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Abstract. If L is a lattice, a group is called L-free if its subgroup lattice has no sublattice
isomorphic to L. It is easy to see that L10, the subgroup lattice of the dihedral group of order
8, is the largest lattice L such that every finite L-free p-group is modular. In this paper we
continue the study of L10-free groups. We determine all finite L10-free {p, q}-groups for primes
p and q, except those of order 2α3β with normal Sylow 3-subgroup.
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1 Introduction

This paper contains the results presented in the second part of our talk
on ”L10-free groups” given at the conference ”Advances in Group Theory and
Applications 2009” in Porto Cesareo. The first part of the talk mainly contained
results out of [6]. In that paper we introduced the class of L10-free groups;
here L10 is the subgroup lattice of the dihedral group D8 of order 8 and for
an arbitrary lattice L, a group G is called L-free if its subgroup lattice L(G)
has no sublattice isomorphic to L. It is easy to see that L10 is the unique
largest lattice L such that every L-free p-group has modular subgroup lattice.
So the finite L10-free groups form an interesting, lattice defined class of groups
lying between the modular groups and the finite groups with modular Sylow
subgroups. Therefore in [6] we studied these groups and showed that every
finite L10-free group G is soluble and the factor group G/F (G) of G over its
Fitting subgroup is metacyclic or a direct product of a metacyclic {2, 3}′-group
with the (non-metacyclic) group Q8×C2 of order 16. However, we were not able
to determine the exact structure of these groups as had been done in the cases
of L-free groups for certain sublattices L of L10 (and therefore subclasses of the
class of L10-free groups) in [2], [5] and [1].

In the present paper we want to determine the structure of L10-free {p, q}-
groups where p and q are different primes. As mentioned above, the Sylow
subgroups of an L10-free group have modular subgroup lattice. Hence a nilpotent
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group is L10-free if and only if it is modular and the structure of these groups
is well-known [4, Theorems 2.3.1 and 2.4.4]. So we only have to study non-
nilpotent L10-free {p, q}-groups G. The results of [6] show that one of the Sylow
subgroups of G is normal – we shall choose our notation so that this is the
Sylow p-subgroup P of G – and the other is cyclic or a quaternion group of
order 8 or we are in the exceptional situation p = 3, q = 2. So there are only
few cases to be considered (see Proposition 1 for details) and we handle all of
them except the case p = 3, q = 2. Unfortunately, however, in the main case
that P = CP (Q) × [P,Q] where [P,Q] is elementary abelian and Q is cyclic,
the structure of G depends on the relation of q and |Q/CQ(P )| to p − 1 (see
Theorems 1–3). For example, if q ∤ p − 1, then CP (Q) may be an arbitrary
(modular) p-group, whereas CP (Q) usually has to be small if q | p − 1. The
reason for this and for similar structural peculiarities are the technical lemmas
proved in §2, the most interesting being that a direct product of an elementary
abelian group of order pm and a nonabelian P -group of order pn−1q is L10-free
if and only if one of the ranks m or n is at most 2 (Lemma 3 and Theorem 2).

All groups considered are finite. Our notation is standard (see [3] or [4])
except that we write H ∪K for the group generated by the subgroups H and K
of the group G. Furthermore, p and q always are different primes, G is a finite
{p, q}-group, P ∈ Syl p(G) and Q ∈ Syl q(G). For n ∈ N,

Cn is the cyclic group of order n,
Dn is the dihedral group of order n (if n is even),
Q8 is the quaternion group of order 8.

2 Preliminaries

By [6, Lemma 2.1 and Proposition 2.7], the Sylow subgroups of an L10-free
{p, q}-group are modular and one of them is normal. So we only have to consider
groups satisfying the assumptions of the following proposition.

Proposition 1. Let G = PQ where P is a normal modular Sylow p-
subgroup and Q is a modular Sylow q-subgroup of G operating nontrivially on
P . If G is L10-free, then one of the following holds.

I. P = CP (Q) × [P,Q] where [P,Q] is elementary abelian and Q is cyclic.

II. [P,Q] is a hamiltonian 2-group and Q is cyclic.

III. p > 3, Q ≃ Q8 and CQ(P ) = 1.

IV. p = 3, q = 2 and Q is not cyclic.
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Proof. Since Q is not normal in G, by [6, Proposition 2.6], Q is cyclic or Q ≃ Q8

or p = 3, q = 2. By [6, Lemma 2.2], [P,Q] is a hamiltonian 2-group or P =
CP (Q)× [P,Q] with [P,Q] elementary abelian. In the first case, q 6= 2 and hence
II. holds. In the other case, I. holds if Q is cyclic. And if Q ≃ Q8, then clearly
III. or IV. is satisfied or CQ(P ) 6= 1. In the latter case, φ(Q)EG and G/φ(Q) is
L10-free with nonnormal Sylow 2-subgroup Q/φ(Q); again [6, Proposition 2.6]
implies that p = 3 and hence IV. holds.

Definition 1. We shall say that an L10-free {p, q}-group G = PQ is of type
I, II, III, or IV if it has the corresponding property of Proposition 1.

We want to determine the structure of L10-free {p, q}-groups of types I–III.
So we have to study the operation of Q on [P,Q] and for this we need the
following technical results. The first one is Lemma 2.8 in [6].

Lemma 1. Suppose that G = (N1 ×N2)Q with normal p-subgroups Ni and
a cyclic q-group Q which operates irreducibly on Ni for i = 1, 2 and satisfies
CQ(N1) = CQ(N2). If G is L10-free, then |N1| = p = |N2| and Q induces a
power automorphism in N1 ×N2.

An immediate consequence is the following.

Lemma 2. Suppose that G = NQ with normal p-subgroup N and a cyclic
q-group Q operating irreducibly on N . If G is L10-free, then every subgroup of
Q either operates irreducibly on N or induces a (possibly trivial) power auto-
morphism in N ; in particular, G is L7-free.

Proof. Suppose that Q1 ≤ Q is not irreducible on N and let N1 be a minimal
normal subgroup of NQ1 contained in N . Then N = 〈Nx

1 | x ∈ Q〉 and so
N = N1 × · · · × Nr with r > 1 and Ni = Nxi

1 for certain xi ∈ Q. For i > 1,
CQ1

(Ni) = CQ1
(N1)

xi = CQ1
(N1) and hence Lemma 1 implies that a generator

x of Q1 induces a power automorphism in N1 ×Ni. This power is the same for
every i and thus x induces a power automorphism in N . This proves the first
assertion of the lemma; that G then is L7-free follows from [5, Lemma 3.1].

The following two lemmas yield further restrictions on the structure of L10-
free {p, q}-groups. In the proofs we have to construct sublattices isomorphic
to L10 in certain subgroup lattices. For this and also when we assume, for a
contradiction, that a given lattice contains such a sublattice, we use the standard
notation displayed in Figure 1 and the following obvious fact.

Remark 1. Let L be a lattice.
(a) A 10-element subset {A,B,C,D,E, F, S, T, U, V } of L is a sublattice

isomorphic to L10 if the following conditions are satisfied :

(1.1) D ∪ S = D ∪ T = S ∪ T = A and D ∩ S = D ∩ T = S ∩ T = E,

(1.2) D ∪ U = D ∪ V = U ∪ V = C and D ∩ U = D ∩ V = U ∩ V = E,
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(1.3) A ∪B = B ∪ C = F and A ∩B = A ∩ C = B ∩ C = D,

(1.4) S ∪ U = S ∪ V = T ∪ U = T ∪ V = F .

(b) Conversely, every sublattice of L isomorphic to L10 contains 10 pairwise
different elements A, . . . , V satisfying (1.1)–(1.4).

b
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Lemma 3. If G = M ×H where M is a modular p-group with |Ω(M)| ≥ p3

and H is a P -group of order pn−1q with 3 ≤ n ∈ N, then G is not L10-free.

Proof. By [4, Lemma 2.3.5], Ω(M) is elementary abelian. So G contains a sub-
group F = F1×F2 where F1 ≤M is elementary abelian of order p3 and F2 ≤ H
is a P -group of order p2q; let F1 = 〈a, b, c〉 and F2 = 〈d, e〉〈x〉 where a, b, c, d, e
all have order p, o(x) = q and x induces a nontrivial power automorphism in
〈d, e〉. We let E = 1 and define every X ∈ {A,B,C,D,U, V } as a direct product
X = X1 ×X2 with Xi ≤ Fi in such a way that (1.2) and (1.3) hold for the Xi

in Fi (i = 1, 2) and then of course also for the direct products in F . For this
we may take A1 = 〈a, b〉, B1 = 〈a, bc〉, U1 = 〈c〉, V1 = 〈ac〉, hence D1 = 〈a〉 and
C1 = 〈a, c〉, and similarly A2 = 〈d, e〉, B2 = 〈d, ex〉, U2 = 〈x〉, V2 = 〈dx〉, and
hence D2 = 〈d〉 and C2 = 〈d, x〉. Since q | p− 1, we have p > 2 and so we finally
may define S = 〈ae, bd〉 and T = 〈ae2, bd2〉.

Then A = 〈a, b, d, e〉 is elementary abelian of order p4 and D = 〈a, d〉;
therefore D∪S = D∪T = S ∪T = A. Since S, T,D all have order p2, it follows
that D∩S = D∩T = S ∩T = 1 and so also (1.1) holds. Now x and dx operate
in the same way on A and do not normalize 〈aei〉 or 〈bdi〉 (i=1,2); hence all
the groups S ∪ U , S ∪ V , T ∪ U , T ∪ V contain A = S ∪ Sx = T ∪ T x. Since
A ∪ U = A ∪ V = F , also (1.4) holds. Thus {A, . . . , V } is a sublattice of L(G)
isomorphic to L10.

We remark that Theorem 2 will show that if |Ω(M)| ≤ p2 or n ≤ 2 in the
group G of Lemma 3, then G is L10-free.
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Lemma 4. Let k, l,m ∈ N such that k ≤ l < m and qm | p−1. Suppose that
G = PQ where P = M1 ×M2 ×M is an elementary abelian normal p-subgroup
of G with |Mi| ≥ p for i=1,2 and |M | ≥ p2 and where Q is cyclic and induces
power automorphisms of order qk in M1, q

l in M2, and of order qm in M . Then
G is not L10-free.

Proof. We show that G/CQ(P ) is not L10-free and for this we may assume that
CQ(P ) = 1, that is, |Q| = qm. Then G contains a subgroup F = AQ where
A = 〈a, b, c, d〉 is elementary abelian of order p4 with a ∈ M1, b ∈ M2 and
c, d ∈ M . We let E = 1, D = 〈a, c〉, S = 〈acd, bcd−1〉, T = 〈acd2, bc−1d−1〉,
U = Q, V = Qac, C = DQ, B = DQbd and claim that these groups satisfy
(1.1)–(1.4).

This is rather obvious for (1.1) since |D| = |S| = |T | = p2 and, clearly,
D ∪ S = D ∪ T = S ∪ T = A. By [4, Lemma 4.1.1], Q ∪ Qac = [ac,Q]Q and
Q ∩ Qac = CQ(ac); since Q induces different powers in 〈a〉 and 〈c〉, we have
[ac,Q] = 〈a, c〉 and CQ(ac) = CQ(c) = 1. It follows that (1.2) is satisfied. Since
G/D ≃ 〈b, d〉Q and Q ∩ Qbd = CQ(bd) = 1, we have B ∩ C = D and so (1.3)
holds. Finally, since a generator of Q (or of Qac) induces different powers in Mi

and M , S ∪U and S ∪V contain 〈a, cd, b, cd−1〉 = A; similarly T ∪U and T ∪V
both contain 〈a, cd2, b, c−1d−1〉 = A. Thus also (1.4) holds and {A, . . . , V } is a
sublattice of L(G) isomorphic to L10.

To show that the groups in our characterizations indeed are L10-free, we
shall need the following simple properties of sublattices isomorphic to L10.

Lemma 5. Let M and N be lattices. If M and N are L10-free, then so is
M ×N .

Proof. This follows from the fact that L10 is subdirectly irreducible; see [5,
Lemma 2.2] the proof of which (for k = 7) can be copied literally.

Lemma 6. Let G be a group and suppose that A, . . . , V ∈ L(G) satisfy
(1.1)–(1.4). If W ≤ G such that F � W , then either S � W and T � W or
U � W and V � W .

Proof. Otherwise there would exist X ∈ {S, T} and Y ∈ {U, V } such that
X ≤W and Y ≤W . But then F = X ∪ Y ≤W , a contradiction.

Lemma 7. Let P E G such that |G : P | is a power of the prime q and
suppose that Q0 is the unique subgroup of order q in G. If P and G/Q0 are
L10-free, then so is G.

Proof. Suppose, for a contradiction, that {A, . . . , V } is a sublattice of L(G)
isomorphic to L10 and satisfying (1.1)–(1.4). Since P is L10-free, F � P . By
Lemma 6, either S and T or U and V are not contained in P and therefore have
order divisible by q. Hence either Q0 ≤ S ∩ T = E or Q0 ≤ U ∩ V = E; in both
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cases, G/Q0 is not L10-free, a contradiction.

In the inductive proofs that the given {p, q}-group G = PQ is L10-free, the
above lemma will imply that CQ(P ) = 1. And the final result of this section
handles a situation that shows up in nearly all of these proofs.

Lemma 8. Let G = PQ where P is a normal Sylow p-subgroup of G and
Q is a nontrivial cyclic q-group or Q ≃ Q8; let Q0 = Ω(Q) be the minimal
subgroup of Q.

Assume that every proper subgroup of G is L10-free and that there exists a
minimal normal subgroup N of G such that P = N × CP (Q0); in addition, if
Q ≃ Q8, suppose that every subgroup of order 4 of Q is irreducible on N .

Then G is L10-free.

Proof. Suppose, for a contradiction, that G is not L10-free and let {A, . . . , V } be
a sublattice of L(G) isomorphic to L10; so assume that (1.1)–(1.4) hold. Since
every proper subgroup of G is L10-free, F = G.

By assumption, G = NCG(Q0); hence QG
0 ≤ NQ0 and [P,Q0] ≤ N . Since

P = [P,Q0]CP (Q0) (see [4, Lemma 4.1.3]), it follows that

[P,Q0] = N and QG
0 = NQ0. (1)

Suppose first that E is a p-group. By Lemma 6, we have S, T � Pφ(Q) or
U, V � Pφ(Q); say U, V � Pφ(Q). Then U and V both contain Sylow q-
subgroups of G, or subgroups of order 4 of G if Q ≃ Q8. Since U ∩ V = E is a
p-group, C = U ∪ V contains two different subgroups of order q and hence by
(1), C ∩N 6= 1. Since U is irreducible on N , it follows that N ≤ C. Therefore
QG

0 = NQ0 ≤ C and so C contains every subgroup of order q of G. Since
S ∩ C = T ∩ C = E is a p-group, it follows that S and T are p-groups. Hence
A = S∪T ≤ P ; but then also B∩C = D ≤ A is a p-group and therefore B ≤ P .
So, finally, G = A ∪B ≤ P , a contradiction.

Thus E is not a p-group and therefore contains a subgroup of order q. If we
conjugate our L10 suitably, we may assume that

Q0 ≤ E. (2)

Every subgroup X of G containing Q0 is of the form X = (X ∩ P )Q1 where
Q0 ≤ Q1 ∈ Syl q(X); since X ∩ P = [X ∩ P,Q0]CX∩P (Q0) and [X ∩ P,Q0] ≤
X ∩N , it follows that

X ≤ CG(Q0) if Q0 ≤ X and X ∩N = 1. (3)

Since G = A∪B = A∪C = B ∪C, at least two of the three groups A,B,C are
not contained in Pφ(Q) and hence contain Sylow q-subgroups of G, or subgroups
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of order 4 of G if Q ≃ Q8. Similarly, two of the groups A,B,C are not contained
in CG(Q0) and hence, by (2) and (3), have nontrivial intersection with N . So
there exists X ∈ {A,B,C} having both properties. Since the Sylow q-subgroups
of X are irreducible on N , it follows that N ≤ X. Let Y, Z ∈ {A,B,C} with
Y 6= X 6= Z such that Y ∩N 6= 1 and Z contains a Sylow q-subgroup of G, or a
subgroup of order 4 of G if Q ≃ Q8. Then 1 < Y ∩N ≤ Y ∩X = D and hence
also Z ∩N 6= 1. Thus N ≤ Z and so

N ≤ X ∩ Z = D. (4)

Therefore S ∩N = S ∩D ∩N = E ∩N and U ∩N = E ∩N ; so if E ∩N = 1,
then (2) and (3) would imply that G = S ∪U ≤ CG(Q0), a contradiction. Thus
E ∩ N 6= 1. Again by Lemma 6, U, V � Pφ(Q), say. So U ∩ N 6= 1 6= V ∩ N
and U and V are irreducible on N ; it follows that N ≤ U ∩ V = E. But by
assumption, G = NCG(Q0) and N ∩ CG(Q0) = 1 so that G/N ≃ CG(Q0) is
L10-free, a final contradiction.

3 Groups of type I

Unfortunately, as already mentioned, this case splits into three rather dif-
ferent subcases according to the relation of q and |Q/CQ(P )| to p− 1. We start
with the easiest case that q does not divide p− 1. In the whole section we shall
assume the following.

Hypothesis I. Let G = PQ where P is a normal p-subgroup of G with
modular subgroup lattice, Q is a cyclic q-group and P = CP (Q) × [P,Q] with
[P,Q] elementary abelian and [P,Q] 6= 1.

Theorem 1. Suppose that G satisfies Hypothesis I and that q ∤ p− 1.
Then G is L10-free if and only if P = CP (Q) ×N1 × · · · ×Nr (r ≥ 1) and

for all i, j ∈ {1, . . . , r} the following holds.

(1) Every subgroup of Q operates trivially or irreducibly on Ni.

(2) CQ(Ni) 6= CQ(Nj) for i 6= j.

Proof. Suppose first that G is L10-free. By Maschke’s theorem, Q is completely
reducible on [P,Q] and hence [P,Q] = N1 × · · · × Nr with r ≥ 1 and Q irre-
ducible on Ni for all i ∈ {1, . . . , r}. By Lemma 2, every subgroup of Q either is
irreducible on Ni or induces a power automorphism in Ni. But since q ∤ p − 1,
there is no power automorphism of order q of an elementary abelian p-group
and hence all these induced power automorphisms have to be trivial. Thus (1)
holds and (2) follows from Lemma 1.
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To prove the converse, we consider a minimal counterexample G. Then G
satisfies (1) and (2) but is not L10-free. Every subgroup ofG also satisfies (1) and
(2) or is nilpotent with modular subgroup lattice; the minimality of G implies
that every proper subgroup of G is L10-free.

If CQ(P ) 6= 1, then Q0 := Ω(Q) would be the unique subgroup of order q
in G and again the minimality of G would imply that G/Q0 would be L10-free.
Since also P is L10-free, Lemma 7 would yield that G is L10-free, a contradiction.
Thus CQ(P ) = 1 and hence there is at least one of the Ni, say N1, on which Q0

acts nontrivially and hence irreducibly. By (2), Q0 centralizes the other Nj so
that P = N1 × CP (Q0). By Lemma 8, G is L10-free, a final contradiction.

We come to the case that G satisfies Hypothesis I and q | p− 1. Then again
by Maschke’s theorem, [P,Q] = N1×· · ·×Nr (r ≥ 1) with irreducible GF (p)Q-
modules Ni; but this time some of the Ni might be of dimension 1. In fact, if the
order of the operating group Q/CQ(P ) divides p− 1, then |Ni| = p for all i (see
[3, II, Satz 3.10]). Therefore a generator x of Q induces power automorphisms
in all the Ni and [P,Q] is the direct product of nontrivial eigenspaces of x. We
get the following result in this case.

Theorem 2. Suppose that G satisfies Hypothesis I and that |Q/CQ(P )|
divides p− 1; let Q = 〈x〉.

Then G is L10-free if and only if P = CP (Q) ×M1 × · · · ×Ms (s ≥ 1) with
eigenspaces Mi of x satisfying (1) and (2).

(1) CQ(Ms) < CQ(Ms−1) < · · · < CQ(M1) < Q

(2) One of the following holds:

(2a) |Mi| = p for all i ∈ {1, . . . , s},

(2b) |M1| ≥ p2, |Mi| = p for all i 6= 1 and |Ω(CP (Q))| ≤ p2,

(2c) |M2| ≥ p2, |Mi| = p for all i 6= 2 and CP (Q) is cyclic.

Proof. Suppose first that G is L10-free. As mentioned above, since |Q/CQ(P )|
divides p − 1, [P,Q] is a direct product of eigenspaces M1, . . . ,Ms of x. By
Lemma 1, CQ(Mi) 6= CQ(Mj) for i 6= j and we can choose the numbering of the
eigenspaces in such a way that (1) holds.

If |Mi| = p for all i, then (2a) is satisfied. So suppose that |Mk| ≥ p2 for some
k ∈ {1, . . . , s}. Then by (1), K := CQ(Mk) < CQ(Mi) for all i < k. Therefore if
k ≥ 3, then x would induce power automorphisms of pairwise different orders
|Q/CQ(Mi)| in Mi for i ∈ {1, 2, k}, contradicting Lemma 4. So k ≤ 2, that is,
|Mi| = p for all i > 2; and if k = 2, again Lemma 4 implies that also |M1| = p.

Let K < Q1 ≤ Q such that |Q1 : K| = q. Then K ≤ Z(H) if we put
H = (CP (Q) ×M1 × · · · ×Mk)Q1 and MkQ1/K is a P -group of order pn−1q
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with n ≥ 3. So if k = 2, then by (1), Q1 ≤ CQ(M1) and hence H/K =
(CP (Q) ×M1)K/K ×M2Q1/K; by Lemma 3, |Ω(CP (Q) ×M1)| ≤ p2. Thus
CP (Q) is cyclic and (2c) holds. Finally, if |M2| = p, then k = 1 and Lemma 3
applied to H/K yields that |Ω(CP (Q))| ≤ p2. So (2b) is satisfied and G has the
desired structure.

To prove the converse, we again consider a minimal counterexample G. Then
G satisfies (1) and (2) and L(G) contains 10 pairwise different elements A, . . . , V
satisfying (1.1)–(1.4).

Every subgroup of G is conjugate to a group H = (H ∩ P )〈y〉 with y ∈ Q.
By (1) there exists k ∈ {0, . . . , s} such that y has Mk+1, . . . ,Ms as nontrivial
eigenspaces; and (2) implies that if |H ∩Mi| ≥ p2 for some i ∈ {k + 1, . . . , s},
then either k = 0 or k = 1 and i = 2. In the first case, H trivially satisfies (1)
and (2); in the other case, G satisfies (2c) and (2b) holds for H. The minimality
of G implies :

Every proper subgroup of G is L10-free and F = G. (3)

Again let Q0 := Ω(Q). If CQ(P ) 6= 1, then G/Q0 and, by Lemma 7, also G
would be L10-free, a contradiction. Thus

CQ(P ) = 1. (4)

By (1), CQ(Ms) = CQ(P ) = 1 and Q0 centralizes M1, . . . ,Ms−1; furthermore
Q0 induces a power automorphism of order q in Ms. Thus

P = Ms × CP (Q0) and QG
0 = MsQ0 is a P -group. (5)

If |Ms| = p, then by Lemma 8, G would be L10-free, a contradiction. Thus
|Ms| > p and hence s ≤ 2, by (2); in fact, (2) implies that there are only two
possibilities for the Mi.

Let M0 := CP (Q). Then one of the following holds : (6)

(6a) P = M0 ×M1 where |Ω(M0)| ≤ p2 and |M1| ≥ p2,

(6b) P = M0 ×M1 ×M2 where M0 is cyclic, |M1| = p and |M2| ≥ p2.

By Lemma 6, either S, T � Pφ(Q) or U, V � Pφ(Q); say U, V � Pφ(Q). Then

U and V contain Sylow q-subgroups of G. (7)

We want to show next that E = 1. For this note that by (5), G = MsCG(Q0)
and Ms ∩ CG(Q0) = 1. Since every subgroup of Ms is normal in G, the map

φ : L(Ms) × [CG(Q0)/Q0] −→ [G/Q0]; (H,K) 7−→ HK
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is well-defined. Every L ∈ [G/Q0] is of the form L = (L∩P )Q1 where Q0 ≤ Q1 ∈
Syl q(L); since Ms = [P,Q0], we have L ∩ P = (L ∩ Ms)CL∩P (Q0). Hence
L = (L ∩Ms)CL(Q0) and the map

ψ : [G/Q0] −→ L(Ms) × [CG(Q0)/Q0];L 7−→ (L ∩Ms, CL(Q0))

is well-defined and inverse to φ. Thus [G/Q0] ≃ L(Ms) × [CG(Q0)/Q0]. By (3),
CG(Q0) is L10-free and then Lemma 5 implies that also [G/Q0] is L10-free. So
[G/Qg

0] is L10-free for every g ∈ G and this implies that E is a p-group.

Now suppose, for a contradiction, that E 6= 1. By (6), the Mi are eigenspaces
(and centralizer) of every Sylow q-subgroup of G. Therefore by (7), U ∩ P and
V ∩P are direct products of their intersections with the Mi and hence this also
holds for (U ∩ P ) ∩ (V ∩ P ) = E ∩ P = E. The minimality of G implies that
EG = 1. Hence E ∩M1 = E ∩M2 = 1 and so E ≤M0 and |Ω(M0)| = p2. If two
of the groups S, T, U, V would contain Ω(M0), then Ω(M0) ≤ E, contradicting
EG = 1. Hence there are X ∈ {S, T} and Y ∈ {U, V } such that X ∩M0 and
Y ∩M0 are cyclic. Since E ≤M0, it follows that EEX∪Y = G, a contradiction.
We have shown that

E = 1 (8)

and come to the crucial property of G.

(9) Let X,Y ≤ G such that Y contains a Sylow q-subgroup of G; let

|X| = pjqk where j, k ∈ N0. Then |X ∪ Y | ≤ pj+2|Y |.

Proof. Conjugating the given situation suitably, we may assume that Q ≤ Y .
Suppose first that X is a p-group and let H = M0 and K = M1 if (6a) holds,
whereas H = M0 ×M1 and K = M2 if (6b) holds. Then X ≤ P = H ×K
where H is modular of rank at most 2 and K is elementary abelian. Let
X1 = XK ∩ H, X2 = XH ∩ K and X0 = (X ∩ H) × (X ∩ K). Then by
[4, 1.6.1 and 1.6.3], X1/X ∩ H ≃ X2/X ∩ K and X/X0 is a diagonal in the
direct product (X1 ×X2)/X0 = X1X0/X0 ×X2X0/X0. Since X2/X ∩K is ele-
mentary abelian and X1/X ∩H has rank at most 2, we have |(X1 ×X2) : X| =
|X1/X ∩H| ≤ p2.

Now X∪Y ≤ (X1×X2)∪Y . Since L(P ) is modular, any two subgroups of P
permute [4, Lemma 2.3.2]; furthermore,Q normalizesX2. So ifQ also normalizes
X1, then X1×X2 permutes with Y and |X ∪Y | ≤ |X1×X2| · |Y | ≤ |X| ·p2 · |Y |,
as desired. If Q does not normalize X1, then (6b) holds and X1 is cyclic since
every subgroup of H = M0×M1 containing M1 is normal in G. Then X1/X∩H
is cyclic and elementary abelian and hence |(X1 ×X2) : X| = |X1/X ∩H| ≤ p.
It follows that |X ∪ Y | ≤ |(X1M1 ×X2)Y | ≤ |X| · p2 · |Y |. Thus (9) holds if X
is a p-group.
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Now suppose that X is not a p-group; so X = (X∩P )Qa
1 where 1 6= Q1 ≤ Q

and a ∈ [P,Q]. If (6a) holds, then by (4), M0 = CP (Q1) and M1 is a nontrivial
eigenspace of Q1; hence X ∩P = (X ∩M0)× (X ∩M1). Since every subgroup of
M0 is permutable and every subgroup of M1 is normal in G, we have that 〈a〉EG
and X ∪Y = (X ∩P )(Y ∩P )(Q∪Qa

1) ≤ (X ∩P )Y 〈a〉; thus |X ∪Y | ≤ pj · |Y | ·p.
Finally, if (6b) holds, then CP (Q1) = M0 or CP (Q1) = M0 ×M1 = H; in any
case, X ∩ P = (X ∩H) × (X ∩M2). Since P is abelian, (X ∩H)M1, X ∩M2

and Y ∩ P are normal in G and a = a1a2 with ai ∈ Mi. Hence X ∪ Y ≤
((X∩H)M1× (X∩M2))(Y ∩P )Q〈a2〉 and so |X∪Y | ≤ pj+1 · |Y | ·p, as claimed.

Since U and V contain Sylow q-subgroups of G, we may apply (9) with
X ∈ {S, T} and Y ∈ {U, V }. Then sinceX∩C = E = 1, we obtain, if |X| = pjqk,
that pjqk|C| = |XC| ≤ |G| = |X ∪ Y | ≤ pj+2|Y | and hence

|C : Y | ≤
p2

qk
for Y ∈ {U, V }. (10)

Similarly, A ∩ Y = 1 and therefore |A||Y | = |AY | ≤ |G| = |X ∪ Y | ≤ pj+2|Y |;
hence |A| ≤ pj+2, that is

|A : X| ≤
p2

qk
for X ∈ {S, T}. (11)

Since S ∩ T = 1 = D ∩ T , we have |S|, |D| ≤ |A : T | and |T | ≤ |A : S|; similarly
|U | ≤ |C : V | and |V | ≤ |C : U |. Thus (10) and (11) yield that

S, T,D,U, V all have order at most p2. (12)

In particular, |S| ≤ p2 and |U | ≤ pqm where qm = |Q| and hence by (9),
|G| = |S ∪ U | ≤ p5qm. If |P | = p2, then since |Ms| ≥ p2, we would have that
G = M1Q; by [5, Lemma 3.1], G then even would be L7-free, a contradiction.
Thus

p3 ≤ |P | ≤ p5. (13)

Now suppose, for a contradiction, that A � P . Since A = S ∪ T , one of these
subgroups, say S, has to contain a Sylow q-subgroup of A; so if we take X = S
above, then k ≥ 1 in (10) and (11). By (10), |C : V | < p2 and since |C : V | is a
power of p, it follows that |C : V | = p. Hence |U | ≤ p and since qm | |U |, we have
|U | = qm. By (11), |A : S| < p2 and since |A : S| is a power of p, also |A : S| = p
and hence |T | ≤ p. If T would be a q-group, then by (9), |G| = |T ∪U | ≤ p2qm,
contradicting (13). Thus |T | = p and |G| = p3qm. But then P = H ×Ms where
H E G and |H| = p ; it follows that HT E G and then |G| = |HTU | ≤ p2qm,
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again contradicting (13). Thus A is a p-group. Hence L(A) is modular and so
by (8), |A| = |S||T | = |S||D| = |T ||D|. Therefore |S| = |T | = |D| and by (13),

|A| = p2 or |A| = p4. (14)

Suppose first that |A| = p2. Then |S| = |D| = p and by (12), |U | ≤ pqm. It
follows from (9) that |G| = |S ∪ U | ≤ p4qm. So |CP (Q)| ≤ p2 and hence P
is abelian. Since A ≤ P and G = A ∪ B, also B contains a Sylow q-subgroup
of G; hence B ∩ P E G and C ∩ P E G and so D = (B ∩ P ) ∩ (C ∩ P ) E G.
Therefore C = DU and so |C : U | = |D| = p. It follows that |V | = qm and
|G| = |S ∪ V | = p3qm, by (9) and (13). Then again P = H ×Ms with H E G
and |H| = p so that |G| = |HSV | ≤ p2qm, a contradiction. Thus

|A| = p4 and |S| = |T | = |D| = p2. (15)

Suppose first that |U | = qm or |V | = qm, say |U | = qm. Then by (9), |G| = |S ∪
U | ≤ p4qm and since |A| = p4, we have A = PEG. Therefore D = A∩BEB and
D E C so that again D E G. Furthermore |V | =
|G : A| = qm and so C = U ∪ V ≤ QG. Since |B : D| = |G : A| = qm,
also B ≤ QG; hence G = B ∪ C ≤ QG so that M0 = 1, by (6). By [5, Lemma
3.1], M1Q is L10-free; hence (6b) holds and |M2| = p3. It follows that Q induces
a power automorphism either in D or in A/D; but in both groups C = DU and
G/D = (A/D)(C/D) there exist two Sylow q-subgroups generating the whole
group, a contradiction. So |U | 6= qm 6= |V | and by (12), |U | = |V | = pqm. Since
A ∩ U = E = 1, it follows that A < P ; so (13) and (15) yield that

|G| = p5qm and |U | = |V | = pqm. (16)

Since L(P ) is modular, L(S) ≃ [A/D] ≃ L(T ). So if S would be cyclic, then
A would be of type (p2, p2) and hence by (6), A ∩ Ms = 1 and |P | ≥ p6, a
contradiction. Thus S and T are elementary abelian and so P is generated by
elements of order p; by [4, Lemma 2.3.5], P is elementary abelian.

Now if (6a) holds, then M0S E G and hence G = M0SU . Since |M0| ≤ p2,
it follows from (16) that |M0| = p2 and U ∩ M0 = 1. Since U ∩ P E G, we
have U ∩ P ≤ M1 and so U ≤ QG = M1Q. Similarly, V ≤ QG and hence
C = U ∪ V ≤ QG. Since |C| ≥ |D||U | = p3qm and |M1| = p3, it follows that
C = QG EG. But then |B : D| = |G : C| = p2, so |B| = p4 and G = A∪B ≤ P ,
a contradiction.

So, finally, (6b) holds and P = M0 × M1 × M2 where |M0 × M1| ≤ p2.
This time (M0 ×M1)S E G and it follows from (16) that |M0 ×M1| = p2 and
U ∩ P ≤ M2 and V ∩ P ≤ M2. So |M2| = p3 and since U ∩ V = 1, we have
either M2 ≤ C or C ∩M2 = (U ∩ P ) × (V ∩ P ). In the first case, by (5), C
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would contain every subgroup of order q of G; since B ∩ C = D is a p-group,
it would follow that B ≤ P and hence G = A ∪ B ≤ P , a contradiction. So
|C ∩M2| = p2 and if C0, U0, V0 are the subgroups generated by the elements of
order q of C,U, V , respectively, then by (5), C0 is a P -group of order p2q and
U0, V0 are subgroups of order pq in C0. So U0 ∩ V0 6= 1, but by (8), U ∩ V = 1,
the final contradiction.

We come to the third possibility for a group satisfying Hypothesis I.

Theorem 3. Suppose that G satisfies Hypothesis I and that q | p − 1 but
|Q/CQ(P )| does not divide p− 1; let k ∈ N such that qk is the largest power of
q dividing p− 1.

Then G is L10-free if and only if there exists a minimal normal subgroup N
of order pq of G such that one of the following holds.

(1) P = CP (Q) ×N where |Ω(CP (Q))| ≤ p2.

(2) P = CP (Q) ×N1 ×N where N1 EG, |N1| = p and CP (Q) is cyclic.

(3) q = 2, k = 1 and P = M ×N where |M | = p2, Q is irreducible on M and
CQ(N) < CQ(M).

(4) P = M ×N where M is elementary abelian of order p2 and Q induces a
power automorphism of order q in M .

(5) P = N1 × N2 × N where Ni E G, |Ni| = p for i = 1, 2 and where
CQ(N1) < CQ(N2) = φ(Q).

Proof. Suppose first that G is L10-free. Again by Maschke’s theorem, [P,Q] =
N1 × · · · × Nr (r ≥ 1) with Q irreducible on Ni and we may assume that
CQ(Nr) ≤ CQ(Ni) for all i. Then K := CQ(P ) = CQ(Nr) and since |Q/K|
does not divide p− 1, we have that |Nr| > p. By Lemma 2 and [5, Lemma 3.1],
|Nr| = pq and |Q/K| = qk+1, or |Q/K| ≥ qk+1 = 4 in case q = 2, k = 1. We let
N := Nr and have to show that G satisfies one of properties (1)–(5).

For this put M := CP (Q) ×N1 × · · · ×Nr−1, so that P = M ×N , and let
Q1 ≤ Q such that K < Q1 and |Q1 : K| = q. By Lemma 2, Q1 induces a power
automorphism of order q in N ; by Lemma 1, CQ(N) < CQ(Ni) for all i 6= r and
hence Q1 centralizes M . So PQ1/K = MK/K × NQ1/K where NQ1/K is a
P -group of order pqq. By Lemma 3, |Ω(M)| ≤ p2; in particular, r ≤ 3.

If r = 1, then M = CP (Q) and (1) holds. If r = 2, then either |N1| = p
and CP (Q) is cyclic, that is (2) holds, or |N1| = p2 and CP (Q) = 1. In this
case, since Q is irreducible on N1 and, by Lemma 1, induces automorphisms of
different orders in N and N1, again Lemma 2 and [5, Lemma 3.1] imply that
q = 2 and k = 1; thus (3) holds.
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Finally, suppose that r = 3. Since |Ω(M)| ≤ p2, it follows that M = N1×N2,
|N1| = |N2| = p and CP (Q) = 1. If q = 2 and k = 1, then Q = 〈x〉 induces
automorphisms of order 2 in N1 and N2; thus ax = a−1 for all a ∈ M and
(4) holds. So suppose that q > 2 or q = 2 and k > 1. Then |Q/K| = qk+1

as mentioned above and so |φ(Q) : K| = qk divides p − 1. Thus H := Pφ(Q)
is one of the groups in Theorem 2 and by Lemma 2, φ(Q) induces a power
automorphism of order qk in N . Since [P, φ(Q)] ≤ [P,Q] = N1 × N2 × N and
CQ(N) < CQ(Ni) for i ∈ {1, 2}, N is one of the eigenspaces of xp in [P, φ(Q)].
Hence H satisfies (2b) or (2c) of Theorem 2. In the first case, N = M1 in the
notation of that theorem andN1×N2 ≤ CP (φ(Q)) since Cφ(Q)(M1) is the largest
centralizer of a nontrivial eigenspace of xp. So CQ(N1) = φ(Q) = CQ(N2) and
by Lemma 1, Q induces a power automorphism of order q in N1 ×N2; thus (4)
holds. In the other case, N = M2 and |M1| = p, so that M1 = N1, say, and then
N2 ≤ CP (φ(Q)). Thus (5) holds and G has the desired properties.

To prove the converse, we again consider a minimal counterexample G. Then
G has a minimal normal subgroup N of order pq and satisfies one of the prop-
erties (1)–(5) but is not L10-free. As in the proof of Theorem 1, by Lemma 7,
CQ(P ) = 1.

Let H be a proper subgroup of G. Then either H contains a Sylow q-
subgroup of G or H ≤ Pφ(Q). In the first case, N ≤ H or H ∩N = 1. Hence H
satisfies the assumptions of Theorem 3 or Theorem 2 or is nilpotent; the mini-
mality of G implies that H is L10-free. So suppose that H = Pφ(Q). A simple
computation shows (see [5, p. 523]) that if q > 2 or if q = 2 and k > 1, then
qk+1 is the largest power of q dividing pq − 1. Therefore in these cases, by [3, II,
Satz 3.10], a generator x of Q operates on N = (GF (pq),+) as multiplication
with an element of order qk+1 of the multiplicative group of GF (pq). The q-th
power of this element lies in GF (p) and therefore fixes every subgroup of N .
Thus φ(Q) induces a power automorphism of order qk in N . So if G satisfies
(1) or (4), then H satisfies s = 1 and (2b) of Theorem 2; the same holds if
G satisfies (2) and φ(Q) centralizes N1. If G satisfies (2) and [φ(Q), N1] 6= 1
or G satisfies (5), then (2c) of Theorem 2 holds for H. Finally, if q = 2 and
k = 1, then either φ(Q) is irreducible on N or |Q| = 4; hence H satisfies the
assumptions of Theorem 3 or 2. In all cases, Theorem 2 and the minimality of
G imply that H is L10-free.

Finally, Q0 = Ω(Q) induces a power automorphism of order q in N and
centralizes the complements of N in P given in (1)–(5). So P = N × CP (Q0)
and by Lemma 8, G is L10-free, the desired contradiction.

Note that in Theorem 1 and in (2a) of Theorem 2, CP (Q) may be an arbi-
trary modular p-group since by Iwasawa’s theorem [4, Theorem 2.3.1], a direct
product of a modular p-group with an elementary abelian p-group has modular
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subgroup lattice. In all the other cases of Theorems 2 and 3, Lemma 3 implied
that |Ω(CP (Q))| ≤ p2; in (2b) of Theorem 2 and (1) of Theorem 3, CP (Q) may
be an arbitrary modular p-group with this property.

4 Groups of type II and III

We now determine the groups of type II. Theorem 4 shows that modulo
centralizers the only such group is SL(2, 3) ≃ Q8 ⋊ C3.

Theorem 4. Let G = PQ where P is a normal Sylow 2-subgroup of G, Q
is a cyclic q-group, 2 < q ∈ P, and [P,Q] is hamiltonian.

Then G is L10-free if and only if G = M ×NQ where M is an elementary
abelian 2-group, N ≃ Q8 and Q induces an automorphism of order 3 in N .

Proof. Suppose first that G is L10-free. Then L(P ) is modular and since [P,Q]
is hamiltonian, it follows from [4, Theorems 2.3.12 and 2.3.8] that P = H ×K
where H is elementary abelian and K ≃ Q8. Hence φ(P ) = φ(K) and Ω(P ) =
H×φ(P ). By Maschke’s theorem there are Q-invariant complements M of φ(P )
in Ω(P ) and N/φ(P ) of Ω(P )/φ(P ) in P/φ(P ). Then Ω(N) = Ω(P )∩N = φ(P )
implies that N ≃ Q8 and since [P,Q] � Ω(P ), Q operates nontrivially on N .
Therefore q = 3 and Q induces an automorphism of order 3 in N .

Since P is a 2-group, G/φ(P ) is an L10-free {p, q}-group of type I with
q ∤ p− 1. By Theorem 1, P/φ(P ) = CP/φ(P )(Q)×N1 × · · · ×Nr with nontrivial
GF (2)Q-modulesNi satisfying (1) and (2) of that theorem. By (1), the subgroup
of order 3 of Q/CQ(Ni) is irreducible on Ni; therefore |Ni| = 4 and hence
CQ(Ni) = φ(Q) for all i. But then (2) implies that r = 1. It follows that
N1 = N/φ(P ) and [M,Q] ≤M ∩N = 1; thus G = M ×NQ as desired.

To prove the converse, we again consider a minimal counterexample G; let
{A, . . . , V } be a sublattice of L(G) isomorphic to L10 and satisfying (1.1)–(1.4).
The minimality of G implies that F = G and, together with Lemma 7, that
CQ(P ) = 1; hence |Q| = 3.

If A or C, say C, contains two subgroups of order 3, then NQ ≤ C and hence
C E G. Then D = A ∩ C = B ∩ C E A ∪ B = G and A/D ≃ G/C ≃ B/D are
2-groups; therefore G/D is a 2-group. Similarly, E = S∩D = U∩DES∪U = G
and S/E ≃ G/C and U/E ≃ C/D are 2-groups. Thus G/E is a modular 2-group
and hence L10-free, a contradiction.

So A and C both contain at most one subgroup of order 3 and therefore
are nilpotent. By Lemma 6, we have U, V � P , say; so U and V contain the
subgroup Q1 of order 3 of C and it follows that Q1 ≤ U ∩ V = E ≤ A. Hence
G = A ∪ C ≤ CG(Q1), a final contradiction.
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We finally come to groups of type III; more generally, we determine all L10-
free {p, 2}-groups in which Q8 operates faithfully on P .

Theorem 5. Let G = PQ where P is a normal Sylow p-subgroup with
modular subgroup lattice, Q ≃ Q8 and CQ(P ) = 1.

Then G is L10-free if and only if P = M × N where |N | = p2, Q operates
irreducibly on N and one of the following holds :

(1) p ≡ 3 (mod 4), M = CP (Q) and |Ω(M)| ≤ p2,

(2) M = CP (Q) ×M1 where CP (Q) is cyclic, M1 EG and |M1| = 3,

(3) CP (Q) = 1 and M = CP (Ω(Q)) is elementary abelian of order 9.

Proof. Suppose first that G is L10-free. By [6, Lemma 2.2], P = CP (Q)× [P,Q]
and [P,Q] is elementary abelian; by Maschke’s theorem, [P,Q] = N1 × · · · ×Nr

with irreducible GF (p)Q-modules Ni. As CQ(P ) = 1, there exists i ∈ {1, . . . , r}
such that CQ(Ni) = 1; we choose the notation so that i = r and let N = Nr,
M = CP (Q) ×N1 × · · · ×Nr−1 and Q0 = Ω(Q).

Clearly, |N | ≥ p2 and since CN (Q0) is Q-invariant, CN (Q0) = 1; hence
N is inverted by Q0. It follows that if X is a maximal subgroup of Q, then
CX(W ) = 1 for every minimal normal subgroup W of NX. By Lemma 1,
either X is irreducible on N or it induces a power automorphism in N . Since
Q is irreducible on N , at most one maximal subgroup of Q can induce power
automorphisms in N and hence there are at least two maximal subgroups of Q
which are irreducible on N . It follows that |N | = p2 and p ≡ 3 (mod 4).

If there would exist i ∈ {1, . . . , r − 1} such that CQ(Ni) = 1, then there
would exist a maximal subgroup X of Q which is irreducible on both Ni and N ;
but then (Ni ×N)X would be L10-free, contradicting Lemma 1. Thus N = Nr

is the unique Ni on which Q is faithful; it follows that M = CP (Q0).
Since NQ0 is a P -group of order 2p2, Lemma 3 yields that |Ω(M)| ≤ p2. So if

r = 1, then (1) holds; therefore assume that r ≥ 2. Then CG(Q0)/Q0 = MQ/Q0

is L10-free and has non-normal elementary abelian Sylow 2-subgroups of order
4. By [6, Proposition 2.6], p = 3. It follows that (2) holds if r = 2 and (3) holds
if r = 3.

To show that, conversely, all the groups with the given properties are L10-
free, we consider a minimal counterexample G to this statement and want to
apply Lemma 8.

Again since Q is irreducible on N and |N | = p2, it follows that N is inverted
by Q0 = Ω(Q). By assumption, M is centralized by Q0 and therefore we have
that P = N × CP (Q0). Furthermore every subgroup of order 4 of Q is faithful
on N and hence irreducible on N since 4 ∤ p− 1. So it remains to be shown that
every proper subgroup H of G is L10-free.
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If 8 ∤ |H|, then H ≤ PQ1 for some maximal subgroup Q1 of Q. Since Q1

is irreducible and faithful on N , the group PQ1 is L10-free by Theorem 3; thus
also H is L10-free. So suppose that H contains a Sylow 2-subgroup of G, say
Q ≤ H. Then either N ≤ H or H ∩ N = 1 and then H ≤ MQ. In the first
case, the minimality of G implies that H is L10-free. In the second case, we
may assume that H = MQ. This group even is modular if (1) holds and by
[6, Lemma 4.5], it is L10-free if (2) is satisfied. So suppose that (3) holds. Then
H/Q0 is a group of order 36 so that it is an easy exercise to show that it is
L10-free (see also Remark 2); by Lemma 7, then also H is L10-free. Thus every
proper subgroup of G is L10-free and Lemma 8 implies that G is L10-free, the
desired contradiction.

Remark 2. (a) Part (1) of Theorem 5 characterizes the L10-free {p, q}-
groups of type III and shows that also for p = 3 the corresponding groups are
L10-free.

(b) In addition, parts (2) and (3) of Theorem 5 show that for p = 3 there
are exactly three further types of L10-free {2, 3}-groups in which Q8 operates
faithfully. In these, MQ/Ω(Q) is isomorphic to

(i) C3n ×D6 × C2 (n ≥ 0), or

(ii) H × C2 where H is a P -group of order 18, or

(iii) D6 ×D6.

(c) The groups in (ii) and (iii) both are subgroups of the group G in Example
4.7 of [6] and therefore are L10-free.

Proof of (b). Clearly, the four group Q/Ω(Q) can only invert M1 in (2) of
Theorem 5; so we get the groups in (i). If (3) holds, then M = M1 × M2

where Mi E MQ and |Mi| = 3. So if CQ(M1) = CQ(M2), we obtain (ii) and
if CQ(M1) 6= CQ(M2), then M1CQ(M2) and M2CQ(M1) centralize each other
modulo Ω(Q) and hence (iii) holds.

We finally mention that by Lemma 7, to characterize also the L10-free {2, 3}-
groups with Sylow 2-subgroup Q8 operating non-faithfully on a 3-group P , it
remains to determine the L10-free {2, 3}-groups having a four group as Sylow 2-
subgroup. This, however, is the crucial case in the study of L10-free {2, 3}-groups
since by [6, Lemma 2.9], in every such group PQ we have |Ω(Q/CQ(P ))| ≤ 4.
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