. Since [—] = do, la ©Ta = do o [—] and // is an equivalence relation, then it is
sufficient to see that, whenever 1 is a line, then 1//d,1.

Let dyl # 1. Thus, by Theorem 4, d,1 and 1 are disjoint. Therefore, we have to prove that
d,l and 1 are coplanar. This is true; indeed, by 1) in Theorem 4, d,l is included in the plane
((a,1)).

Theorem 6. Consider a line 1. Then, for any element ¢ of the commutator subgroup G’
of (G,+), we havec+1//1//1+c.

PROOF. Obviously, we can limit ourselves to prove that ¢+1// 1.

To this purpose, it is sufficient to verify that, for any z, z € G, we have —z—z+z+2+1// L

This is obvious, since by Theorem 5 we have:

—z—z+z+z+l=(—z—2)+z+(z+1+2)+z]+(—2x—2)//1L
QED

Lemma 1. Foranyy€ G andce G, c+<y>=<y>+ec.

Proor. If y = 0, the claim is trivial. Thus let y # 0, hence the subgroup < y > is a
line. Hence, by Theorem 6, we have ¢ + < y > // <y > + c. Therefore, since ¢ belongs to
(c+<y>)N(<y>+c),weobtainc+ <y>=<y>+c QED

And now we can prove the following Theorem 7, which concludes our characterization.

Theorem 7. If a group (G, +) satisfies property i) above, then it is nilpotent of class at
most 2.

ProoOF. We will prove that, for any y € G and c€ G', c+y =y +c.

This is trivial whenever < ¢ > = <y >, or ¢ = 0, or y = 0. Therefore assume < ¢ > # <
y >, c#0andy #0.

By Lemma 1, we have ¢ +y = hy + y + ¢ [where h € N], hence hy is a commutator. We
will prove that hy = 0. To this purpose we consider two cases: y ¢ G', y € G'.

If y ¢ G' and hy # 0, then y € < hy > C G’. This is absurd.

If y € G’, then in Lemma 1 we can interchange ¢ with 3. Therefore ¢ +y = kc+y + ¢ and
hence hy = —kc. Consequently, hy = 0.
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We conclude by emphasizing that, with respect to the property i), if H is a cyclic subgroup
of (G, +) and of (G, +'), this fact does not say ”a priori” that the groups (H,+) and (H, +')
coincide. Nevertheless, since we have proved that by i9) (G, +) is nilpotent of class at most
2, 7a posteriori” it is easy to verify that, if G has more than p elements and hence (G, L£4) is
not a line, then (G,+') = (G, ®). As a consequence, we get (H,+) = (H,®) = (H,+’).
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