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Abstract. The existence, uniqueness and other properties of solutions of nonlinear second
order Volterra integrodifferential equation in a general Banach space are studied. The main
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1 Introduction

The problems of existence, uniqueness and other properties of solutions for the second
order systems have much attention in the recent years. It is advantageous to treat second
order abstract differential equations directly rather than to convert into first order systems
(refer, Fitzgibbon [8]). Fitzgibbon [8] used the second order abstract system for establishing
the boundedness of solutions of the equation governing the transverse motion of an extensible
beam. A useful technique for the study of abstract second order equations is the theory of
strongly continuous cosine family of operators. We will make use of some of the basic ideas
from cosine family theory [7, 9, 19, 21, 22]. Motivation for second order systems can be found
in [7, 12, 16, 19, 20].

We consider the abstract nonlinear integrodifferential equation of the type:

x′′(t) = Ax(t) + f(t, x(t),

∫ t

t0

k(t, s, x(s))ds), 0 ≤ t0 ≤ T (1)

x(t0) = x0, x
′

(t0) = y0, (2)

where A is an infinitesimal generator of a strongly continuous cosine family {C(t) : t ∈ R}
in Banach space X, f : [t0, T ] × X × X → X, k : [t0, T ] × [t0, T ] × X → X are continuous
functions and x0, y0 are given elements of X.
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The equations of these types or their special forms commonly come across in almost all
phases of physics and other areas of applied mathematics, see, for example [1, 2, 3, 5] and
the references given therein. The problems of existence, uniqueness, continuation and other
properties of solutions of various special forms (1)–(2) have been extensively studied by using
different techniques during last few years see, [4, 6, 10, 13, 15, 19, 22] and the reference listed
therein. The theorems proved in this paper generalize some results obtained by A. Pazy [17],
and C. C. Travis and G. F. Webb [21]. The abstract results in this work are applicable to
“partial” second order integrodifferential equation, see Section 4.

The paper is organized as follows: In Section 2, we present the preliminaries and hypothe-
ses. Section 3 deals with the our main results. In section 4, we give an example to illustrate
the applications of some our results established in Section 3.

2 Preliminaries and Hypotheses

We introduce notations, definitions and preliminary facts that will be used throughout the
paper.

Let X be a Banach space with norm ‖ · ‖. Let B = C([t0, T ], X) be the Banach space of
all continuous functions from [t0, T ] into X endowed with supremum norm

‖x‖B := sup{‖x(t)‖ : t ∈ [t0, T ]}.

Definition 1. A one parameter family {C(t) : t ∈ R} of bounded linear operators in the
Banach space X is called a strongly continuous cosine family if and only if

(a) C(0) = I (I is the identity operator);

(b) C(t)x is strongly continuous in t on R for each fixed x ∈ X;

(c) C(t+ s) + C(t− s) = 2C(t)C(s) for all t, s ∈ R.

If {C(t) : t ∈ R} is a strongly continuous cosine family in X, then we define the associated
sine family {S(t) : t ∈ R} by

S(t)x =

∫ t

0

C(s)xds, x ∈ X, t ∈ R. (3)

The infinitesimal generator A : X → X of a cosine family {C(t) : t ∈ R} is defined by

Ax =
d2

dt2
C(t)x|t=0, x ∈ D(A),

where D(A) = {x ∈ X : C(.)x ∈ C2(R, X)}. Let M ≥ 1 and N be two positive constants such
that ‖C(t)‖ ≤M and ‖S(t)‖ ≤ N for all t ∈ [0, T ].

Definition 2. Let f ∈ L1(t0, T ;X). The function x ∈ B defined by

x(t) = C(t− t0)x0 + S(t− t0)y0

+

∫ t

t0

S(t− s)f(s, x(s),

∫ s

t0

k(s, τ, x(τ))dτ)ds, t ∈ [t0, T ] (4)

is called mild solution of the initial value problem (1)–(2).

We list the following hypotheses for our convenience.
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(H1) For t, s ∈ [t0, T ] and xi, yi ∈ X, i = 1, 2, there exist nonnegative constants L,K such
that

‖f(t, x1, y1)− f(t, x2, y2)‖ ≤ L[‖x1 − x2‖+ ‖y1 − y2‖],

and

‖k(t, s, x1)− k(t, s, x2)‖ ≤ K‖x1 − x2‖.

(H2) There exist two continuous functions p, q : [t0, T ] → R+ such that

‖f(t, x, y)‖ ≤ p(t)[‖x‖+ ‖y‖],

and

‖k(t, s, x)‖ ≤ q(t)‖x‖,

for all x, y ∈ X and t, s ∈ [t0, T ].

We require the following Lemmas in our further discussion.

Lemma 1 ([18], p. 196). Let X be a Banach space. Let D be an operator which maps the
elements of X into itself for which Dr is a contraction, where r is positive integer. Then D
has a unique fixed point in X.

Lemma 2 ([14], p. 758). Let u(t), p(t) and q(t) be real valued nonnegative continuous
functions defined on R+, for which the inequality

u(t) ≤ u0 +

∫ t

0

p(s)[u(s) +

∫ s

0

q(τ)u(τ)dτ ]ds,

holds for all t ∈ R+, where u0 is a nonnegative constant, then

u(t) ≤ u0[1 +

∫ t

0

p(s) exp (

∫ s

0

(p(τ) + q(τ))dτ)ds],

holds for all t ∈ R+.

3 Existence and Uniqueness of Mild Solution

Theorem 1. Let the hypothesis (H1) be satisfied. Then for each x0, y0 ∈ X, the initial
value problem (1)–(2) has a unique mild solution x ∈ B on [t0, T ]. Moreover, the mapping
(x0, y0) → x is Lipschitz continuous from X ×X into B.

Proof. Define a mapping F : B → B by

(Fx)(t) = C(t− t0)x0 + S(t− t0)y0

+

∫ t

t0

S(t− s)f(s, x(s),

∫ s

t0

k(s, τ, x(τ))dτ)ds, t ∈ [t0, T ]. (5)

We observe that the mild solution of the equations (1)–(2) is a fixed point of the operator
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equation Fx = x. Let x, y ∈ B and using equation (5), and the hypothesis, we obtain

‖(Fx)(t)− (Fy)(t)‖ ≤
∫ t

t0

‖S(t− s)‖‖f(s, x(s),
∫ s

t0

k(s, τ, x(τ))dτ)

− f(s, y(s),

∫ s

t0

k(s, τ, y(τ))dτ)‖ds

≤ N

∫ t

t0

L[‖x− y‖B +K‖x− y‖B
∫ s

t0

dτ ]ds

≤ N

∫ t

t0

L[‖x− y‖B +K‖x− y‖B(s− t0)]ds

≤ N(t− t0)[L+ LK
(t− t0)

2
]‖x− y‖B . (6)

Similarly by using the equations (5), (6) and the hypothesis, we get

‖(F 2x)(t)− (F 2y)(t)‖
= ‖(F (Fx))(t)− (F (Fy))(t)‖
= ‖(Fx1)(t)− (Fy1)(t)‖

≤
∫ t

t0

‖S(t− s)‖‖f(s, x1(s),
∫ s

t0

k(s, τ, x1(τ))dτ)

− f(s, y1(s),

∫ s

t0

k(s, τ, y1(τ))dτ)‖ds

≤ NL

∫ t

t0

‖x1(s)− y1(s)‖ds+NL

∫ t

t0

K

∫ s

t0

‖x1(τ)− y1(τ)‖dτds

= NL

∫ t

t0

‖(Fx)(s)− (Fy)(s)‖ds+NL

∫ t

t0

K

∫ s

t0

‖(Fx)(s)− (Fy)(s)‖dτds

≤ NL[NL
(t− t0)

2

2!
+NLK

(t− t0)
3

3!
]‖x− y‖B

+NLK[NL

∫ t

t0

(s− t0)
2

2!
ds+NLK

∫ t

t0

(s− t0)
3

3!
ds]‖x− y‖B

≤ N2 (t− t0)
2

2!
[L2 + 2L2K

(t− t0)

3
+ L2K2 (t− t0)

2

4× 3
]‖x− y‖B

≤ N2 (t− t0)
2

2!
[L2 + 2L2K

(t− t0)

2!
+ L2K2 (t− t0)

2

4
]‖x− y‖B

≤ (t− t0)
2

2!
[N(L+ LK

(t− t0)

2
)]2‖x− y‖B . (7)

By making use of the equations (5), (7) and iteration it follows that

‖(Fnx)(t)− (Fny)(t)‖ ≤ (t− t0)
n

n!
[N(L+ LK

(t− t0)

2!
)]n‖x− y‖B

≤ 1

n!
[TN(L+

LKT

2
)]n‖x− y‖B ,

which yields

‖Fnx− Fny‖B ≤ 1

n!
[TN(L+

LKT

2
)]n‖x− y‖B . (8)
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For n large enough, 1
n!
[TN(L+ LKT

2
)]n < 1. Thus, there exists a positive integer n such that

Fn is a contraction in B. From Lemma 1, it follows that F has a unique fixed point, say x ∈ B.
This fixed point x is the required mild solution of (1)–(2).

Suppose that y is another mild solution of the initial value problem (1) with y(t0) =

x∗0, y
′

(t0) = y∗0 on [t0, T ]. Using the equation (4) and the hypothesis (H1), we have

‖x(t)− y(t)‖ ≤ ‖C(t− t0)‖‖x0 − x∗0‖+ ‖S(t− t0)‖‖y0 − y∗0‖

+

∫ t

t0

‖S(t− s)‖‖f(s, x(s),
∫ s

t0

k(s, τ, x(τ))dτ)

− f(s, y(s),

∫ s

t0

k(s, τ, y(τ))dτ)‖ds

≤ [M‖x0 − x∗0‖+N‖y0 − y∗0‖]

+

∫ t

t0

NL[‖x(s)− y(s)‖+
∫ s

t0

K‖x(τ)− y(τ)‖dτ ]ds. (9)

By applying Lemma 2 known as the Pachpatte’s inequality with u(t) = ‖x(t) − y(t)‖ and
u0 = 0 to the inequality (9), we get

‖x(t)− y(t)‖ ≤ [M‖x0 − x∗0‖+N‖y0 − y∗0‖]

× [1 +

∫ t

t0

NL exp (

∫ s

t0

(NL+K)dτ)ds],

which yields

‖x− y‖B ≤ [M‖x0 − x∗0‖+N‖y0 − y∗0‖]

× [1 +

∫ t

t0

NL exp (

∫ s

t0

(NL+K)dτ)ds]. (10)

This proves that the uniqueness of x, i. e. for x0, y0 ∈ X, the initial value problem (1)–(2)
has a unique mild solution x ∈ B on t0 ≤ t ≤ T and also Lipschitz continuity of the mapping
(x0, y0) → x. This completes the proof of the Theorem 1. QED

Theorem 2. Let the hypothesis (H2) be satisfied. Then all solutions of (1)–(2) are bounded
on [0, T ]

Proof. Let

x(t) = C(t− t0)x0 + S(t− t0)y0

+

∫ t

t0

S(t− s)f(s, x(s),

∫ s

t0

k(s, τ, x(τ))dτ)ds, t ∈ [t0, T ] (11)

be a solution of (1)–(2). Using hypothesis (H2), we have

‖x(t)‖ ≤ ‖C(t− t0)‖‖x0‖+ ‖S(t− t0)‖‖y0‖

+

∫ t

t0

‖S(t− s)‖‖f(s, x(s),
∫ s

t0

k(s, τ, x(τ))dτ)‖ds

≤M‖x0‖+N‖y0‖+
∫ t

t0

Np(s)[‖x(s)‖+
∫ s

t0

q(τ)‖x(τ)‖dτ ]ds. (12)
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Applying Lemma 2, with u(t) = ‖x(t)‖, we get

‖x(t)‖ ≤ [M‖x0‖+N‖y0‖][1 +
∫ t

t0

Np(s) exp (

∫ s

t0

[Np(τ) + q(τ)]dτ)ds]

≤ [M‖x0‖+N‖y0‖][1 +
∫ t

0

NP exp (T [NP +Q])ds]

≤ [M‖x0‖+N‖y0‖][1 + TNP exp (T [NP +Q])], (13)

where
P = max

t∈[0,T ]
p(t) and Q = max

t∈[0,T ]
q(t).

Thus, the boundedness of x(t) follows from inequality (13). This completes the proof of the
Theorem 2. QED

Remark 1. It is important to note that Theorem 2 proves not only the boundedness, but
also the stability of x(t), if ‖x0‖, ‖y0‖ are small enough.

Theorem 3. Let the hypothesis (H1) be satisfied and x0, y0 ∈ X. Suppose that the func-

tions x1(t) and x2(t) satisfy the equation (1) for t0 ≤ t ≤ T with x1(t0) = x0
∗, x

′

1(t0) = y0
∗

and x2(t0) = x0
∗∗, x

′

2(t0) = y0
∗∗, respectively and x1(t), x2(t) ∈ B, then

‖x1 − x2‖B ≤ [M‖x0∗ − y0
∗‖+N‖x0∗∗ − y0

∗∗‖][1 + TNL exp ((NL+K)T )].

Proof. The continuous dependence of solutions depends upon the initial data can be proved
as in the last part of the proof of Theorem 1. Hence, we omit the details. This completes the
proof of the Theorem 3. QED

Remark 2. In general, cosine family C(t) and sine family S(t) are not bounded in R.
They are bounded only in a finite interval, and may be exponential growth in R+. Therefore,
the all solutions (1)-(2) are need not bounded on R+.

4 Example

In order to illustrate the applications of some of our result established in previous section,
we consider the following partial nonlinear differential equation of the form:

∂2w(t, u)

∂t2
=
∂2w(t, u)

∂u2
+
w(t, u) sin(w(t, u))

(1 + t)(1 + t2)

+

∫ t

0

sw(s, u)

(1 + t)
ds, t ∈ [0, 1], u ∈ I = [0, π], (14)

w(t, 0) = w(t, π) = 0, t ∈ [0, 1], (15)

w(0, u) = x0(u), u ∈ I, (16)

∂w(t, u)

∂t
|t=0 = y0(u), u ∈ I, (17)

Let us take X = L2([0, π]) and w(t,u)=x(t)(u). Since

f(t, x(t),

∫ t

t0

k(t, s, x(s))ds) =
x(t) sin(x(t))

(1 + t)(1 + t2)
+

∫ t

0

sx(s)

(1 + t)
ds
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and

k(t, s, x(s)) =
sx(s)

(1 + t)
,

we have

‖f(t, x1,Kx1)− f(t, x2,Kx2)‖

≤ 2

(1 + t)(1 + t2)
‖x1 − x2‖+

∫ t

0

s‖x1(s)− x2(s)‖
(1 + t)

ds

≤ 2

(1 + t)(1 + t2)
‖x1 − x2‖B +

t2

2(1 + t)
‖x1 − x2‖B

≤ L‖x1 − x2‖B ,

where

L = max
t∈[0,1]

{ 2

(1 + t)(1 + t2)
,

t2

2(1 + t)
} and Kx :=

∫ t

t0

k(t, s, x(s))ds.

Also, we obtain

‖f(t, x,Kx)‖ ≤ 1

(1 + t)(1 + t2)
‖x‖B +

∫ t

0

s‖x‖B
(1 + t)

ds

≤ [
1

(1 + t)(1 + t2)
+

t2

2(1 + t)
]‖x‖B

≤ p(t)‖x‖B ,

where

p(t) = [
1

(1 + t)(1 + t2)
+

t2

2(1 + t)
].

Similarly, we can estimate for the function k:

‖k(t, s, x1)− k(t, s, x2)‖ ≤ s

(1 + t)
‖x1 − x2‖

≤ K‖x1 − x2‖B ,

where
K = sup

0≤s≤t≤1
{ s

(1 + t)
},

and for 0 ≤ s ≤ t ≤ 1

‖k(t, s, x)‖ ≤ s

(1 + t)
‖x‖B ≤ q(t)‖x‖B ,

where

q(t) =
t

(1 + t)
.

We define the operator A : D(A) ⊂ X → X by Aw = wuu, where D(A) = {w(·) ∈ X : w(0) =
w(π) = 0}. It is well known that A is the generator of strongly continuous cosine function
{C(t) : t ∈ R} on X. Furthermore, A has discrete spectrum, the eigenvalues are −n2, n ∈ N,

with corresponding normalized characteristics vectors wn(u) :=
√

2
π
sin(nu), n = 1, 2, 3..., and

the following conditions hold :

(1) {wn : n ∈ N} is an orthonormal basis of X.

(2) If w ∈ D(A) then Aw = −∑∞
n=1 n

2 < w,wn > wn.
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(3) For w ∈ X, C(t)w =
∑∞

n=1 cos(nt) < w,wn > wn. Moreover, from these expression, it

follows that S(t)w =
∑∞

n=1
sin(nt)

n
< w,wn > wn, that S(t) is compact for every t > 0

and that ‖C(t)‖ ≤ 1 and ‖S(t)‖ ≤ 1 for every t ∈ [0, 1].

(4) If H denotes the group of translations on X defined by H(t)x(u) = x̃(u + t), where x̃

is the extension of x with period 2π, then C(t) = 1
2

(
H(t) +H(−t)

)
. If G : X → X is

defined by Gx = x
′

, D(G) = {x ∈ X : x
′ ∈ X}, then it follows that A = G2, where G

is the infinitesimal generator of the group H , see [7, 11].

With this choice of A, f and k, we observe that the equations (1)–(2) is an abstract formulation
of (14)–(17) and the reported Theorems, therefore, can be applied to guarantee the existence,
uniqueness and other properties of solutions of the nonlinear partial integrodifferential equation
(14)–(17).

Acknowledgements. The authors wishes to express their sincere thanks to the
anonymous referees and Professor Domenico Perrone for their helpful comments and sugges-
tions.

References

[1] P. Aviles and J. Sandefur: Nolinear second order equations wtih applications to partial
differential equations, J. Differential Equations, 58 (1985), 404-427.

[2] Belleni A. Morante:An integrodifferential equation arising from the theory of heat
conduction in rigid material with memory, Boll. Un. Mat. Ital., 15 (1978), 470-482.

[3] Belleni A. Morante and G. F. Roach:A mathematical model for Gamma ray transport
in the cardiac region, J. Math. Anal. Appl., 244 (2000), 498-514.

[4] T. A. Burton:Volterra integral and differential equations, Academic Press, New York,
(1983).

[5] Dalintang and Samuel M. Rankin III:Peristaltic transport of a heat conducting vis-
cous fluid as an application of abstract differential equations and semigroup of operators,
J. Math. Anal. Appl., 169 (1992), 391-407.

[6] M. B. Dhakne and B. G. Pachpatte:On perturbed abstract functional integrodifferential
equation, Acta Mathematica Scientia, 8 (1988), 263-282.

[7] H. O. Fattorini:Second Order Linear Differential Equations in Banach Spaces, North-
Holland Mathematics Studies, Vol. 108, North-Holland, Amsterdam, 1985.

[8] W. E. Fitzgibbon:Global existence and boundedness of solutions to the extensible beam
equation, SIAM J. Math. Anal., 13 (1982), 739-745.

[9] J. A. Goldstein:Semigroups of Linear Operators and Applications, Oxford Uni. Press,
New York, (1985).

[10] A. Karoui:On the existence of continuous soutions of nonlinear integral equations, Ap-
plied Mathematics Letters, 18 (2005), 299-305.

[11] R. H. Martin: Nonlinear Operators and Differential Equaions in Banach spaces, Robert
E. Krieger Publ. Co., Florida, (1987).

[12] M. Matos and D. Periera: On a hyperbolic equation with strong damping, Funkcial.
Ekvac., 34 (1991), 303-311.



Second order integrodifferential equations 81

[13] S. K. Ntouyas: Global existence for fnctional semilinear integrodifferential equations,
Archivm Mathematicum, Tomus, 34 (1998), 239-256.

[14] B. G. Pachpatte: A note on Gronwall- Bellman inequality, J. Math. Anal. Appl., 44
(1973), 758-762.

[15] B. G. Pachpatte: On abstarct second order differential equations, Demonstratio Math-
ematica, Vol. XXIII, No. 2, (1990), 357-366.

[16] S. K. Patcheu: On the global solution and asymptotic behaviour for the generalized
damped extensible beam equation, J. Differential Equations, 135 (1996), 679-687.

[17] A. Pazy: Semigroup of Linear Operators and Applications to Partial Differential Eqa-
tions, Springer Verlag, New York, (1983).

[18] A. H. Siddiqi: Functional Analysis with Applications, Tata McGraw-Hill Publishing Com-
pany Ltd., New Delhi, (1986).

[19] C. C. Travis and G. F. Webb: Compactness, regularity, and uniform continuity prop-
erties of strongly continuous cosine families, Houston J. Math., 3(4) (1977), 555-567.

[20] C. C. Travis and G. F. Webb: Second order differential equations in Banach spaces,
Proc, Int. Symp. on Nonlinear Equations in Abstract Spaces, Academic Press, New York,
(1978), 331-361.

[21] C. C. Travis and G. F. Webb: Cosine families and abstract nonlinear second order
differential equations, Acta Math. Acad. Sci. Hungaricae, 32(1978), 76-96.

[22] C. C. Travis and G. F. Webb: An abstract second order semilinear Volterra integrod-
ifferential equation, SIAM J. Math. Anal., 10(1979), 412-424.




