L_{10}-free $\{p, q\}$-groups

Roland Schmidt

Mathematisches Seminar, Universität Kiel, Ludewig-Meyn-Strasse 4, 24098 Kiel (Germany)
schmidt@math.uni-kiel.de

Abstract

If L is a lattice, a group is called L-free if its subgroup lattice has no sublattice isomorphic to L. It is easy to see that L_{10}, the subgroup lattice of the dihedral group of order 8 , is the largest lattice L such that every finite L-free p-group is modular. In this paper we continue the study of L_{10}-free groups. We determine all finite L_{10}-free $\{p, q\}$-groups for primes p and q, except those of order $2^{\alpha} 3^{\beta}$ with normal Sylow 3 -subgroup.

Keywords: subgroup lattice, sublattice, finite group, modular Sylow subgroup
MSC 2000 classification: 20D30

1 Introduction

This paper contains the results presented in the second part of our talk on " L_{10}-free groups" given at the conference "Advances in Group Theory and Applications 2009" in Porto Cesareo. The first part of the talk mainly contained results out of [6]. In that paper we introduced the class of L_{10}-free groups; here L_{10} is the subgroup lattice of the dihedral group D_{8} of order 8 and for an arbitrary lattice L, a group G is called L-free if its subgroup lattice $L(G)$ has no sublattice isomorphic to L. It is easy to see that L_{10} is the unique largest lattice L such that every L-free p-group has modular subgroup lattice. So the finite L_{10}-free groups form an interesting, lattice defined class of groups lying between the modular groups and the finite groups with modular Sylow subgroups. Therefore in [6] we studied these groups and showed that every finite L_{10}-free group G is soluble and the factor group $G / F(G)$ of G over its Fitting subgroup is metacyclic or a direct product of a metacyclic $\{2,3\}^{\prime}$-group with the (non-metacyclic) group $Q_{8} \times C_{2}$ of order 16 . However, we were not able to determine the exact structure of these groups as had been done in the cases of L-free groups for certain sublattices L of L_{10} (and therefore subclasses of the class of L_{10}-free groups) in [2], [5] and [1].

In the present paper we want to determine the structure of L_{10}-free $\{p, q\}-$ groups where p and q are different primes. As mentioned above, the Sylow subgroups of an L_{10}-free group have modular subgroup lattice. Hence a nilpotent

[^0]group is L_{10}-free if and only if it is modular and the structure of these groups is well-known [4, Theorems 2.3.1 and 2.4.4]. So we only have to study nonnilpotent L_{10}-free $\{p, q\}$-groups G. The results of [6] show that one of the Sylow subgroups of G is normal - we shall choose our notation so that this is the Sylow p-subgroup P of G - and the other is cyclic or a quaternion group of order 8 or we are in the exceptional situation $p=3, q=2$. So there are only few cases to be considered (see Proposition 1 for details) and we handle all of them except the case $p=3, q=2$. Unfortunately, however, in the main case that $P=C_{P}(Q) \times[P, Q]$ where $[P, Q]$ is elementary abelian and Q is cyclic, the structure of G depends on the relation of q and $\left|Q / C_{Q}(P)\right|$ to $p-1$ (see Theorems 1-3). For example, if $q \nmid p-1$, then $C_{P}(Q)$ may be an arbitrary (modular) p-group, whereas $C_{P}(Q)$ usually has to be small if $q \mid p-1$. The reason for this and for similar structural peculiarities are the technical lemmas proved in $\S 2$, the most interesting being that a direct product of an elementary abelian group of order p^{m} and a nonabelian P-group of order $p^{n-1} q$ is L_{10}-free if and only if one of the ranks m or n is at most 2 (Lemma 3 and Theorem 2).

All groups considered are finite. Our notation is standard (see [3] or [4]) except that we write $H \cup K$ for the group generated by the subgroups H and K of the group G. Furthermore, p and q always are different primes, G is a finite $\{p, q\}$-group, $P \in \operatorname{Syl} p(G)$ and $Q \in \operatorname{Syl} q(G)$. For $n \in \mathbb{N}$,
C_{n} is the cyclic group of order n,
D_{n} is the dihedral group of order n (if n is even),
$Q_{8} \quad$ is the quaternion group of order 8 .

2 Preliminaries

By [6, Lemma 2.1 and Proposition 2.7], the Sylow subgroups of an L_{10}-free $\{p, q\}$-group are modular and one of them is normal. So we only have to consider groups satisfying the assumptions of the following proposition.

Proposition 1. Let $G=P Q$ where P is a normal modular Sylow p subgroup and Q is a modular Sylow q-subgroup of G operating nontrivially on P. If G is L_{10}-free, then one of the following holds.
I. $P=C_{P}(Q) \times[P, Q]$ where $[P, Q]$ is elementary abelian and Q is cyclic.
II. $[P, Q]$ is a hamiltonian 2-group and Q is cyclic.
III. $p>3, Q \simeq Q_{8}$ and $C_{Q}(P)=1$.
IV. $p=3, q=2$ and Q is not cyclic.

Proof. Since Q is not normal in G, by [6, Proposition 2.6], Q is cyclic or $Q \simeq Q_{8}$ or $p=3, q=2$. By $[6$, Lemma 2.2], $[P, Q]$ is a hamiltonian 2-group or $P=$ $C_{P}(Q) \times[P, Q]$ with $[P, Q]$ elementary abelian. In the first case, $q \neq 2$ and hence II. holds. In the other case, I. holds if Q is cyclic. And if $Q \simeq Q_{8}$, then clearly III. or IV. is satisfied or $C_{Q}(P) \neq 1$. In the latter case, $\phi(Q) \unlhd G$ and $G / \phi(Q)$ is L_{10}-free with nonnormal Sylow 2-subgroup $Q / \phi(Q)$; again [6, Proposition 2.6] implies that $p=3$ and hence IV. holds.

Definition 1. We shall say that an L_{10}-free $\{p, q\}$-group $G=P Q$ is of type I, II, III, or IV if it has the corresponding property of Proposition 1.

We want to determine the structure of L_{10}-free $\{p, q\}$-groups of types I-III. So we have to study the operation of Q on $[P, Q]$ and for this we need the following technical results. The first one is Lemma 2.8 in [6].

Lemma 1. Suppose that $G=\left(N_{1} \times N_{2}\right) Q$ with normal p-subgroups N_{i} and a cyclic q-group Q which operates irreducibly on N_{i} for $i=1,2$ and satisfies $C_{Q}\left(N_{1}\right)=C_{Q}\left(N_{2}\right)$. If G is L_{10}-free, then $\left|N_{1}\right|=p=\left|N_{2}\right|$ and Q induces a power automorphism in $N_{1} \times N_{2}$.

An immediate consequence is the following.
Lemma 2. Suppose that $G=N Q$ with normal p-subgroup N and a cyclic q-group Q operating irreducibly on N. If G is L_{10}-free, then every subgroup of Q either operates irreducibly on N or induces a (possibly trivial) power automorphism in N; in particular, G is L_{7}-free.
Proof. Suppose that $Q_{1} \leq Q$ is not irreducible on N and let N_{1} be a minimal normal subgroup of $N Q_{1}$ contained in N. Then $N=\left\langle N_{1}^{x} \mid x \in Q\right\rangle$ and so $N=N_{1} \times \cdots \times N_{r}$ with $r>1$ and $N_{i}=N_{1}^{x_{i}}$ for certain $x_{i} \in Q$. For $i>1$, $C_{Q_{1}}\left(N_{i}\right)=C_{Q_{1}}\left(N_{1}\right)^{x_{i}}=C_{Q_{1}}\left(N_{1}\right)$ and hence Lemma 1 implies that a generator x of Q_{1} induces a power automorphism in $N_{1} \times N_{i}$. This power is the same for every i and thus x induces a power automorphism in N. This proves the first assertion of the lemma; that G then is L_{7}-free follows from [5, Lemma 3.1].

The following two lemmas yield further restrictions on the structure of $L_{10^{-}}$ free $\{p, q\}$-groups. In the proofs we have to construct sublattices isomorphic to L_{10} in certain subgroup lattices. For this and also when we assume, for a contradiction, that a given lattice contains such a sublattice, we use the standard notation displayed in Figure 1 and the following obvious fact.

Remark 1. Let L be a lattice.
(a) A 10-element subset $\{A, B, C, D, E, F, S, T, U, V\}$ of L is a sublattice isomorphic to L_{10} if the following conditions are satisfied :
(1.1) $D \cup S=D \cup T=S \cup T=A$ and $D \cap S=D \cap T=S \cap T=E$,
(1.2) $D \cup U=D \cup V=U \cup V=C$ and $D \cap U=D \cap V=U \cap V=E$,
(1.3) $A \cup B=B \cup C=F$ and $A \cap B=A \cap C=B \cap C=D$,
(1.4) $S \cup U=S \cup V=T \cup U=T \cup V=F$.
(b) Conversely, every sublattice of L isomorphic to L_{10} contains 10 pairwise different elements A, \ldots, V satisfying (1.1)-(1.4).

Figure 1

Lemma 3. If $G=M \times H$ where M is a modular p-group with $|\Omega(M)| \geq p^{3}$ and H is a P-group of order $p^{n-1} q$ with $3 \leq n \in \mathbb{N}$, then G is not L_{10}-free.
Proof. By [4, Lemma 2.3.5], $\Omega(M)$ is elementary abelian. So G contains a subgroup $F=F_{1} \times F_{2}$ where $F_{1} \leq M$ is elementary abelian of order p^{3} and $F_{2} \leq H$ is a P-group of order $p^{2} q$; let $F_{1}=\langle a, b, c\rangle$ and $F_{2}=\langle d, e\rangle\langle x\rangle$ where a, b, c, d, e all have order $p, o(x)=q$ and x induces a nontrivial power automorphism in $\langle d, e\rangle$. We let $E=1$ and define every $X \in\{A, B, C, D, U, V\}$ as a direct product $X=X_{1} \times X_{2}$ with $X_{i} \leq F_{i}$ in such a way that (1.2) and (1.3) hold for the X_{i} in $F_{i}(i=1,2)$ and then of course also for the direct products in F. For this we may take $A_{1}=\langle a, b\rangle, B_{1}=\langle a, b c\rangle, U_{1}=\langle c\rangle, V_{1}=\langle a c\rangle$, hence $D_{1}=\langle a\rangle$ and $C_{1}=\langle a, c\rangle$, and similarly $A_{2}=\langle d, e\rangle, B_{2}=\langle d, e x\rangle, U_{2}=\langle x\rangle, V_{2}=\langle d x\rangle$, and hence $D_{2}=\langle d\rangle$ and $C_{2}=\langle d, x\rangle$. Since $q \mid p-1$, we have $p>2$ and so we finally may define $S=\langle a e, b d\rangle$ and $T=\left\langle a e^{2}, b d^{2}\right\rangle$.

Then $A=\langle a, b, d, e\rangle$ is elementary abelian of order p^{4} and $D=\langle a, d\rangle$; therefore $D \cup S=D \cup T=S \cup T=A$. Since S, T, D all have order p^{2}, it follows that $D \cap S=D \cap T=S \cap T=1$ and so also (1.1) holds. Now x and $d x$ operate in the same way on A and do not normalize $\left\langle a e^{i}\right\rangle$ or $\left\langle b d^{i}\right\rangle$ (i=1,2); hence all the groups $S \cup U, S \cup V, T \cup U, T \cup V$ contain $A=S \cup S^{x}=T \cup T^{x}$. Since $A \cup U=A \cup V=F$, also (1.4) holds. Thus $\{A, \ldots, V\}$ is a sublattice of $L(G)$ isomorphic to L_{10}.

We remark that Theorem 2 will show that if $|\Omega(M)| \leq p^{2}$ or $n \leq 2$ in the group G of Lemma 3, then G is L_{10}-free.

Lemma 4. Let $k, l, m \in \mathbb{N}$ such that $k \leq l<m$ and $q^{m} \mid p-1$. Suppose that $G=P Q$ where $P=M_{1} \times M_{2} \times M$ is an elementary abelian normal p-subgroup of G with $\left|M_{i}\right| \geq p$ for $i=1,2$ and $|M| \geq p^{2}$ and where Q is cyclic and induces power automorphisms of order q^{k} in M_{1}, q^{l} in M_{2}, and of order q^{m} in M. Then G is not L_{10}-free.

Proof. We show that $G / C_{Q}(P)$ is not L_{10}-free and for this we may assume that $C_{Q}(P)=1$, that is, $|Q|=q^{m}$. Then G contains a subgroup $F=A Q$ where $A=\langle a, b, c, d\rangle$ is elementary abelian of order p^{4} with $a \in M_{1}, b \in M_{2}$ and $c, d \in M$. We let $E=1, D=\langle a, c\rangle, S=\left\langle a c d, b c d^{-1}\right\rangle, T=\left\langle a c d^{2}, b c^{-1} d^{-1}\right\rangle$, $U=Q, V=Q^{a c}, C=D Q, B=D Q^{b d}$ and claim that these groups satisfy (1.1)-(1.4).

This is rather obvious for (1.1) since $|D|=|S|=|T|=p^{2}$ and, clearly, $D \cup S=D \cup T=S \cup T=A$. By [4, Lemma 4.1.1], $Q \cup Q^{a c}=[a c, Q] Q$ and $Q \cap Q^{a c}=C_{Q}(a c)$; since Q induces different powers in $\langle a\rangle$ and $\langle c\rangle$, we have $[a c, Q]=\langle a, c\rangle$ and $C_{Q}(a c)=C_{Q}(c)=1$. It follows that (1.2) is satisfied. Since $G / D \simeq\langle b, d\rangle Q$ and $Q \cap Q^{b d}=C_{Q}(b d)=1$, we have $B \cap C=D$ and so (1.3) holds. Finally, since a generator of Q (or of $Q^{a c}$) induces different powers in M_{i} and $M, S \cup U$ and $S \cup V$ contain $\left\langle a, c d, b, c d^{-1}\right\rangle=A$; similarly $T \cup U$ and $T \cup V$ both contain $\left\langle a, c d^{2}, b, c^{-1} d^{-1}\right\rangle=A$. Thus also (1.4) holds and $\{A, \ldots, V\}$ is a sublattice of $L(G)$ isomorphic to L_{10}.

To show that the groups in our characterizations indeed are L_{10}-free, we shall need the following simple properties of sublattices isomorphic to L_{10}.

Lemma 5. Let M and N be lattices. If M and N are L_{10}-free, then so is $M \times N$.

Proof. This follows from the fact that L_{10} is subdirectly irreducible; see [5, Lemma 2.2] the proof of which (for $k=7$) can be copied literally.

Lemma 6. Let G be a group and suppose that $A, \ldots, V \in L(G)$ satisfy (1.1)-(1.4). If $W \leq G$ such that $F \not \leq W$, then either $S \not \leq W$ and $T \not \leq W$ or $U \not \leq W$ and $V \not \leq W$.
Proof. Otherwise there would exist $X \in\{S, T\}$ and $Y \in\{U, V\}$ such that $X \leq W$ and $Y \leq W$. But then $F=X \cup Y \leq W$, a contradiction.

Lemma 7. Let $\bar{P} \unlhd G$ such that $|G: \bar{P}|$ is a power of the prime q and suppose that Q_{0} is the unique subgroup of order q in G. If \bar{P} and G / Q_{0} are L_{10}-free, then so is G.
Proof. Suppose, for a contradiction, that $\{A, \ldots, V\}$ is a sublattice of $L(G)$ isomorphic to L_{10} and satisfying (1.1)-(1.4). Since \bar{P} is L_{10}-free, $F \not \leq \bar{P}$. By Lemma 6 , either S and T or U and V are not contained in \bar{P} and therefore have order divisible by q. Hence either $Q_{0} \leq S \cap T=E$ or $Q_{0} \leq U \cap V=E$; in both
cases, G / Q_{0} is not L_{10}-free, a contradiction.
In the inductive proofs that the given $\{p, q\}$-group $G=P Q$ is L_{10}-free, the above lemma will imply that $C_{Q}(P)=1$. And the final result of this section handles a situation that shows up in nearly all of these proofs.

Lemma 8. Let $G=P Q$ where P is a normal Sylow p-subgroup of G and Q is a nontrivial cyclic q-group or $Q \simeq Q_{8}$; let $Q_{0}=\Omega(Q)$ be the minimal subgroup of Q.

Assume that every proper subgroup of G is L_{10}-free and that there exists a minimal normal subgroup N of G such that $P=N \times C_{P}\left(Q_{0}\right)$; in addition, if $Q \simeq Q_{8}$, suppose that every subgroup of order 4 of Q is irreducible on N.

Then G is $L_{10-f r e e . ~}^{\text {. }}$
Proof. Suppose, for a contradiction, that G is not L_{10}-free and let $\{A, \ldots, V\}$ be a sublattice of $L(G)$ isomorphic to L_{10}; so assume that (1.1)-(1.4) hold. Since every proper subgroup of G is L_{10}-free, $F=G$.

By assumption, $G=N C_{G}\left(Q_{0}\right)$; hence $Q_{0}^{G} \leq N Q_{0}$ and $\left[P, Q_{0}\right] \leq N$. Since $P=\left[P, Q_{0}\right] C_{P}\left(Q_{0}\right)$ (see [4, Lemma 4.1.3]), it follows that

$$
\begin{equation*}
\left[P, Q_{0}\right]=N \quad \text { and } \quad Q_{0}^{G}=N Q_{0} \tag{1}
\end{equation*}
$$

Suppose first that E is a p-group. By Lemma 6 , we have $S, T \nexists P \phi(Q)$ or $U, V \not \leq P \phi(Q) ;$ say $U, V \not \leq P \phi(Q)$. Then U and V both contain Sylow q subgroups of G, or subgroups of order 4 of G if $Q \simeq Q_{8}$. Since $U \cap V=E$ is a p-group, $C=U \cup V$ contains two different subgroups of order q and hence by (1), $C \cap N \neq 1$. Since U is irreducible on N, it follows that $N \leq C$. Therefore $Q_{0}^{G}=N Q_{0} \leq C$ and so C contains every subgroup of order q of G. Since $S \cap C=T \cap C=E$ is a p-group, it follows that S and T are p-groups. Hence $A=S \cup T \leq P$; but then also $B \cap C=D \leq A$ is a p-group and therefore $B \leq P$. So, finally, $G=A \cup B \leq P$, a contradiction.

Thus E is not a p-group and therefore contains a subgroup of order q. If we conjugate our L_{10} suitably, we may assume that

$$
\begin{equation*}
Q_{0} \leq E \tag{2}
\end{equation*}
$$

Every subgroup X of G containing Q_{0} is of the form $X=(X \cap P) Q_{1}$ where $Q_{0} \leq Q_{1} \in \operatorname{Syl} q(X) ;$ since $X \cap P=\left[X \cap P, Q_{0}\right] C_{X \cap P}\left(Q_{0}\right)$ and $\left[X \cap P, Q_{0}\right] \leq$ $X \cap N$, it follows that

$$
\begin{equation*}
X \leq C_{G}\left(Q_{0}\right) \text { if } Q_{0} \leq X \text { and } X \cap N=1 \tag{3}
\end{equation*}
$$

Since $G=A \cup B=A \cup C=B \cup C$, at least two of the three groups A, B, C are not contained in $P \phi(Q)$ and hence contain Sylow q-subgroups of G, or subgroups
of order 4 of G if $Q \simeq Q_{8}$. Similarly, two of the groups A, B, C are not contained in $C_{G}\left(Q_{0}\right)$ and hence, by (2) and (3), have nontrivial intersection with N. So there exists $X \in\{A, B, C\}$ having both properties. Since the Sylow q-subgroups of X are irreducible on N, it follows that $N \leq X$. Let $Y, Z \in\{A, B, C\}$ with $Y \neq X \neq Z$ such that $Y \cap N \neq 1$ and Z contains a Sylow q-subgroup of G, or a subgroup of order 4 of G if $Q \simeq Q_{8}$. Then $1<Y \cap N \leq Y \cap X=D$ and hence also $Z \cap N \neq 1$. Thus $N \leq Z$ and so

$$
\begin{equation*}
N \leq X \cap Z=D \tag{4}
\end{equation*}
$$

Therefore $S \cap N=S \cap D \cap N=E \cap N$ and $U \cap N=E \cap N$; so if $E \cap N=1$, then (2) and (3) would imply that $G=S \cup U \leq C_{G}\left(Q_{0}\right)$, a contradiction. Thus $E \cap N \neq 1$. Again by Lemma $6, U, V \not \leq P \phi(Q)$, say. So $U \cap N \neq 1 \neq V \cap N$ and U and V are irreducible on N; it follows that $N \leq U \cap V=E$. But by assumption, $G=N C_{G}\left(Q_{0}\right)$ and $N \cap C_{G}\left(Q_{0}\right)=1$ so that $G / N \simeq C_{G}\left(Q_{0}\right)$ is L_{10}-free, a final contradiction.

3 Groups of type I

Unfortunately, as already mentioned, this case splits into three rather different subcases according to the relation of q and $\left|Q / C_{Q}(P)\right|$ to $p-1$. We start with the easiest case that q does not divide $p-1$. In the whole section we shall assume the following.

Hypothesis I. Let $G=P Q$ where P is a normal p-subgroup of G with modular subgroup lattice, Q is a cyclic q-group and $P=C_{P}(Q) \times[P, Q]$ with $[P, Q]$ elementary abelian and $[P, Q] \neq 1$.

Theorem 1. Suppose that G satisfies Hypothesis I and that $q \nmid p-1$.
Then G is L_{10}-free if and only if $P=C_{P}(Q) \times N_{1} \times \cdots \times N_{r}(r \geq 1)$ and for all $i, j \in\{1, \ldots, r\}$ the following holds.
(1) Every subgroup of Q operates trivially or irreducibly on N_{i}.
(2) $C_{Q}\left(N_{i}\right) \neq C_{Q}\left(N_{j}\right)$ for $i \neq j$.

Proof. Suppose first that G is L_{10}-free. By Maschke's theorem, Q is completely reducible on $[P, Q]$ and hence $[P, Q]=N_{1} \times \cdots \times N_{r}$ with $r \geq 1$ and Q irreducible on N_{i} for all $i \in\{1, \ldots, r\}$. By Lemma 2, every subgroup of Q either is irreducible on N_{i} or induces a power automorphism in N_{i}. But since $q \nmid p-1$, there is no power automorphism of order q of an elementary abelian p-group and hence all these induced power automorphisms have to be trivial. Thus (1) holds and (2) follows from Lemma 1.

To prove the converse, we consider a minimal counterexample G. Then G satisfies (1) and (2) but is not L_{10}-free. Every subgroup of G also satisfies (1) and (2) or is nilpotent with modular subgroup lattice; the minimality of G implies that every proper subgroup of G is L_{10}-free.

If $C_{Q}(P) \neq 1$, then $Q_{0}:=\Omega(Q)$ would be the unique subgroup of order q in G and again the minimality of G would imply that G / Q_{0} would be L_{10}-free. Since also P is L_{10}-free, Lemma 7 would yield that G is L_{10}-free, a contradiction. Thus $C_{Q}(P)=1$ and hence there is at least one of the N_{i}, say N_{1}, on which Q_{0} acts nontrivially and hence irreducibly. By (2), Q_{0} centralizes the other N_{j} so that $P=N_{1} \times C_{P}\left(Q_{0}\right)$. By Lemma $8, G$ is L_{10}-free, a final contradiction.

We come to the case that G satisfies Hypothesis I and $q \mid p-1$. Then again by Maschke's theorem, $[P, Q]=N_{1} \times \cdots \times N_{r}(r \geq 1)$ with irreducible $G F(p) Q$ modules N_{i}; but this time some of the N_{i} might be of dimension 1 . In fact, if the order of the operating group $Q / C_{Q}(P)$ divides $p-1$, then $\left|N_{i}\right|=p$ for all i (see [3, II, Satz 3.10]). Therefore a generator x of Q induces power automorphisms in all the N_{i} and $[P, Q]$ is the direct product of nontrivial eigenspaces of x. We get the following result in this case.

Theorem 2. Suppose that G satisfies Hypothesis I and that $\left|Q / C_{Q}(P)\right|$ divides $p-1$; let $Q=\langle x\rangle$.

Then G is L_{10}-free if and only if $P=C_{P}(Q) \times M_{1} \times \cdots \times M_{s}(s \geq 1)$ with eigenspaces M_{i} of x satisfying (1) and (2).
(1) $C_{Q}\left(M_{s}\right)<C_{Q}\left(M_{s-1}\right)<\cdots<C_{Q}\left(M_{1}\right)<Q$
(2) One of the following holds:
(2a) $\left|M_{i}\right|=p$ for all $i \in\{1, \ldots, s\}$,
(2b) $\left|M_{1}\right| \geq p^{2},\left|M_{i}\right|=p$ for all $i \neq 1$ and $\left|\Omega\left(C_{P}(Q)\right)\right| \leq p^{2}$,
(2c) $\left|M_{2}\right| \geq p^{2},\left|M_{i}\right|=p$ for all $i \neq 2$ and $C_{P}(Q)$ is cyclic.
Proof. Suppose first that G is L_{10}-free. As mentioned above, since $\left|Q / C_{Q}(P)\right|$ divides $p-1,[P, Q]$ is a direct product of eigenspaces M_{1}, \ldots, M_{s} of x. By Lemma 1, $C_{Q}\left(M_{i}\right) \neq C_{Q}\left(M_{j}\right)$ for $i \neq j$ and we can choose the numbering of the eigenspaces in such a way that (1) holds.

If $\left|M_{i}\right|=p$ for all i, then (2a) is satisfied. So suppose that $\left|M_{k}\right| \geq p^{2}$ for some $k \in\{1, \ldots, s\}$. Then by (1), $K:=C_{Q}\left(M_{k}\right)<C_{Q}\left(M_{i}\right)$ for all $i<k$. Therefore if $k \geq 3$, then x would induce power automorphisms of pairwise different orders $\left|Q / C_{Q}\left(M_{i}\right)\right|$ in M_{i} for $i \in\{1,2, k\}$, contradicting Lemma 4 . So $k \leq 2$, that is, $\left|M_{i}\right|=p$ for all $i>2$; and if $k=2$, again Lemma 4 implies that also $\left|M_{1}\right|=p$.

Let $K<Q_{1} \leq Q$ such that $\left|Q_{1}: K\right|=q$. Then $K \leq Z(H)$ if we put $H=\left(C_{P}(Q) \times M_{1} \times \cdots \times M_{k}\right) Q_{1}$ and $M_{k} Q_{1} / K$ is a P-group of order $p^{n-1} q$
with $n \geq 3$. So if $k=2$, then by (1), $Q_{1} \leq C_{Q}\left(M_{1}\right)$ and hence $H / K=$ $\left(C_{P}(Q) \times M_{1}\right) K / K \times M_{2} Q_{1} / K$; by Lemma $3,\left|\Omega\left(C_{P}(Q) \times M_{1}\right)\right| \leq p^{2}$. Thus $C_{P}(Q)$ is cyclic and (2c) holds. Finally, if $\left|M_{2}\right|=p$, then $k=1$ and Lemma 3 applied to H / K yields that $\left|\Omega\left(C_{P}(Q)\right)\right| \leq p^{2}$. So (2b) is satisfied and G has the desired structure.

To prove the converse, we again consider a minimal counterexample G. Then G satisfies (1) and (2) and $L(G)$ contains 10 pairwise different elements A, \ldots, V satisfying (1.1)-(1.4).

Every subgroup of G is conjugate to a group $H=(H \cap P)\langle y\rangle$ with $y \in Q$. By (1) there exists $k \in\{0, \ldots, s\}$ such that y has M_{k+1}, \ldots, M_{s} as nontrivial eigenspaces; and (2) implies that if $\left|H \cap M_{i}\right| \geq p^{2}$ for some $i \in\{k+1, \ldots, s\}$, then either $k=0$ or $k=1$ and $i=2$. In the first case, H trivially satisfies (1) and (2); in the other case, G satisfies (2c) and (2b) holds for H. The minimality of G implies :

$$
\begin{equation*}
\text { Every proper subgroup of } G \text { is } L_{10} \text {-free and } F=G \text {. } \tag{3}
\end{equation*}
$$

Again let $Q_{0}:=\Omega(Q)$. If $C_{Q}(P) \neq 1$, then G / Q_{0} and, by Lemma 7 , also G would be L_{10}-free, a contradiction. Thus

$$
\begin{equation*}
C_{Q}(P)=1 \tag{4}
\end{equation*}
$$

By (1), $C_{Q}\left(M_{s}\right)=C_{Q}(P)=1$ and Q_{0} centralizes M_{1}, \ldots, M_{s-1}; furthermore Q_{0} induces a power automorphism of order q in M_{s}. Thus

$$
\begin{equation*}
P=M_{s} \times C_{P}\left(Q_{0}\right) \text { and } Q_{0}^{G}=M_{s} Q_{0} \text { is a } P \text {-group. } \tag{5}
\end{equation*}
$$

If $\left|M_{s}\right|=p$, then by Lemma $8, G$ would be L_{10}-free, a contradiction. Thus $\left|M_{s}\right|>p$ and hence $s \leq 2$, by (2); in fact, (2) implies that there are only two possibilities for the M_{i}.

$$
\begin{equation*}
\text { Let } M_{0}:=C_{P}(Q) \text {. Then one of the following holds : } \tag{6}
\end{equation*}
$$

(6a) $P=M_{0} \times M_{1}$ where $\left|\Omega\left(M_{0}\right)\right| \leq p^{2}$ and $\left|M_{1}\right| \geq p^{2}$,
(6b) $P=M_{0} \times M_{1} \times M_{2}$ where M_{0} is cyclic, $\left|M_{1}\right|=p$ and $\left|M_{2}\right| \geq p^{2}$.
By Lemma 6 , either $S, T \not \leq P \phi(Q)$ or $U, V \not \leq P \phi(Q)$; say $U, V \not \leq P \phi(Q)$. Then

$$
\begin{equation*}
U \text { and } V \text { contain Sylow } q \text {-subgroups of } G \text {. } \tag{7}
\end{equation*}
$$

We want to show next that $E=1$. For this note that by (5), $G=M_{s} C_{G}\left(Q_{0}\right)$ and $M_{s} \cap C_{G}\left(Q_{0}\right)=1$. Since every subgroup of M_{s} is normal in G, the map

$$
\phi: L\left(M_{s}\right) \times\left[C_{G}\left(Q_{0}\right) / Q_{0}\right] \longrightarrow\left[G / Q_{0}\right] ;(H, K) \longmapsto H K
$$

is well-defined. Every $L \in\left[G / Q_{0}\right]$ is of the form $L=(L \cap P) Q_{1}$ where $Q_{0} \leq Q_{1} \in$ $\operatorname{Syl} q(L)$; since $M_{s}=\left[P, Q_{0}\right]$, we have $L \cap P=\left(L \cap M_{s}\right) C_{L \cap P}\left(Q_{0}\right)$. Hence $L=\left(L \cap M_{s}\right) C_{L}\left(Q_{0}\right)$ and the map

$$
\psi:\left[G / Q_{0}\right] \longrightarrow L\left(M_{s}\right) \times\left[C_{G}\left(Q_{0}\right) / Q_{0}\right] ; L \longmapsto\left(L \cap M_{s}, C_{L}\left(Q_{0}\right)\right)
$$

is well-defined and inverse to ϕ. Thus $\left[G / Q_{0}\right] \simeq L\left(M_{s}\right) \times\left[C_{G}\left(Q_{0}\right) / Q_{0}\right]$. By (3), $C_{G}\left(Q_{0}\right)$ is L_{10}-free and then Lemma 5 implies that also $\left[G / Q_{0}\right]$ is L_{10}-free. So $\left[G / Q_{0}^{g}\right]$ is L_{10}-free for every $g \in G$ and this implies that E is a p-group.

Now suppose, for a contradiction, that $E \neq 1$. By (6), the M_{i} are eigenspaces (and centralizer) of every Sylow q-subgroup of G. Therefore by (7), $U \cap P$ and $V \cap P$ are direct products of their intersections with the M_{i} and hence this also holds for $(U \cap P) \cap(V \cap P)=E \cap P=E$. The minimality of G implies that $E_{G}=1$. Hence $E \cap M_{1}=E \cap M_{2}=1$ and so $E \leq M_{0}$ and $\left|\Omega\left(M_{0}\right)\right|=p^{2}$. If two of the groups S, T, U, V would contain $\Omega\left(M_{0}\right)$, then $\Omega\left(M_{0}\right) \leq E$, contradicting $E_{G}=1$. Hence there are $X \in\{S, T\}$ and $Y \in\{U, V\}$ such that $X \cap M_{0}$ and $Y \cap M_{0}$ are cyclic. Since $E \leq M_{0}$, it follows that $E \unlhd X \cup Y=G$, a contradiction. We have shown that

$$
\begin{equation*}
E=1 \tag{8}
\end{equation*}
$$

and come to the crucial property of G.
(9) Let $X, Y \leq G$ such that Y contains a Sylow q-subgroup of G; let $|X|=p^{j} q^{\bar{k}}$ where $j, k \in \mathbb{N}_{0}$. Then $|X \cup Y| \leq p^{j+2}|Y|$.

Proof. Conjugating the given situation suitably, we may assume that $Q \leq Y$. Suppose first that X is a p-group and let $H=M_{0}$ and $K=M_{1}$ if (6a) holds, whereas $H=M_{0} \times M_{1}$ and $K=M_{2}$ if (6b) holds. Then $X \leq P=H \times K$ where H is modular of rank at most 2 and K is elementary abelian. Let $X_{1}=X K \cap H, X_{2}=X H \cap K$ and $X_{0}=(X \cap H) \times(X \cap K)$. Then by [4, 1.6.1 and 1.6.3], $X_{1} / X \cap H \simeq X_{2} / X \cap K$ and X / X_{0} is a diagonal in the direct product $\left(X_{1} \times X_{2}\right) / X_{0}=X_{1} X_{0} / X_{0} \times X_{2} X_{0} / X_{0}$. Since $X_{2} / X \cap K$ is elementary abelian and $X_{1} / X \cap H$ has rank at most 2 , we have $\left|\left(X_{1} \times X_{2}\right): X\right|=$ $\left|X_{1} / X \cap H\right| \leq p^{2}$.

Now $X \cup Y \leq\left(X_{1} \times X_{2}\right) \cup Y$. Since $L(P)$ is modular, any two subgroups of P permute [4, Lemma 2.3.2]; furthermore, Q normalizes X_{2}. So if Q also normalizes X_{1}, then $X_{1} \times X_{2}$ permutes with Y and $|X \cup Y| \leq\left|X_{1} \times X_{2}\right| \cdot|Y| \leq|X| \cdot p^{2} \cdot|Y|$, as desired. If Q does not normalize X_{1}, then (6b) holds and X_{1} is cyclic since every subgroup of $H=M_{0} \times M_{1}$ containing M_{1} is normal in G. Then $X_{1} / X \cap H$ is cyclic and elementary abelian and hence $\left|\left(X_{1} \times X_{2}\right): X\right|=\left|X_{1} / X \cap H\right| \leq p$. It follows that $|X \cup Y| \leq\left|\left(X_{1} M_{1} \times X_{2}\right) Y\right| \leq|X| \cdot p^{2} \cdot|Y|$. Thus (9) holds if X is a p-group.

Now suppose that X is not a p-group; so $X=(X \cap P) Q_{1}^{a}$ where $1 \neq Q_{1} \leq Q$ and $a \in[P, Q]$. If (6a) holds, then by (4), $M_{0}=C_{P}\left(Q_{1}\right)$ and M_{1} is a nontrivial eigenspace of Q_{1}; hence $X \cap P=\left(X \cap M_{0}\right) \times\left(X \cap M_{1}\right)$. Since every subgroup of M_{0} is permutable and every subgroup of M_{1} is normal in G, we have that $\langle a\rangle \unlhd G$ and $X \cup Y=(X \cap P)(Y \cap P)\left(Q \cup Q_{1}^{a}\right) \leq(X \cap P) Y\langle a\rangle$; thus $|X \cup Y| \leq p^{j} \cdot|Y| \cdot p$. Finally, if (6b) holds, then $C_{P}\left(Q_{1}\right)=M_{0}$ or $C_{P}\left(Q_{1}\right)=M_{0} \times M_{1}=H$; in any case, $X \cap P=(X \cap H) \times\left(X \cap M_{2}\right)$. Since P is abelian, $(X \cap H) M_{1}, X \cap M_{2}$ and $Y \cap P$ are normal in G and $a=a_{1} a_{2}$ with $a_{i} \in M_{i}$. Hence $X \cup Y \leq$ $\left((X \cap H) M_{1} \times\left(X \cap M_{2}\right)\right)(Y \cap P) Q\left\langle a_{2}\right\rangle$ and so $|X \cup Y| \leq p^{j+1} \cdot|Y| \cdot p$, as claimed.

Since U and V contain Sylow q-subgroups of G, we may apply (9) with $X \in\{S, T\}$ and $Y \in\{U, V\}$. Then since $X \cap C=E=1$, we obtain, if $|X|=p^{j} q^{k}$, that $p^{j} q^{k}|C|=|X C| \leq|G|=|X \cup Y| \leq p^{j+2}|Y|$ and hence

$$
\begin{equation*}
|C: Y| \leq \frac{p^{2}}{q^{k}} \quad \text { for } \quad Y \in\{U, V\} \tag{10}
\end{equation*}
$$

Similarly, $A \cap Y=1$ and therefore $|A||Y|=|A Y| \leq|G|=|X \cup Y| \leq p^{j+2}|Y|$; hence $|A| \leq p^{j+2}$, that is

$$
\begin{equation*}
|A: X| \leq \frac{p^{2}}{q^{k}} \quad \text { for } X \in\{S, T\} . \tag{11}
\end{equation*}
$$

Since $S \cap T=1=D \cap T$, we have $|S|,|D| \leq|A: T|$ and $|T| \leq|A: S|$; similarly $|U| \leq|C: V|$ and $|V| \leq|C: U|$. Thus (10) and (11) yield that

$$
\begin{equation*}
S, T, D, U, V \text { all have order at most } p^{2} . \tag{12}
\end{equation*}
$$

In particular, $|S| \leq p^{2}$ and $|U| \leq p q^{m}$ where $q^{m}=|Q|$ and hence by (9), $|G|=|S \cup U| \leq p^{5} q^{m}$. If $|P|=p^{2}$, then since $\left|M_{s}\right| \geq p^{2}$, we would have that $G=M_{1} Q$; by [5, Lemma 3.1], G then even would be L_{7}-free, a contradiction. Thus

$$
\begin{equation*}
p^{3} \leq|P| \leq p^{5} . \tag{13}
\end{equation*}
$$

Now suppose, for a contradiction, that $A \npreceq P$. Since $A=S \cup T$, one of these subgroups, say S, has to contain a Sylow q-subgroup of A; so if we take $X=S$ above, then $k \geq 1$ in (10) and (11). By (10), $|C: V|<p^{2}$ and since $|C: V|$ is a power of p, it follows that $|C: V|=p$. Hence $|U| \leq p$ and since $q^{m}| | U \mid$, we have $|U|=q^{m}$. By (11), $|A: S|<p^{2}$ and since $|A: S|$ is a power of p, also $|A: S|=p$ and hence $|T| \leq p$. If T would be a q-group, then by (9), $|G|=|T \cup U| \leq p^{2} q^{m}$, contradicting (13). Thus $|T|=p$ and $|G|=p^{3} q^{m}$. But then $P=H \times M_{s}$ where $H \unlhd G$ and $|H|=p$; it follows that $H T \unlhd G$ and then $|G|=|H T U| \leq p^{2} q^{m}$,
again contradicting (13). Thus A is a p-group. Hence $L(A)$ is modular and so by (8), $|A|=|S||T|=|S||D|=|T||D|$. Therefore $|S|=|T|=|D|$ and by (13),

$$
\begin{equation*}
|A|=p^{2} \quad \text { or } \quad|A|=p^{4} . \tag{14}
\end{equation*}
$$

Suppose first that $|A|=p^{2}$. Then $|S|=|D|=p$ and by (12), $|U| \leq p q^{m}$. It follows from (9) that $|G|=|S \cup U| \leq p^{4} q^{m}$. So $\left|C_{P}(Q)\right| \leq p^{2}$ and hence P is abelian. Since $A \leq P$ and $G=A \cup B$, also B contains a Sylow q-subgroup of G; hence $B \cap P \unlhd G$ and $C \cap P \unlhd G$ and so $D=(B \cap P) \cap(C \cap P) \unlhd G$. Therefore $C=D U$ and so $|C: U|=|D|=p$. It follows that $|V|=q^{m}$ and $|G|=|S \cup V|=p^{3} q^{m}$, by (9) and (13). Then again $P=H \times M_{s}$ with $H \unlhd G$ and $|H|=p$ so that $|G|=|H S V| \leq p^{2} q^{m}$, a contradiction. Thus

$$
\begin{equation*}
|A|=p^{4} \quad \text { and } \quad|S|=|T|=|D|=p^{2} . \tag{15}
\end{equation*}
$$

Suppose first that $|U|=q^{m}$ or $|V|=q^{m}$, say $|U|=q^{m}$. Then by (9), $|G|=\mid S \cup$ $U \mid \leq p^{4} q^{m}$ and since $|A|=p^{4}$, we have $A=P \unlhd G$. Therefore $D=A \cap B \unlhd B$ and $D \unlhd C$ so that again $D \unlhd G$. Furthermore $|V|=$ $|G: A|=q^{m}$ and so $C=U \cup V \leq Q^{G}$. Since $|B: D|=|G: A|=q^{m}$, also $B \leq Q^{G}$; hence $G=B \cup C \leq Q^{G}$ so that $M_{0}=1$, by (6). By [5 , Lemma 3.1], $M_{1} Q$ is L_{10}-free; hence (6b) holds and $\left|M_{2}\right|=p^{3}$. It follows that Q induces a power automorphism either in D or in A / D; but in both groups $C=D U$ and $G / D=(A / D)(C / D)$ there exist two Sylow q-subgroups generating the whole group, a contradiction. So $|U| \neq q^{m} \neq|V|$ and by (12), $|U|=|V|=p q^{m}$. Since $A \cap U=E=1$, it follows that $A<P$; so (13) and (15) yield that

$$
\begin{equation*}
|G|=p^{5} q^{m} \quad \text { and } \quad|U|=|V|=p q^{m} . \tag{16}
\end{equation*}
$$

Since $L(P)$ is modular, $L(S) \simeq[A / D] \simeq L(T)$. So if S would be cyclic, then A would be of type (p^{2}, p^{2}) and hence by (6), $A \cap M_{s}=1$ and $|P| \geq p^{6}$, a contradiction. Thus S and T are elementary abelian and so P is generated by elements of order p; by [4, Lemma 2.3.5], P is elementary abelian.

Now if (6a) holds, then $M_{0} S \unlhd G$ and hence $G=M_{0} S U$. Since $\left|M_{0}\right| \leq p^{2}$, it follows from (16) that $\left|M_{0}\right|=p^{2}$ and $U \cap M_{0}=1$. Since $U \cap P \unlhd G$, we have $U \cap P \leq M_{1}$ and so $U \leq Q^{G}=M_{1} Q$. Similarly, $V \leq Q^{G}$ and hence $C=U \cup V \leq Q^{G}$. Since $|C| \geq|D||U|=p^{3} q^{m}$ and $\left|M_{1}\right|=p^{3}$, it follows that $C=Q^{G} \unlhd G$. But then $|B: D|=|G: C|=p^{2}$, so $|B|=p^{4}$ and $G=A \cup B \leq P$, a contradiction.

So, finally, (6b) holds and $P=M_{0} \times M_{1} \times M_{2}$ where $\left|M_{0} \times M_{1}\right| \leq p^{2}$. This time $\left(M_{0} \times M_{1}\right) S \unlhd G$ and it follows from (16) that $\left|M_{0} \times M_{1}\right|=p^{2}$ and $U \cap P \leq M_{2}$ and $V \cap P \leq M_{2}$. So $\left|M_{2}\right|=p^{3}$ and since $U \cap V=1$, we have either $M_{2} \leq C$ or $C \cap M_{2}=(U \cap P) \times(V \cap P)$. In the first case, by (5), C
would contain every subgroup of order q of G; since $B \cap C=D$ is a p-group, it would follow that $B \leq P$ and hence $G=A \cup B \leq P$, a contradiction. So $\left|C \cap M_{2}\right|=p^{2}$ and if C_{0}, U_{0}, V_{0} are the subgroups generated by the elements of order q of C, U, V, respectively, then by (5), C_{0} is a P-group of order $p^{2} q$ and U_{0}, V_{0} are subgroups of order $p q$ in C_{0}. So $U_{0} \cap V_{0} \neq 1$, but by (8), $U \cap V=1$, the final contradiction.

We come to the third possibility for a group satisfying Hypothesis I.
Theorem 3. Suppose that G satisfies Hypothesis I and that $q \mid p-1$ but $\left|Q / C_{Q}(P)\right|$ does not divide $p-1$; let $k \in \mathbb{N}$ such that q^{k} is the largest power of q dividing $p-1$.

Then G is L_{10}-free if and only if there exists a minimal normal subgroup N of order p^{q} of G such that one of the following holds.
(1) $P=C_{P}(Q) \times N$ where $\left|\Omega\left(C_{P}(Q)\right)\right| \leq p^{2}$.
(2) $P=C_{P}(Q) \times N_{1} \times N$ where $N_{1} \unlhd G,\left|N_{1}\right|=p$ and $C_{P}(Q)$ is cyclic.
(3) $q=2, k=1$ and $P=M \times N$ where $|M|=p^{2}, Q$ is irreducible on M and $C_{Q}(N)<C_{Q}(M)$.
(4) $P=M \times N$ where M is elementary abelian of order p^{2} and Q induces a power automorphism of order q in M.
(5) $P=N_{1} \times N_{2} \times N$ where $N_{i} \unlhd G,\left|N_{i}\right|=p$ for $i=1,2$ and where $C_{Q}\left(N_{1}\right)<C_{Q}\left(N_{2}\right)=\phi(Q)$.

Proof. Suppose first that G is L_{10}-free. Again by Maschke's theorem, $[P, Q]=$ $N_{1} \times \cdots \times N_{r}(r \geq 1)$ with Q irreducible on N_{i} and we may assume that $C_{Q}\left(N_{r}\right) \leq C_{Q}\left(N_{i}\right)$ for all i. Then $K:=C_{Q}(P)=C_{Q}\left(N_{r}\right)$ and since $|Q / K|$ does not divide $p-1$, we have that $\left|N_{r}\right|>p$. By Lemma 2 and [5, Lemma 3.1], $\left|N_{r}\right|=p^{q}$ and $|Q / K|=q^{k+1}$, or $|Q / K| \geq q^{k+1}=4$ in case $q=2, k=1$. We let $N:=N_{r}$ and have to show that G satisfies one of properties (1)-(5).

For this put $M:=C_{P}(Q) \times N_{1} \times \cdots \times N_{r-1}$, so that $P=M \times N$, and let $Q_{1} \leq Q$ such that $K<Q_{1}$ and $\left|Q_{1}: K\right|=q$. By Lemma $2, Q_{1}$ induces a power automorphism of order q in N; by Lemma $1, C_{Q}(N)<C_{Q}\left(N_{i}\right)$ for all $i \neq r$ and hence Q_{1} centralizes M. So $P Q_{1} / K=M K / K \times N Q_{1} / K$ where $N Q_{1} / K$ is a P-group of order $p^{q} q$. By Lemma $3,|\Omega(M)| \leq p^{2}$; in particular, $r \leq 3$.

If $r=1$, then $M=C_{P}(Q)$ and (1) holds. If $r=2$, then either $\left|N_{1}\right|=p$ and $C_{P}(Q)$ is cyclic, that is (2) holds, or $\left|N_{1}\right|=p^{2}$ and $C_{P}(Q)=1$. In this case, since Q is irreducible on N_{1} and, by Lemma 1, induces automorphisms of different orders in N and N_{1}, again Lemma 2 and [5, Lemma 3.1] imply that $q=2$ and $k=1$; thus (3) holds.

Finally, suppose that $r=3$. Since $|\Omega(M)| \leq p^{2}$, it follows that $M=N_{1} \times N_{2}$, $\left|N_{1}\right|=\left|N_{2}\right|=p$ and $C_{P}(Q)=1$. If $q=2$ and $k=1$, then $Q=\langle x\rangle$ induces automorphisms of order 2 in N_{1} and N_{2}; thus $a^{x}=a^{-1}$ for all $a \in M$ and (4) holds. So suppose that $q>2$ or $q=2$ and $k>1$. Then $|Q / K|=q^{k+1}$ as mentioned above and so $|\phi(Q): K|=q^{k}$ divides $p-1$. Thus $H:=P \phi(Q)$ is one of the groups in Theorem 2 and by Lemma 2, $\phi(Q)$ induces a power automorphism of order q^{k} in N. Since $[P, \phi(Q)] \leq[P, Q]=N_{1} \times N_{2} \times N$ and $C_{Q}(N)<C_{Q}\left(N_{i}\right)$ for $i \in\{1,2\}, N$ is one of the eigenspaces of x^{p} in $[P, \phi(Q)]$. Hence H satisfies (2b) or (2c) of Theorem 2. In the first case, $N=M_{1}$ in the notation of that theorem and $N_{1} \times N_{2} \leq C_{P}(\phi(Q))$ since $C_{\phi(Q)}\left(M_{1}\right)$ is the largest centralizer of a nontrivial eigenspace of x^{p}. So $C_{Q}\left(N_{1}\right)=\phi(Q)=C_{Q}\left(N_{2}\right)$ and by Lemma $1, Q$ induces a power automorphism of order q in $N_{1} \times N_{2}$; thus (4) holds. In the other case, $N=M_{2}$ and $\left|M_{1}\right|=p$, so that $M_{1}=N_{1}$, say, and then $N_{2} \leq C_{P}(\phi(Q))$. Thus (5) holds and G has the desired properties.

To prove the converse, we again consider a minimal counterexample G. Then G has a minimal normal subgroup N of order p^{q} and satisfies one of the properties (1)-(5) but is not L_{10}-free. As in the proof of Theorem 1, by Lemma 7, $C_{Q}(P)=1$.

Let H be a proper subgroup of G. Then either H contains a Sylow q subgroup of G or $H \leq P \phi(Q)$. In the first case, $N \leq H$ or $H \cap N=1$. Hence H satisfies the assumptions of Theorem 3 or Theorem 2 or is nilpotent; the minimality of G implies that H is L_{10}-free. So suppose that $H=P \phi(Q)$. A simple computation shows (see [5, p. 523]) that if $q>2$ or if $q=2$ and $k>1$, then q^{k+1} is the largest power of q dividing $p^{q}-1$. Therefore in these cases, by [3, II, Satz 3.10], a generator x of Q operates on $N=\left(G F\left(p^{q}\right),+\right)$ as multiplication with an element of order q^{k+1} of the multiplicative group of $G F\left(p^{q}\right)$. The q-th power of this element lies in $G F(p)$ and therefore fixes every subgroup of N. Thus $\phi(Q)$ induces a power automorphism of order q^{k} in N. So if G satisfies (1) or (4), then H satisfies $s=1$ and (2b) of Theorem 2 ; the same holds if G satisfies (2) and $\phi(Q)$ centralizes N_{1}. If G satisfies (2) and $\left[\phi(Q), N_{1}\right] \neq 1$ or G satisfies (5), then (2c) of Theorem 2 holds for H. Finally, if $q=2$ and $k=1$, then either $\phi(Q)$ is irreducible on N or $|Q|=4$; hence H satisfies the assumptions of Theorem 3 or 2 . In all cases, Theorem 2 and the minimality of G imply that H is L_{10}-free.

Finally, $Q_{0}=\Omega(Q)$ induces a power automorphism of order q in N and centralizes the complements of N in P given in (1)-(5). So $P=N \times C_{P}\left(Q_{0}\right)$ and by Lemma $8, G$ is L_{10}-free, the desired contradiction.

Note that in Theorem 1 and in (2a) of Theorem $2, C_{P}(Q)$ may be an arbitrary modular p-group since by Iwasawa's theorem [4, Theorem 2.3.1], a direct product of a modular p-group with an elementary abelian p-group has modular
subgroup lattice. In all the other cases of Theorems 2 and 3, Lemma 3 implied that $\left|\Omega\left(C_{P}(Q)\right)\right| \leq p^{2}$; in (2b) of Theorem 2 and (1) of Theorem 3, $C_{P}(Q)$ may be an arbitrary modular p-group with this property.

4 Groups of type II and III

We now determine the groups of type II. Theorem 4 shows that modulo centralizers the only such group is $S L(2,3) \simeq Q_{8} \rtimes C_{3}$.

Theorem 4. Let $G=P Q$ where P is a normal Sylow 2-subgroup of G, Q is a cyclic q-group, $2<q \in \mathbb{P}$, and $[P, Q]$ is hamiltonian.

Then G is L_{10}-free if and only if $G=M \times N Q$ where M is an elementary abelian 2-group, $N \simeq Q_{8}$ and Q induces an automorphism of order 3 in N.
Proof. Suppose first that G is L_{10}-free. Then $L(P)$ is modular and since $[P, Q]$ is hamiltonian, it follows from [4, Theorems 2.3.12 and 2.3.8] that $P=H \times K$ where H is elementary abelian and $K \simeq Q_{8}$. Hence $\phi(P)=\phi(K)$ and $\Omega(P)=$ $H \times \phi(P)$. By Maschke's theorem there are Q-invariant complements M of $\phi(P)$ in $\Omega(P)$ and $N / \phi(P)$ of $\Omega(P) / \phi(P)$ in $P / \phi(P)$. Then $\Omega(N)=\Omega(P) \cap N=\phi(P)$ implies that $N \simeq Q_{8}$ and since $[P, Q] \nsubseteq \Omega(P), Q$ operates nontrivially on N. Therefore $q=3$ and Q induces an automorphism of order 3 in N.

Since P is a 2 -group, $G / \phi(P)$ is an L_{10}-free $\{p, q\}$-group of type I with $q \nmid p-1$. By Theorem 1, $P / \phi(P)=C_{P / \phi(P)}(Q) \times N_{1} \times \cdots \times N_{r}$ with nontrivial $G F(2) Q$-modules N_{i} satisfying (1) and (2) of that theorem. By (1), the subgroup of order 3 of $Q / C_{Q}\left(N_{i}\right)$ is irreducible on N_{i}; therefore $\left|N_{i}\right|=4$ and hence $C_{Q}\left(N_{i}\right)=\phi(Q)$ for all i. But then (2) implies that $r=1$. It follows that $N_{1}=N / \phi(P)$ and $[M, Q] \leq M \cap N=1$; thus $G=M \times N Q$ as desired.

To prove the converse, we again consider a minimal counterexample G; let $\{A, \ldots, V\}$ be a sublattice of $\mathrm{L}(\mathrm{G})$ isomorphic to L_{10} and satisfying (1.1)-(1.4). The minimality of G implies that $F=G$ and, together with Lemma 7, that $C_{Q}(P)=1$; hence $|Q|=3$.

If A or C, say C, contains two subgroups of order 3 , then $N Q \leq C$ and hence $C \unlhd G$. Then $D=A \cap C=B \cap C \unlhd A \cup B=G$ and $A / D \simeq G / C \simeq B / D$ are 2-groups; therefore G / D is a 2-group. Similarly, $E=S \cap D=U \cap D \unlhd S \cup U=G$ and $S / E \simeq G / C$ and $U / E \simeq C / D$ are 2-groups. Thus G / E is a modular 2-group and hence L_{10}-free, a contradiction.

So A and C both contain at most one subgroup of order 3 and therefore are nilpotent. By Lemma 6 , we have $U, V \npreceq P$, say; so U and V contain the subgroup Q_{1} of order 3 of C and it follows that $Q_{1} \leq U \cap V=E \leq A$. Hence $G=A \cup C \leq C_{G}\left(Q_{1}\right)$, a final contradiction.

We finally come to groups of type III; more generally, we determine all $L_{10^{-}}$ free $\{p, 2\}$-groups in which Q_{8} operates faithfully on P.

Theorem 5. Let $G=P Q$ where P is a normal Sylow p-subgroup with modular subgroup lattice, $Q \simeq Q_{8}$ and $C_{Q}(P)=1$.

Then G is L_{10}-free if and only if $P=M \times N$ where $|N|=p^{2}, Q$ operates irreducibly on N and one of the following holds:
(1) $p \equiv 3(\bmod 4), M=C_{P}(Q)$ and $|\Omega(M)| \leq p^{2}$,
(2) $M=C_{P}(Q) \times M_{1}$ where $C_{P}(Q)$ is cyclic, $M_{1} \unlhd G$ and $\left|M_{1}\right|=3$,
(3) $C_{P}(Q)=1$ and $M=C_{P}(\Omega(Q))$ is elementary abelian of order 9 .

Proof. Suppose first that G is L_{10}-free. By [6, Lemma 2.2], $P=C_{P}(Q) \times[P, Q]$ and $[P, Q]$ is elementary abelian; by Maschke's theorem, $[P, Q]=N_{1} \times \cdots \times N_{r}$ with irreducible $G F(p) Q$-modules N_{i}. As $C_{Q}(P)=1$, there exists $i \in\{1, \ldots, r\}$ such that $C_{Q}\left(N_{i}\right)=1$; we choose the notation so that $i=r$ and let $N=N_{r}$, $M=C_{P}(Q) \times N_{1} \times \cdots \times N_{r-1}$ and $Q_{0}=\Omega(Q)$.

Clearly, $|N| \geq p^{2}$ and since $C_{N}\left(Q_{0}\right)$ is Q-invariant, $C_{N}\left(Q_{0}\right)=1$; hence N is inverted by Q_{0}. It follows that if X is a maximal subgroup of Q, then $C_{X}(W)=1$ for every minimal normal subgroup W of $N X$. By Lemma 1 , either X is irreducible on N or it induces a power automorphism in N. Since Q is irreducible on N, at most one maximal subgroup of Q can induce power automorphisms in N and hence there are at least two maximal subgroups of Q which are irreducible on N. It follows that $|N|=p^{2}$ and $p \equiv 3(\bmod 4)$.

If there would exist $i \in\{1, \ldots, r-1\}$ such that $C_{Q}\left(N_{i}\right)=1$, then there would exist a maximal subgroup X of Q which is irreducible on both N_{i} and N; but then $\left(N_{i} \times N\right) X$ would be L_{10}-free, contradicting Lemma 1. Thus $N=N_{r}$ is the unique N_{i} on which Q is faithful; it follows that $M=C_{P}\left(Q_{0}\right)$.

Since $N Q_{0}$ is a P-group of order $2 p^{2}$, Lemma 3 yields that $|\Omega(M)| \leq p^{2}$. So if $r=1$, then (1) holds; therefore assume that $r \geq 2$. Then $C_{G}\left(Q_{0}\right) / Q_{0}=M Q / Q_{0}$ is L_{10}-free and has non-normal elementary abelian Sylow 2 -subgroups of order 4. By [6, Proposition 2.6], $p=3$. It follows that (2) holds if $r=2$ and (3) holds if $r=3$.

To show that, conversely, all the groups with the given properties are $L_{10^{-}}$ free, we consider a minimal counterexample G to this statement and want to apply Lemma 8 .

Again since Q is irreducible on N and $|N|=p^{2}$, it follows that N is inverted by $Q_{0}=\Omega(Q)$. By assumption, M is centralized by Q_{0} and therefore we have that $P=N \times C_{P}\left(Q_{0}\right)$. Furthermore every subgroup of order 4 of Q is faithful on N and hence irreducible on N since $4 \nmid p-1$. So it remains to be shown that every proper subgroup H of G is L_{10}-free.

If $8 \nmid|H|$, then $H \leq P Q_{1}$ for some maximal subgroup Q_{1} of Q. Since Q_{1} is irreducible and faithful on N, the group $P Q_{1}$ is L_{10}-free by Theorem 3 ; thus also H is L_{10}-free. So suppose that H contains a Sylow 2-subgroup of G, say $Q \leq H$. Then either $N \leq H$ or $H \cap N=1$ and then $H \leq M Q$. In the first case, the minimality of G implies that H is L_{10}-free. In the second case, we may assume that $H=M Q$. This group even is modular if (1) holds and by [6, Lemma 4.5], it is L_{10}-free if (2) is satisfied. So suppose that (3) holds. Then H / Q_{0} is a group of order 36 so that it is an easy exercise to show that it is L_{10}-free (see also Remark 2); by Lemma 7, then also H is L_{10}-free. Thus every proper subgroup of G is L_{10}-free and Lemma 8 implies that G is L_{10}-free, the desired contradiction.

Remark 2. (a) Part (1) of Theorem 5 characterizes the L_{10}-free $\{p, q\}$ groups of type III and shows that also for $p=3$ the corresponding groups are L_{10}-free.
(b) In addition, parts (2) and (3) of Theorem 5 show that for $p=3$ there are exactly three further types of L_{10}-free $\{2,3\}$-groups in which Q_{8} operates faithfully. In these, $M Q / \Omega(Q)$ is isomorphic to
(i) $C_{3^{n}} \times D_{6} \times C_{2}(n \geq 0)$, or
(ii) $H \times C_{2}$ where H is a P-group of order 18 , or
(iii) $D_{6} \times D_{6}$.
(c) The groups in (ii) and (iii) both are subgroups of the group G in Example 4.7 of [6] and therefore are L_{10}-free.

Proof of (b). Clearly, the four group $Q / \Omega(Q)$ can only invert M_{1} in (2) of Theorem 5; so we get the groups in (i). If (3) holds, then $M=M_{1} \times M_{2}$ where $M_{i} \unlhd M Q$ and $\left|M_{i}\right|=3$. So if $C_{Q}\left(M_{1}\right)=C_{Q}\left(M_{2}\right)$, we obtain (ii) and if $C_{Q}\left(M_{1}\right) \neq C_{Q}\left(M_{2}\right)$, then $M_{1} C_{Q}\left(M_{2}\right)$ and $M_{2} C_{Q}\left(M_{1}\right)$ centralize each other modulo $\Omega(Q)$ and hence (iii) holds.

We finally mention that by Lemma 7 , to characterize also the L_{10}-free $\{2,3\}$ groups with Sylow 2-subgroup Q_{8} operating non-faithfully on a 3 -group P, it remains to determine the L_{10}-free $\{2,3\}$-groups having a four group as Sylow 2subgroup. This, however, is the crucial case in the study of L_{10}-free $\{2,3\}$-groups since by $\left[6\right.$, Lemma 2.9], in every such group $P Q$ we have $\left|\Omega\left(Q / C_{Q}(P)\right)\right| \leq 4$.

References

[1] S. Andreeva, R. Schmidt, I. Toborg: Lattice defined classes of finite groups with modular Sylow subgroups. To appear.
[2] C. Baginski and A. Sakowicz: Finite groups with globally permutable lattice of subgroups, Colloq. Math. 82 (1999), 65-77.
[3] B. Huppert: Endliche Gruppen I, vol. 1, Springer-Verlag, 1967.
[4] R. Schmidt: Subgroup lattices of groups, Expositions in Mathematics 14, de Gruyter, 1994.
[5] R. Schmidt: L-free groups, Illinois J. Math. 47 (2003), 515-528.
[6] R. Schmidt: L_{10}-free groups, J. Group Theory 10 (2007), 613-631.

[^0]: http://siba-ese.unisalento.it/ © 2010 Università del Salento

