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Abstract. Let (G,+) be a group of prime exponent p = 2n+1. In this paper we prove that
(G,+) is nilpotent of class at most 2 if and only if one of the following properties is true:

i) G is also the support of a commutative group (G,+′) such that (G,+) and (G,+′)
have the same cyclic cosets [cosets of order p].

ii) the operation ⊕ defined on G by putting x ⊕ y = x/2 + y + x/2, gives G a structure
of commutative group.
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1 Some remarks on the nilpotent groups of class at
most 2

We will call quasi-commutative any group (G,+) with the following property:
1) ∀x, z ∈ G : −x− z + x+ z = x+ z − x− z;
Now we recall that a group (G,+) is nilpotent of class at most 2 if and only if the

commutator subgroup G′ of (G,+) is included in the center ZG of (G,+). Obviously, this
property is equivalent to the following one:

2) ∀x, y, z ∈ G : −x− z + x+ z + y = y − x− z + x+ z.
Therefore any nilpotent group of class at most 2 is quasi-commutative. Indeed, if in 2) we

put y = z + x, then we easily get property 1).

Remark 1. We point out that a group (G,+) is nilpotent of class at most 2 if and only
if the following property holds:

3) ∀x, y, z ∈ G : x+ z + y + z + x = z + x+ y + x+ z.
Indeed, by 1), property 2) is equivalent to the following one:
4) ∀x, y, z ∈ G : −x− z + x+ z + y = y + x+ z − x− z.
Moreover, it is clear that 4) and 3) are equivalent.

In the sequel (G,+) shall be a torsion group with non zero elements of odd order. Thus,
if a ∈ G, there is a unique d ∈ G, denoted by a/2, such that 2d = a. Then we can define on
G an operation ⊕ by putting, for any a, b ∈ G:

6) a⊕ b = a/2 + b+ a/2.
Clearly, + and ⊕ coincide on the commutative subgroups of (G,+); in particular on the

cyclic subgroups. Thus, for any x ∈ G, x⊕ (−x) = 0 = (−x)⊕ x.
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Theorem 1. If (G,⊕) is a commutative group, then (G,+) and (G,⊕) have the same
cyclic cosets.

Proof. Indeed (G,+) and (G,⊕) have the same cyclic subgroups. Therefore, if H is such
a subgroup, then we have:

a⊕H = a/2 +H+ a/2 = a+ (−a/2 +H+ a/2);

a+H = a/2 + (a/2 +H− a/2) + a/2 = a⊕ (a/2 +H− a/2).

QED

Theorem 2. Let the group (G,+) be nilpotent of class at most 2. Then (G,⊕) is a
commutative group.

Proof. Being (G,+) nilpotent of class at most 2, + is quasi-commutative and hence ⊕ is
commutative. Therefore, since + and ⊕ coincide on the cyclic subgroups of (G,+), in order to
prove that (G,⊕) is a group, it remains to see that, for any a, b, c ∈ G, a⊕ (c⊕b) = c⊕ (a⊕b);
i. e. a/2 + c/2 + b + c/2 + a/2 = c/2 + a/2 + b + a/2 + c/2. This equality is true by Remark
1. QED

2 Some remarks on the groups of exponent p

In the sequel we shall consider only groups of prime exponent p = 2n+ 1. We recall that
if (G,+) is such a group, then the subgroups of order p represent a group partition of (G,+)
[wiz. they encounter only in 0; moreover, their union is G (see [1], p.16)]. Therefore, the set
L+ of the cyclic cosets determines a line space (G,L+) on G; precisely, for any two distinct
elements a, b ∈ G, there is a unique cyclic coset containing them.

The elements of G and L+ are respectively called points and lines of (G,L+). Points on
a same line are said collinear.

A subspace of (G,L+) is a subset K of G such that either its cardinality is less than 2,
or it contains the lines connecting pairs of its distinct points. Thus the set of the subspaces of
(G,L+) is a closure system of G.

If K is a set of points, we will represent by ((K)) [((a1, ..., an)), whenever K = {a1, ..., an}]
the minimum subspace containing K [the subspace generated by K]. Whenever a and b are
points, it is clear that ((a, b)) = a + < −a+ b >.

A plane is the subspace ((a, b, c)) generated by three non collinear points a, b and c. Points
and lines in a same plane are said coplanar.

Obviously, if l is a line and a is a point not belonging to l, then the lowest subspace
containing a and l [in symbols, ((a, l))] is a plane. Indeed, for any distinct points b and c of l,
we have ((a, l)) = ((a, b, c)).

Theorem 3. Let the group (G,+) be nilpotent of class at most 2. Then (G,⊕) is a
commutative group of exponent p. Moreover, (G,L+) and (G,L⊕) coincide.

Proof. (G,⊕) is a commutative group by Theorem 2. The remaining part of the proof
is trivial by Theorem 1. QED

If a ∈ G, both the left translation la and the right translation ra of (G,+) are bijective
functions on G that map cyclic cosets in cyclic cosets. This means that la and ra are automor-
phisms of (G,L+), hence they map subspaces in subspaces. Also the function [−] that maps
any b ∈ G in −b is an automorphism.

Clearly, any coset K of (G,+) is a subspace. But there can be subspaces which are not
cosets (see Remark 3 below).
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If a and b are two points, then a+(−a+ b)/2 ∈ ((a, b)). Indeed a+(−a+ b)/2 ∈ a + <
(−a+ b)/2 > = a + < −a+ b > = ((a, b)).

Remark 2. Now assume that the group (G,+) is commutative. We have the following
properties:

a) Any subspace K0 containing 0 is a subgroup. Indeed, if a, b ∈ K0, then −a ∈ < a > =
((0, a)) ⊆ K0; moreover, a + (−a + b)/2 ∈ ((a, b)) ⊆ K0, hence a + b = 2[a + (−a + b)/2] ∈
((0, a+ (−a+ b)/2)) ⊆ K0.

As a consequence, since the translations are automorphisms of (G,L+), any subspace is
a coset of (G,+). Thus in the commutative case all the planes have p2 points.

a′) In L+ there is a natural equivalence relation //: the parallelism. Precisely, two lines l
and l′ of (G,L+) are said to be parallel [in symbols, l//l′] if and only if l and l′ are cosets of
a same [cyclic] subgroup of (G,+).

Since now any plane of (G,L+) has p
2 points, it is easy to verify that l and l′ are parallel

if and only if they either coincide or are disjoint and coplanar.

Let the group (G,+) be nilpotent of class at most 2; thus (G,L+) = (G,L⊕). Now if
a, b ∈ G, then < b > //a ⊕ < b > = a+ (−a/2 + < b > + a/2). Hence a + < b > // < b > if
and only if a belongs to the normalizer of < b >.

Remark 3. Now assume that (G,+) is a non abelian group of prime exponent p = 2n+1
and order p3. Thus (G,+) is an extraspecial p-group (see [3], p.145); hence, since in this case
G′ = ZG, (G,+) is nilpotent of class 2. Therefore, if 0, a and b are not collinear points, the
plane ((0, a, b)) has p2 point. Indeed, by a) of Remark 2, ((0, a, b)) is the subgroup generated
by a and b in the group (G,⊕). On the other hand, ((0, a, b)) is not a coset of (G,+). Indeed,
0 ∈ ((0, a, b)), but ((0, a, b)) is not a subgroup of (G,+), since < a, b > = G and (G,+) has
order p3.

3 The characterization

In this section we will prove that, being (G,+) a group of a prime exponent p = 2n+ 1,
(G,+) is nilpotent of class at most 2 if and only if one of the properties i) and ii) in Abstract
is true.

We emphasize that Theorem 3 above already ensures that if (G,+) is such a group, then
both the properties i) and ii) hold [in i) the operation +′ is given by ⊕]. Conversely, if ii) is
true, then also i) [with +′ = ⊕] is true by Theorem 1. Thus, it remains to prove that property
i) implies that (G,+) is nilpotent of class at most 2.

Remark 4. We point out that property i) is equivalent to the following one:

i0) G is also the support of a commutative group (G,+′) such that (G,+) and (G,+′)
have the same zero and the same cyclic cosets.

Indeed, if the zero of (G,+′) is the element a, then we can replace the group (G,+) with
the group (G,+a), where +a is defined by putting b+ac = b − a + c, for any b, c ∈ G. Thus,
since (G,+) and (G,+a) are isomorphic and have the same cosets, the claim is true.

We assume that in the sequel the group (G,+) fulfills property i0. Moreover, being (G,+′)
commutative, we will consider – with respect to (G,L′

+) – the parallelism // of a′) in Remark
2.

Now consider the function da = la ◦ ra ◦ [−]. Since la, ra and [−] are automorphisms of
(G,L+), also da is an automorphism. It is easy to verify that da is an involution; moreover,
since p is an odd number, a is the unique fixed point of da.
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Remark 5. Let a, b ∈ G. Then dab ∈ ((a, b)). Indeed dab = a− b+ a ∈ a + < −b+ a >
= ((a, b)).

Consequently, if K is a subspace of (G,L+) and a, b ∈ K, then dab ∈ K. �

Theorem 4. If K is a subspace of (G,L+) and if a is a point, consider the subspace daK.
The following properties hold:

1) If a ∈ K, then daK = K;

2) if a /∈ K, then daK and K are disjoint.

Proof. Let b be an arbitrary point of K.

1) If a ∈ K, then daK ⊆ K by Remark 5. Thus, being da an involution, daK = K.

2) If a /∈ K, then a 6= b and hence dab 6= b; moreover, the line ((a, b)) intersects K only in
b. Therefore dab /∈ K; whence the claim. QED

We point out that in the sequel we will tacitly use the fact that // is an equivalence
relation.

Theorem 5. The functions da, [−] and la ◦ ra are dilatations [wiz. they map any line l
in a line l′ parallel to l].

Proof. Since [−] = d0, la ◦ ra = da ◦ [−] and // is an equivalence relation, then it is
sufficient to see that, whenever l is a line, then l//dal.

Let dal 6= l. Thus, by Theorem 4, dal and l are disjoint. Therefore, we have to prove that
dal and l are coplanar. This is true; indeed, by 1) in Theorem 4, dal is included in the plane
((a, l)). QED

Theorem 6. Consider a line l. Then, for any element c of the commutator subgroup G′

of (G,+), we have c+ l // l // l+ c.

Proof. Obviously, we can limit ourselves to prove that c+ l // l.

To this purpose, it is sufficient to verify that, for any x, z ∈ G, we have −x−z+x+z+l // l.

This is obvious, since by Theorem 5 we have:

−x− z + x+ z + l = (−x− z) + [x+ (z + l+ z) + x] + (−x− z) // l.

QED

Lemma 1. For any y ∈ G and c ∈ G′, c + < y > = < y > + c.

Proof. If y = 0, the claim is trivial. Thus let y 6= 0, hence the subgroup < y > is a
line. Hence, by Theorem 6, we have c + < y > // < y > + c. Therefore, since c belongs to
(c + < y >) ∩ (< y > + c), we obtain c + < y > = < y > + c. QED

And now we can prove the following Theorem 7, which concludes our characterization.

Theorem 7. If a group (G,+) satisfies property i) above, then it is nilpotent of class at
most 2.

Proof. We will prove that, for any y ∈ G and c ∈ G′, c+ y = y + c.

This is trivial whenever < c > = < y >, or c = 0, or y = 0. Therefore assume < c > 6= <
y >, c 6= 0 and y 6= 0.

By Lemma 1, we have c + y = hy + y + c [where h ∈ N], hence hy is a commutator. We
will prove that hy = 0. To this purpose we consider two cases: y /∈ G′, y ∈ G′.

If y /∈ G′ and hy 6= 0, then y ∈ < hy > ⊆ G′. This is absurd.

If y ∈ G′, then in Lemma 1 we can interchange c with y. Therefore c+ y = kc+ y+ c and
hence hy = −kc. Consequently, hy = 0. QED
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We conclude by emphasizing that, with respect to the property i0), ifH is a cyclic subgroup
of (G,+) and of (G,+′), this fact does not say ”a priori” that the groups (H,+) and (H,+′)
coincide. Nevertheless, since we have proved that by i0) (G,+) is nilpotent of class at most
2, ”a posteriori” it is easy to verify that, if G has more than p elements and hence (G,L+) is
not a line, then (G,+′) = (G,⊕). As a consequence, we get (H,+) = (H,⊕) = (H,+′).
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