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Abstract. R. Brandl in [2] and H. Mousavi in [6] classified finite groups which have respec-
tively just one or exactly two conjugacy classes of non-normal subgroups. In this paper we
determine finite groups which have just one or exactly two conjugacy classes of non-normal
cyclic subgropus. In particular, in a nilpotent group if all non-normal cyclic subgroups are con-
jugate, then any two non-normal subgroups are conjugate. In general, if a group has exactly
two conjugacy classes of non-normal cyclic subgroups, there is no upper bound for the number
of conjugacy classes of non-normal subgroups.
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1 Preliminaries

Notations

v(G) will denote the number of conjugacy classes of non-normal subgroups of G.

ve (G) will denote the number of conjugacy classes of non-normal cyclic subgroups of G.
G = [A]B will denote that G is the semidirect product of A and B, with A normal in G.
By A ~¢ B, with A and B subgroups of GG, we mean that A and B are conjugate in G.

Let P be a p-group: then Q;(P) = (z € P\mpi =1), 5;(P) = (api\a € P).
All groups considered in this paper are finite.
As in [7] Propositions 2.2 and 2.6 one can prove the following

Proposition 1. Let G be a group.
(1) If N is a normal subgroup of G, then v (%) <. (G)

(2) If G = A x B, then v. (G) > ve(A)ve(B) + ve(A)pe(B) + pe(A)ve(B), where pe(Q)
denotes the number of normal cyclic subgroups of G; if (|A],|B|) = 1, then equality
holds.
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Proposition 2. If P is a non-abelian p-group with |P| = p" and exp P = p™~ "', then
ve (P) < 2.

It is ve (P) = 1 if and only if P ~ M,(p) = (a,b\a”"i1 = =1,[a,b] = apniz) where
n >4 if p=2. Moreover, v(P) = 1.

It is v (P) =2 if and only if p =2 and P is isomorphic to one of the following groups:

i. Dp={a, b|a2n71 =b% =1,[a,b] = a™2) where n > 3; the non-normal cyclic subgroups of

Dy, have order 2. It is v(Dy) = 2n — 4.

it. S, = (a,b|a2n71 =v* =1,[a,b] = a72+2n72) where n > 4; the non-normal cyclic sub-
groups of Sn have order 2 or 4. It is v(S,) = 2n — 5.

. Qn = (a,b\aQn_1 = l,a = b? [a,b] = a™2) where n > 4; the non-normal cyclic
subgroups of Qn have order 4. It is v(Qn) = 2n — 6.

on—2

The proof is a straightforward check on the groups Q,, S, and D,,, bearing in mind [2]
and [7], Prop.2.5.

Proposition 3. Let P be a p-group;
(1) if there exists a subgroup N contained in Z(P) such thatv (&) = 1, then [P : Z(P)] = p*
and |P'| = p;
(2) ifv (%) =0, then either % is abelian or v. (P) > 3.
Proof. (1) By [1] it is & ~ M,(p), where r > 3 if p odd, 7 > 4 if p = 2; so £ has two cyclic
maximal subgroups and therefore P has two abelian maximal subgroups. It follows
[P : Z(P)] = p°. Since P has an abelian maximal subgroup, one has |P’'||Z(P)| = p" ™,
so |P'| = p.
(2) if % is non-abelian, then
p 4

Z(P) =(z,9|7

= = @) x E

=1,z
where F is an elementary abelian 2-group. The subgroups (z), (y) and (zy) represent
three different conjugacy classes in P; hence, if v, (P) < 2, we can assume (x) < P.
Then |z| > 23; since [z,y] € (z), it is [z,9]* = [z%,y] = 1, so [z,y] € (z*) C Z(P), a
contradiction.

QED

A check on minimal non-abelian groups (see [5]) proves the following
Proposition 4. Let G be a minimal non-abelian group; then
(1) ve (G) =1 if and only if v(G) = 1;
(2) if G is non-nilpotent (so that G = [Q]P ~ G(q,p,n) with |Q| = q™, |P| =p"), one has
ve (G)=24fand only ifn =1, m > 2 and p = q;n:ll,
(8) if G is a p-group, one has v (G) = 2 if and only if v(G) = 2; hence either G = [C,]Cy =
[(2)] (y) with [x,y%] =1 or G = [C4]C2 ~ Ds.
Later we shall use the following Proposition on power-automorphisms. An automorphism
¢ of a group G is said to be a power-automorphism if ¢(H) = H for every subgroup H of G.

Proposition 5. ([4], Hilfsatz 5) Let P be a p-group and o # 1 a p'-power automorphism
of P. Then P is abelian and for every a € P it is a(a) = a* where k € Z does not depend on
a.
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2 v.=1

Theorem 1. Let G be a non-nilpotent group; one has v. (G) = 1 if and only if G = [N]P,
where N is an abelian group of odd order, P € Syl (G) is cyclic and P induces on N a group
of fized-point-free power-automorphisms of order p.

Proof. Assume v (G) =1 and P € Syl (G) with P # G; let s € P be such that (s) 4 G.

For each prime ¢ # p and for each g-element a € G we have (a) < G and therefore for
Q € Syl (G) it is @ < G. Furthermore [a,s] # 1 and ¢ # 2, so s induces a fixed-point-free
automorphism on @; by Proposition 5 the subgroup @ is abelian and s induces a power-
automorphism on Q.

Consequently G = [N]P with N abelian and Cn(s) = (1).

For every b € P\ Cp(N) it is (b) ¢4 G so that (b) = (s? ) for some g € G; if g = ny with
n€N,yc Pand b= g 's'g for somel € N, then b = [y, s”'|s" € P(s). Since P # Cp(N), it
is P = P'(s) = (s).

Vice versa, since s induces on N a fixed-point-free automorphism of order p, the conjugates
of P are the only non-normal cyclic subgroups of G. QED

Lemma 1. Let G be a nilpotent group with v. (G) = 1; then
(1) G is a p-group with | (G)| > p*;
(2) if |G| = p, it is |9(G)| = p* and B(G) C Z(G);
(3) if p=2 and G' C Z(G), for any a € G\Z(G) with |a|] = 2 it is Q2(G) C Cg(a) and
expG > 28

Proof. (1) Tt follows from Propositions 1 and 2.

(2) Consider (a) 4 G.
If |a| = p, then for any b € G with |b|] = p we have either (b) 4 G or (ab) 4 G, so
that respectively either (b) or (ab) is conjugate to (a); it follows b € (a)G’. Therefore
01(G) C {a) x G" and |1 (G)| = p*.
If |a] = p” with r > 2, then Q(G) C Z(G). If it were |Q:(G)| > p*, then for any
c € G\ (a)G’ such that |c| = p it would be (ac) ¢ (a) and so (ac) < G Ifg ¢ Nc((a)),
then 1 # [a, g] = [ac, g] € (ac) N G’ and therefore G’ C Q1 ({ac)) C (a), a contradiction.
For any a,b € G it is 1 = [a,b]” = [a”,b] and so ®(G) = G'U1(G) C Z(G).

(3) As above we prove Q1(G) C (a)G'. If b € G is such that |b| = 4, then (b) < Gj if it
were [a,b] # 1, it would be (ab)? = 1 and ab € Q1 (G) C Cg(a), a contradiction. So
Q2(G) C Cg(a) and exp G > 23.

Theorem 2. Let P be a p-group; it is vc (P) = 1 (if and) only if it is v(P) = 1, that
means P ~ M, (p) = (a,b|apn71 =b =1,la,b] = a”niz), where n > 4 if p = 2.

Proof. Suppose v, (P) =1 and let P be a minimal counterexample with |P| = p"; by Propo-
sition 2 it is exp P < p" 2.

Let us consider first the case p # 2.

Let N be a minimal normal subgroup of P; then v, (%) <wv.(P)=1.

If v, (11\3,) = 0, then % is abelian and P’ = N has order p. If v, (%) = 1, the minimality
of P implies v ( ) =1. By Propos1t10n 3 it is again |P’'| = p.

By Lemma 1,2) it is |Q1(P)| = p?; as P is regular, |51 (P)| = p™ 2 and ¢(P) = U1(P) =
Z(P). Then P is a minimal non-abelian group; this contradicts Proposition 4.

Let us suppose now p = 2.
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Step 1:

Step 2:

Step 3:

Step 4:

Step 5:
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P'C Z(P)

By Proposition 3 it is v (%) # 1 and therefore v, (%) # 1; then v, (%},)) =

v (%) =0 and % is abelian.

O (P) £ Z(P)
Suppose Q1 (P) C Z(P). Since v. (Qn) = 2, P has at least two different minimal normal

subgroups N1 and N2 and we may suppose N% and NL; non-abelian.

If v, (%) =1, then v (1\%) = 1; by Proposition 3 one has |P’| = 2 and

o=@ =T =L =)
1

where n > 5.

Then (b) #4 P so that |b] = 4 and Ny C (b); since exp P < 2”72 it is |a| = 2772 > 23
and therefore (a) < P. So P = {(a, b|a2n72 =bv*=1,[a,b) = a2n73> would be a minimal
non-abelian group; this contradicts Proposition 4.

P
No
abelian; it follows exp P = 4. Let

So it must be v, (1\%) =1, ( ) =0 and ]\% ~ 1\% ~ 3 X E, where E is elementary

— =@y’ =17 =7 = [7,7]) x (x]5'(&))

Any two of the subgroups (z), (y), (xy) are not conjugate; we may suppose (x) < P,

(y) < P and (z,y) ~ Qs.

Since P is non-hamiltonian, we may suppose |ei| = 4, N C (e1) < P and [z,e1] =

[y,e1] = 1; it follows |ze1| = 4 and [ze1,y] = [z,y] = 2° ¢ (ze;). Therefore (xe;) 4 P

and (ye1) 4 P; since v, (P) = 1, then ye1 € (ze1)P’ C (x,e1), a contradiction.

|Z(P)| <277

If [P: Z(P)] = 4, then |P'| = 2 and |1 (P)| = 4 by Lemma 1,2).

Since 1 (P) € Z(P), we have |[1(Z(P))| = 2 and Z(P) = (z) is cyclic; furthermore

there exists a € P such that |a| = 2 and (a) #4 P. By Proposition 4 there exists a

non-abelian maximal subgroup of P and ¢(P) C (2%). Let = € P\ {a, 2); it is 2* = 2*"

so that xz7" € Q1 (P) C (a, z), a contradiction.

Z(P) is cyclic.

If Z(P) were not cyclic, there would be at least two minimal normal subgroups Ny and
P

Ny with ]\% and 1\% non-abelian. By Proposition 3 one would have v (N—l) # 1 and

v (1\%) # 1; since P is a minimal counterexample, then v, (1\%) =V, (1\%) = 0. jFrom

exp ]\% = exp 1\% =4 it would follow exp P = 4; this contradicts Lemma 1,3).

|P'| = 2.

Let N be the only minimal normal subgroup of P; one has v, (%) = 0 by Proposition
3. If it were N # P’, it would be

—={(z,yz" =1, =7 = [7,7]) X (Xiz1(&));

then [z,y] € (x®)N = (4°)N = P’ ~ C4 and [z,9]* = [2%,9] = 1, a contradiction.
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Conclusion : Since |P'| = 2, for any a,b € P it is [a®,b] = [a,b]* = 1 and U1(G) C Z(P); from
|Z(P)| < 2% it follows that every maximal subgroup of P is non-abelian.
Since Q1(P) ¢ Z(P), there exists an element a € P such that (a) # P, |a|] = 2 and
Q1(P) = {(a) x P' C Cp(a).
For every b € P\ Cp(a) it is [a,b] = ¢, where P’ = {c); then it follows [P : Cp(a)] = 2,
P = (b)Cp(a) and Cp(a) # (a)Z(P).
Let d € Cp(a)\ {(a)Z(P): from b*,d* € Z(P) it follows either (b*) C (d*) or (d?) C (b).
If b2 = d°", then (bd~")* = 1 and bd™" € Q2(P) C Cp(a) by Lemma 1,3); this contra-
dicts b ¢ Cp(a).
If d> = b**, then db2* € Q:(P) C (a)Z(P), whence d € {a)Z(P), a contradiction.

3 v.=2

3.1 Direct products

Proposition 6. If G is a direct product of proper subgroups and v.(G) = 2, then G =
A X B where v. (A) =1 and |B| = q for some prime q.
Moreover, if q divides |A|, then ¢ = 2.

Proof. Suppose G = A x B with A and B proper subgroups of G. Proposition 1 implies either
ve (A) = 0 or v.(B) = 0. Suppose v, (B) = 0; then p.(B) > 2 and either v.(4) = 0 or
ve (A) =1.

If v. (A) = 0, we may suppose A non-abelian, so that A ~ Q3 x E, where F is an elementary
abelian 2-group. Since v, (Q3 X Q3) > 2, B is abelian and there exists b € B such that |b| = 4.
Let A = (x,ylz* = 1,2° = y* = [z,y]) x E: the three subgroups (xb), (yb) and (xyb) are
non-normal and non-conjugate, a contradiction.

It must be v, (A) =1 and p.(B) = 2. So B = (b) ~ C, for some prime q.

Suppose ¢ divides |A|. If A is non-nilpotent, then A = [N]P as in Theorem 1 and the
subgroups P = (x) and (xb) are non-normal and non-conjugate. If ¢ divides |N|, for any
a € N such that |a| = ¢ we would have (ab) 4 G so that v, (G) > 3; therefore ¢ = p.

In any case, if g # 2, there exists y € A such that the subgroups (y), (yb) and (y°b) are
non-normal and pairwise non-conjugate, so that v. (G) > 3. QED

Corollary 1. If G is nilpotent and it is not a p-group, then v. (G) = 2 if and only if
G ~ M, (p) x Cq, where p, q are distinct primes and n > 4 if p = 2.

3.2 p-groups with v, =2
Lemma 2. Let P be a non-abelian p-group; if exp P = p, then v, (P) > 4.

p"—p

Pl
cyclic subgroups of order p and each of them has p conjugates. Then v, (P) > é’j_%f; >p+1>
4.

Proof. Let |P| = p". If P’ is the only minimal normal subgroup of P, P has non-normal

Otherwise, if N is a minimal normal subgroup of P with N # P’ by induction v, (P) >
Ve (%) > 4. QED

Proposition 7. If P is a p-group with v. (P) = 2, then p = 2.
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Proof. Suppose p # 2, P a minimal counterexample. If |P| = p™, then n > 4 and p*> < exp P <
pn72.

For every minimal normal subgroup N of P we have v, (%) <1

If P’ were the only minimal normal subgroup of P, one would have U1(P) C Z(P).
Therefore every non-normal cyclic subgroup would have order p and would have p conjugates;
moreover P would be regular and exp Q1(P) = p. Then Q1 (P) would contain exactly 2p + 1
cyclic subgroups; a calculation on the order of Q1 (P) shows that this is impossible.

So there exists a minimal normal subgroup N of P with v, (%) = 1; that means

% —@ha" = = 1,[ah =a" ),

|P'| = p, |Z(P)| = p"~2 and Z(P) = (a”, N) with |a] = p"~2 = exp P.

If |b| = p?, then Z(P) = (aP,b?) = ®(P) and P would be a minimal non-abelian group;
this contradicts Proposition 4. So |b] = p.

If N = (y), the subgroups (b), (by) and (b*y) are non-normal and pairwise non-conjugate,
a contradiction.

If G is not a Dedekind group, let R(G) denote the intersection of all non normal subgroups
of G; the groups with R(G) # (1) are determined in [1].

Lemma 3. Let P be a non-Dedekind 2-group with R(P) # (1), |P| = 2" and exp P <
2772 If v, (P) = 2, then P = [(a)](b) with |a| = 2"72, |b] = 4.

Proof. Tt is ve (Qs x C4) = 3 and ve (Qs X Q3) = 9. Then by [1], Theorem 1 it is

P = (A, x|Ais abelian, z* = 1,1 # 2® € A, [z,a] = a® for any a € A).

For any y € A it is (yz)? = x°. If (yz) <P, for any a € A one would have a® = [yz, a] = 22,

so ®(A) = (x?); it would follow A ~ Cy x E with ®(E) = 1 and P ~ Q3 x E hamiltonian. So
(yzx) 4 P for every y € A.

Since P’ = ®(A) = U1(A), then for any y1,y2 € A the subgroups (y1x) and {(y2z) are
conjugate if and only if y; 'ys € (z2)P(A), so [A : (z)P(A)] = 2. If a € A\ (2*B(A)) it is
A= (0,2, B(A)) = {a,2%).

Since expA < exp P < 2"72, we have z? ¢ (a), hence P = [{a)](x) with |a| = 2772,
|z] = 4. QED

Remark 1. If P = [(a)](b), with |a| = 2”72, |b| = 4, [a,b’] = 1 # [a,b] and n > 4,
then v, (P) = 2: if [a,b] = a2n73, the non normal cyclic subgroups not conjugate to (b) are
conjugate to (a2n_4b>, otherwise they are conjugate to (ab).

Theorem 3. Let P be a non abelian 2-group, which is not a direct product of proper
subgroups, with |P| = p", exp P < 2"72. Then v, (P) = 2 if and only if P = [(a)](b), with
la| = 2772, |b| =4, [a,b*] = 1 and n > 4.

Proof. We see that if P = [(a)](b) with |a| = 2”72, |b| = 4 and [a,b?] # 1, then b~ 'ab =
a2 or blab = a71+2n_4; the subgroups (b), (b*) and respectively (a2n_3b) in the first
case and (ba) in the second case are non normal and pairwise non-conjugate. So it will suffice
to prove that, if v, (P) = 2, then P = [(a)](b) with |a| = 2”72 and |b| = 4.

First of all, note that for any minimal normal subgroup 7" of P we may suppose v, (%) # 1.
Indeed, if it were

IR
I
8
<=
Q|

(V)
I
[l
I
\.H
=)
=
I
S)
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with n > 5, then P = (a,b) x T if |b| =2 and P = [(a)](b) if |b] = 4.
By Lemma 3, we may suppose R(P) = (1). Let P be a minimal counterexample and let
H = (h), K = (k) be two non-conjugate non-normal cyclic subgroups of P, with |H| < |K]|.
If HL K, since v. (P) =2, then HNK < P. It follows HNK < Hp N Kp = R(P) = (1).
Then either H < K or HY N K = (1) for every g € P.

If H < K, then |H| =2, |K| =4 and h = k°.

Let T be a minimal normal subgroup of P. It is % A4 % with % =4 and v, (%) =
It % = (sT) # £ with % non-conjugate to £, then (s) is conjugate to H and L #

So £ has two non-normal cyclic subgroups £X and % of order respectively 2 and 4, with

T T
% < % This implies that % is not a direct product and exp % < on73,

By minimality of P, £ = [(aT)|(bT) = [Cyn-3]Cs with n > 5. But (b) 4 P, so [b| = 4,
la| = 2"7% > 4. Since {(a) is not conjugate to (b), then {a) < P and P = (a,b) x T, contrary to

the hypothesis.

2.
P
T

So HY N K = (1) for every g € P. We distinguish two cases.
Case 1: |K| > 4.

Every proper subgroup of K is normal in P; for T' < K with |T'| = 2 one has v, (%) =2.
If exp% = 27“2, then % is isomorphic to D,_1 or S,_1, because the non-normal
cyclic subgroups of @,—1 have non-trivial intersection. Then % has a non-normal cyclic
subgroup 2 = (sT) of order 2, and P = (a,s,T) with |a| = 2""2. Since P is not a
direct product, we have P = (a, s) = [(a)](s) and |s| = 4, against our hypothesis.
Then exp % <2n73,

If % were a direct product of proper subgroups, we would have

P n— e
Z =@y =7 =1y =7

= ) x (z]2° = 1)

where n > 6; we can suppose 4 = (y) and X = (yz) and so K = (y), H = (yz) with
K| =4, [H] = 2

The subgroup (z) is conjugate neither to K nor to H, so (z) < P. Since P is not a direct
product, it is |z| = 4. It follows y* = 22 and [y, 2] = 1, so P’ < ().

If it were T < (x), it would be T < P’ = (:1’27“4) < {(z') and 1 = [z,y]" = [z*, y]; then
1= [z,9%] = [z,y]? so [z,y] € T, a contradiction.

So T 4 (z) and [z, z] = 1; it would follow P = (z,yz) x (z), a contradiction.

By the minimality of P one has £ = [(aT)](bT) ~ [Cyn-3]C4s and [a,b’] € T. By the
previous Remark we may suppose K = (b) and |K| = 8, H = (ab) with |H| = 4. It
follows (a) < P, so [a,b%] € {a) N T.

If T < (a) then P = [(a)]{ab) ~ [Cyn—2]C4.

If T % (a), [a,b°] =1 and P = [(a)](b). Since (E#) < £, the subgroup (ab®) is conjugate
neither to K nor to H, hence {ab®) < P, a contradiction.

Case 2: |K|=|H| =2

Let T be a minimal normal subgroup of P.

If v. (%) = 2, the non normal cyclic subgroups of % are conjugate either to % or to

KT

=, so their order is 2. By the minimality of P one has % ~ D,_1or % ~ Mn—2(2)xCh.

It £ = (@,bfa®" " =5 =1,[b,a =a%), then P = (a,b) x T.
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Let £ = (E,5|62n73 =5 =1, [@,b] = 62n74> x (¢|é* = 1) with n > 6. We can suppose
K = (b), H = (bc). Since (¢) is conjugate neither to (b) nor to (be), it is (c) < P

If |¢| = 2, then P = (a,b,T) x (c).

So |¢| = 4 and T = (c?); from 1 = (be)? = c2[b, ¢ it follows [b, c] = c.

If T £ (a,b), we have [a,c] =1 and |a|] = 2"~3; thus ‘cazn_s‘ =4 and (ca2n_5> <P, but

b,ca® "] = [b,a®" b, ] = A & (ca® ).
If T < {a,b), then T < (a) and |a| = 2”72, ;From [a,c] € T it follows [a,c?] = 1, so
((12"740)2 = 1. Since [a*,b] = 1 and n > 6, then [a2n74c, b =c®#1,s0 (a2n74c> 4 P,

but <a2n74c> is conjugate neither to (a) nor to (bc).

So v. (£) = 0 for every minimal normal subgroup 7" of P. Since HT<P, then T' = ([h, g])
for any g € P\ Np(H); it follows that P has just one minimal normal subgroup 7'.

For L = (2T, yT) x E with (2T, yT) ~ Q3 and ®(E) = (1) we may suppose (z) < P,
hence [z,y]> = [#?,y] = 1, so [x,y] € T, a contradiction.

Then Z is abelian, P' = T = (t) < Z(P) and Z(P) is cyclic. Since H and K are
not conjugate, it is hk # t. If [h, k] = 1, then |hk| = 2, (hk) ¢4 P and so v.(P) > 3.
Therefore (hk)? = [h, k] = t.

Let Z(P) = (2) with |Z(P)| = 2°. If s > 2, it is (22" hk)2 =1, thus L = (2
with L neither conjugate to H nor to K, a contradiction.

2572

hk) 4 P

We conclude that Z(P) = P’ = (t); P is an extraspecial group and P is a central
product P = S7 % Sy % ...* .S,, with S; isomorphic either to D3 or to Qs, S; >~ D3 for
2<i<rand|S;NS;| =2 fori##j (see 8], 5.3).

Let So = {(a,bla* = v* = 1,[a,b] = a®). If S1 = (¢, d|c* = d* = 1,][c,d] = ¢?), the sub-
groups (b), (d) and (bd) are non-normal and pairwise non-conjugate. If S; = (¢, d|c* =
1,¢* = d*> = [¢,d]), the subgroups (b), (ac) and (ad) are non-normal and pairwise
non-conjugate.

QED

Remark 2. If P = [{a)](b), with |a| = 2"72, |b] =4, [a,b*] =1 and n > 4 it is v(P) = 2

1+2n73

if and only if a® = a ; this follows from Theorem I in [6].

3.3 Non nilpotent groups with v, =2

Proposition 8. Let G be a non-nilpotent group such that v. (G) = 2. If H and K are
non-normal, non-conjugate cyclic subgroups, then one of the following cases holds:

(1) |H|=p®, |K|=p’

(2) |H|=p", |K|=¢"

(3) |H|=p", |K|=p"q
where p, q are distinct primes.

The third case holds only if G = A x B, where A and B are proper subgroups of G and
(1A[,1B]) = 1.

Proof. Obviously there exists a cyclic subgroup H = (h) such that H 4 G and |H| = p°,
where p is a prime. If |K]| is not a prime power, then K = R x S, where (|R|,|S|) = 1 and
R 4 G, so that R is conjugate to H. Let ¢ be a prime and T' a subgroup of S such that |T'| = g;
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since R x T 4 G and v, (G) = 2, then R x T = K and |K| = p®q. For any prime w # p and
any w-element y € G one has (y) <G and any Sylow w-subgroup is normal.

Since [H,T] = (1), by Proposition 5 it is [H,Q] = (1). Suppose H C P € Syl (G); if it
were [P,Q] # (1), for any a € P such that [a,Q] # (1) it would be (a) 4 G, consequently
(a) ~¢ H, a contradiction.

So Q@ C Z(G) and Q is a direct factor of G. QED

Lemma 4. Let G be a non-nilpotent group with v. (G) = 2. If there exists a unique
prime p such that the Sylow p-subgroups are non-normal and there are two non-normal cyclic
subgroups H and K whose orders are coprime (i.e. |H| = p®, |K| = ¢°), then G is a minimal
non-abelian group.

Proof. By Proposition 6 G is not a direct product of proper subgroups.

Let H = (h) C P € Syl,(G) and K = (k) C Q € Syl (G) and Q <G. For any prime r
different from p and ¢ and for any non trivial r-element a € G one would have (a) < G and
(ka) = (k) x {a) 4 G, against the hypothesis v. (G) = 2; so G = [Q]P.

In a similar way one proves Cg(H) = (1) = Cp(K) and therefore Ng(P) = P and
Cp(Q) = (1). So for any b € P\ (1) it is (b) & G and (b) is conjugate to H; this means
|H| = p = exp P. We may suppose H C Z(P); then any (b) would be conjugated to H by an
element of @ and therefore G = QH with H = P. It will suffice to prove that @ is a minimal
normal subgroup of G.

By the Frattini Argument P®(Q) ¢ G, so that v (%) # 0. We distinguish two cases:
G G
Ve (m) =1 and Ve (w) = 2.
. G —
Case 1l : v, (@(Q)) =1
Every g-subgroup of % is normal.

It is v (ﬁ) =2.If ®(K) # (1), by induction on the order of the group, % would
be a minimal non-abelian group, % would be elementary abelian and ®(Q) = ®(K),
which contradicts v, (%) = 1. Therefore |K| = gq.

Since K®(Q) <G, K€ # Q. Let y € Q\ K, then (y) <G and (ky)<G. Hence (y,k) <G,
so that K C Q;((y,k)) «G.

By Theorem 1, ¢ # 2 and either (y,k) ~ M,(q) or (y,k) is abelian; this implies
|1 ((y, k)| = ¢® and K€ = Q,((y, k)). It follows that K has g conjugates.

We may suppose H = P C N¢(K).

Since ve (Q) =1, it is Q = (a, kla? = k? = 1,[a,k] = a? ') and K€ = (k,a? ).

Since v, (%) =1, one has h™'ah = a"f; and h™'kh = k" fo where f1, fo € (Q).
Since h € N¢(K), it is fo = 1; furthermore h=la? 'h=a"""" and the automorphism
induced by h on @ fixes every non-normal subgroup of Q. From [h, k] # 1 it follows
that h induces a non-identity ¢'-automorphism which fixes every subgroup of Q; a
contradiction by Proposition 5.

Case 2 : v, (%) =2
Suppose (Q) # (1).

The subgroups I{fgg) and If;gég) are non-normal in %. By induction ‘I’(%) is a

minimal non-abelian group of order ¢"'p, with m > 2.

—1
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There is no normal subgroup of G of order ¢. Indeed, if (y) <G with |y| = ¢, then the
subgroup H(y) cannot be cyclic, so that ¢ = 1(mod p), but m is the least integer such
that ¢ = 1(mod p).

It follows |K| = q and exp Q = q.

The proper cyclic subgroups of @ are conjugate in G, then they are contained in Z(Q)
and @ is elementary abelian, a contradiction.

So B(Q) = (1).

If Q=K% xT, forany 1 # ¢t € T it would be h™'th = t" and R (kt)h = k5t it
would follow h~'kh = k* and (k) < G. So Q = K.

Let A be a proper subgroup of Q normal in G. Since Q = K€, (a) <G for any a € A .
By Maschke’s Theorem Q = A x B, where B<G. Then h™'ah = a” for any a € A and
h™'bh = b° for any b € B, with r # s(mod ¢); this means {ab) # G for a # 1 and b # 1.
Let k= ab,a € A and b € B. Since (ab) is conjugate to (k), it is {a) = (@) and (b) = (b),
therefore |Q| = ¢* and K has ¢ — 1 conjugates. Then ¢ = 3 and either 7 = 1(mod q)
or s = 1(mod q); it follows respectively A C Cq(H) or B C Cq(H), which contradicts
Co(H) = (1).

So @ is a minimal normal subgroup of G.

QED

Proposition 9. If G is a non-nilpotent group with v. (G) = 2, then there exists just one
prime p such that the Sylow p-subgroups of G are not normal.

Proof. Let G be a minimal counterexample.

Let P € Syl,(G) and @ € Syl (G) be non-normal in G. There exist two non-normal
subgroups H = (h) C P and K = (k) C Q; since v.(G) = 2, one has [h,k] # 1, thus
[P, Q) # (1).

For any prime r ¢ {p,q} and for any r-element x € G we have (z) < G; therefore if
R € Syl,.(G), then R< G and R is abelian.

Let N be the product of all the normal Sylow subgroups of G; N is abelian, P and @
induce on N power automorphisms, so that [P, Q] C Cg(N) and [P, Q] <G.

We can suppose G = [N](PQ) with Cnp(Q) = Cno(P) = (1). If N # (1) then P[P, Q] £

G and Q[P, Q] 4 G and v. (ﬁ) = 2 against the minimality of G.

So N = (1) and G = PQ.

Suppose Pe # (1); by minimality of G it is QP—I;G < %, so G = [Pg]N¢(Q). Then P =
[Pa]Np(Q) and without loss of generality we may suppose H < Np(Q).

Every subgroup of P is normal in Gj since Cp, (Q) = (1), it is p # 2, Pg is abelian and
Q induces on Pg a group of power-automorphisms. If a € Pg, |a] = exp Pg, then Co(Pg) =
Cgq(a) and % is cyclic; we may suppose @ = KCq(Pg). Now, (k7)<G, s0 [Q : Co(Pa)] = ¢
and ¢ divides p — 1. Since Np(Q) < Ng(Cqo(Pg)), then Cq(Pg) < G.

If ve (%) = 2, by Lemma 4 it is Ng(Q) =~ % ~ G(q,p,1) and |Q| > ¢*>. @ would be
a minimal normal subgroup of N¢(Q). Since [Q, Pg] # (1), one has Co(Pg) = (1), against
(@Q:Cq(Pa)] =q.

If v, (%) =1, then % = [%} % with Q ~ % abelian and % cyclic. For % =
(zPg) we have (z) 4 G, hence (z”) < G; this means ‘%’ =p=|Np(Q)| and H = Np(Q).

We have ‘%‘ =pgq; as ¢ < p, one has Q < Ng(HCq(Pgz)), so [Q,H] C HCg(Ps) N

Q = Cg(Pg). Since [Q]H = Ng(Q) ~ %, it is v. (QH) = 1 and for every b € @ one has
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htbh = b* for some s € N; as [h, Q] # (1) it is also [h, Q1(Q)] # (1), so s Z 1(mod g). Then
Q = [h, Q] < Cq(Pa), against Cp(Q) = (1). QED

Theorem 4. Let G be a mon-nilpotent group which is not a direct product of proper
subgroups. Then v. (G) = 2 if and only if G is isomorphic to one of the following groups:

1) the minimal non-abelian group [Q|Cp where Q is elementary abelian of order ¢", n > 2 and
|Cp| = p;

2) (x,A\xpn = lg,a® = a" foranya € A), p prime, n > 2, A abelian, (|A]l,p) = 1,
(r(r* —1),|A) =1, r*" =1 (mod exp A);

3) [A]D, = <x,y,A|x2n_1 =y*=1g,2¥ =z " [a,2] = 1g,a¥ = a~ " for any a € A), where
A is abelian, |A| is odd and n > 3;

1) [AISn = (o9, Ala® ™ =32 = 1o,a% = 27" [a,2] = 1g,a% =a™' for any a € 4),
where A is abelian, |A| is odd and n > 4;

n—2 1

5) [A]Qn = <x7y7A‘m2n_l = 1G7y2 =z? ¥ =" 7[0’7 I] =lg,a’ = a! for any a € A>)
where A is abelian, |A| is odd and n > 4;

6) (z,y,A | P y' = 1lg,2¥ =z [a,2] = 1g,a¥ = a~ " for any a € A), where A is
abelian, |A| is odd and n > 4;

7) {x,y, A | 22" = yt=1g,z¥ = xQn_gfl, [a,2] = 1g,a¥ = a™ ' for any a € A), where A
is abelian, |A| is odd and n > 5.

Proof. Let v.(G) =2 and P € Syl,(G) with P #4 G.

Suppose G is not the minimal non-abelian group 1); there exist two non-normal non-
conjugate cyclic subgroups H = (h) and K = (k) contained in P.

By Proposition 9 it is G = [A] P, where A is abelian and P induces on A a group of power-
automorphisms; furthermore C4(H) = Ca(K) = (1), which implies No(H) = Na(K) = (1).

If P is cyclic, then without loss of generality K = P, H = ®(P) and G is isomorphic to
2).

Suppose P non-cyclic.

If a € Ais such that e ' Ha < P or a™'Ka < P, then a™'Ha < (6)HNP = H
(respectively a 'Ka < (a)K NP = K), so a = 1. Tt follows that every subgroup of Pg is
normal in G and for g € G it is g7 Hg C P (respectively g ' Kg C P) if and only if g € P;
this implies v, (P) < 2

IfS=(s) < Pgand S 4 G, then S ~¢ H or S ~¢ K, so H < Pg or K < Pg; since
[A, Pc] = (1), one would have A = C4(H) or A = Ca(K), a contradiction. So a subgroup T’
of Pg is normal in G if and only if T' < Pg.

Suppose H # P and K # P. Then v. (P) = 2 and by Proposition 7 it is p = 2.

If P= M,_1(2) x C2, then G = AM,_1(2) x C2 and G would be a direct product of
proper subgroups, against the hypothesis.

If exp P = 27! = |z| with & € P, it is (2) < G; P is isomorphic to D,, S, or Q, with
n > 4 and G is isomorphic to 3), 4) or 5) with n > 4.

Otherwise P = [(z)](y) =~ [Con—2]C4 with z¥ € {xil,JLfHQnis, x1+2n73}. If 2V = 242" 77
with n > 5 it is (zy) < P, then P = (z,zy) <G, a contradiction. In the other two cases G is
isomorphic to 6) or 7).

Now we prove that % is cyclic.
It is Ng(P) = P x Ca(P); since Ca(P) < Ca(H) = (1), then Ng(P) = P.
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Let g€ G\Pand T =g 'PgNP.Ift € T and (t) 4 G, then (t) =a *Haor (t) = a *Ka
for some a € P. Since g(t)g~* < P, then ga *Hag™" < P or ga 'Kag™' < P,soag™' € P
and g € P, a contradiction. Then for any g € G\ P one has PNg~*Pg<G, so PNg 'Pg= Pg
a}r)ld % is a Frobenius group with complement % (see [8], 10.5). It follows % cyclic or
g Q.

If 2 = (@ye? =17" " =757 = 7 ~ Q., the subgroups (z), (%) and (y)
would be non-normal in G (because they are not contained in Pg) and pairwise non-conjugate
in G, but then v. (G) > 3.

So % is cyclic and Pg £ ®(P)

Without loss of generality we may distinguish two cases: either H < K, or neither H nor
K contains properly a non-normal subgroup of G (equivalently, ®(H) <G and ®(K) < G).

Casel : H<K.
In this case one has H = ®(K), ®(H) <G and ®(H) = HNPg = KN Pg.
Since % is cyclic, it is P = K Pg. Since P is not cyclic, ®(H) # Pg.Let ®(H) < L < Pg
with [Pe : L] = p; then % = A% X PTG. By Proposition 1 it follows ZIC( )
Ve (M) = 1

L

If K

@(H) @(H), then [A, K] < AN ®(H) = (1), a contradiction to Ca(K) = (1). So

@(H) 4 A m and analogously ﬁ A4 %, SO Ve (%) > 2, a contradiction.

Case 2 : ®(H)< G and ®(K) < G.
It is ®(H) = H N Pg and ®(K) = K N Pg, so ‘HPZG( - ﬁ‘ = p. For £ = (sPa),

one has (s) ~p H or (s) ~p K, so P = HPg or P = KPg. It follows ‘%‘ = p, so
P =HPg = KPg.

Without loss of generality we may suppose H < P, so ﬁ = ﬁ X q)}()?[) and @LH) =
w2 X aeys it follows ®(H) # (1).

It is W 4 A <I><H)’ SO Ve (<I>(H)) > 1. It must be pc ( PG)) =2 and v, (%) =0, so
‘% =p, =p? and ®(P ):<I>(H)<1G.

Let x € P\ ®(H) be such that (z®(H)) # @(H) and (z®(H)) # (I,Ifq); then (z) 4 G
and (z) »¢ H and so (z) ~¢ K and (z®(H)) = I;?Hh;)
proper subgroups and p = 2.

Suppose ®(K) # ®(H); let ®(K) < J < ®(H) with [®(H) : J] = 2. Then |£Z| =2

@(H)

Therefore (D(H) has only three

and B = [%] % would be either abelian or isomorphic to Ds.
Since ‘ ‘ = 4 and every subgroup of G is normal in %, ? cannot be isomorphic to
Ds. If P—J were abelian, then € 7 = A{f‘] X PJG with pe (PTG) > 3, a contradiction by

Proposition 1.
We conclude that ®(H) = ®(K) = ®(P), K < P and P is a Dedekind group with
|H| = |K| > 4.
If there exists C' < P with |C| =2 and C N H = (1), then P = H x C with C <G, so
G = AH x C, a contradiction. Then P is isomorphic to @3 and G is as in 5) with n = 3.
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Remark 3. Theorem I in [6] shows that among the groups presented in Theorem 4 only
the alternating group A4 and the groups of type 2) with |A| = ¢ ( ¢ prime) have just two
conjugacy classes of non-normal subgroups.
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