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Abstract. Generalized Baumslag-Solitar groups are the fundamental groups of finite graphs
of groups with infinite cyclic vertex and edge groups. These groups have interesting group the-
oretic and algorithmic properties and they also have close connections with algebraic topology.
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1 Graphs of Groups

Let Γ be a connected graph, with loops and multiple edges allowed, and
write

V (Γ) and E(Γ)

for the respective sets of vertices and edges of Γ. If e ∈ E(Γ), we assign endpoints
e+, e− and hence a direction to e,

•e+•e− //

To each e ∈ E(Γ) and x ∈ V (Γ) we assign groups He and Gx and we assume
there are injective homomorphisms

φe− : He → Ge− and φe+ : He → Ge+ .

Then the system

G = (Γ, φe− , φe+ , He, Gx | e ∈ E(Γ), x ∈ V (Γ)),

ia called a graph of groups.
Next choose a maximal subtree T in Γ. Then the fundamental group of the

graph of groups G is the group

G = π1(G)
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which is generated by the groups and elements

Gx and te, (x ∈ V (Γ), e ∈ E(Γ\T )),

subject to the defining relations

hφ
e− = hφ

e+ , (e ∈ E(T )), (hφ
e+ )te = hφ

e− , (e ∈ E(Γ\T )),

for all h ∈ He. In the case where Γ is a tree, G is called a tree product.

The following result is fundamental – see [3], [5], [15].

(1.1). Up to isomorphism the group G = π1(G) is independent of the choice of
maximal subtree.

Special cases of interest

(i) Let Γ have two vertices and a single edge e. Then G is the generalized free
product

G = Ge− ∗H Ge+

where the subgroup H = He is amalgamated by means of the injective homo-
morphisms φe− and φe+ .

(ii) Let Γ have one vertex x and one edge e, i.e., it is a loop. Then G is the
HNN-extension

G =< te, Gx | (hφ
e+ )te = hφ

e− , h ∈ He > .

Here Gx is the base group, Hφ
e− and Hφ

e− are the associated subgroups, and
te is the stable element.

We note an important property of graphs of groups.

(1.2). Let G = (Γ, φe− , φe+ , He, Gx | e ∈ E(Γ), x ∈ V (Γ)) be a graph of groups
and let Γ0 be a connected subgraph of Γ. Define G0 = π1(G0) where

G0 = (Γ0, φe− , φe+ , He, Gx | e ∈ E(Γ0), x ∈ V (Γ0)).

Then the natural homomorphism from G0 to G is injective. In particular each
Gx is isomorphic with a subgroup of G.

For a detailed account of the theory of graphs of groups the reader may
consult [3], [5], [15].
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2 Generalized Baumslag-Solitar groups

A Baumslag-Solitar group is a 1-relator group with a presentation of the
form

BS(m,n) =< t, x | (xm)t = xn >,

where m,n ∈ Z∗ = Z\{0}: these groups seem to have first appeared in the
literature in [1], but they may be of greater antiquity.

A similar type of 1-relator group is

K(m,n) =< x, y | xm = yn >,

where m,n ∈ Z∗. When m and n are relatively prime, this is a torus knot group.

The groups BS(m,n) and K(m,n) are the fundamental groups of graphs of
infinite cyclic groups where the graph is a 1-loop or a 1-edge respectively. There
is a natural way to generalize these groups.

Let Γ be a finite connected graph. Associate infinite cyclic groups < gx >
and < ue > to each vertex x and edge e and define injective homomorphisms

< ue > → < ge− > and < ue > → < ge+ >

by the assignments

ue 7→ (ge−)ω−(e) and ue 7→ (ge+)ω+(e)

where ω−(e), ω+(e) ∈ Z∗. So the edge e is assigned a weight (ω−(e), ω+(e)) and
the graph of groups is determined by a weight function

ω : E(Γ) → Z∗ × Z∗,

with values

ω(e) = (ω−(e), ω+(e)).

We will write the weighted graph of infinite cyclic groups in the form

(Γ, ω)

and refer to it as a generalized Baumslag-Solitar graph or GBS-graph.

Definition 1. A generalized Baumslag-Solitar group, or GBS-group, is the
fundamental group of a GBS-graph (Γ, ω), in symbols

G = π1(Γ, ω).
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To obtain a presentation of G choose a maximal subtree T in Γ; then G has
generators

te, gx, e ∈ E(Γ\T ), x ∈ V (Γ),

and defining relations

(ge−)ω−(e) = (ge+)ω+(e), e ∈ E(T ),

(ge−)ω−(e) = ((ge+)ω+(e))te , e ∈ E(Γ\T ).

Note that up to isomorphism G does not depend on the choice of the maximal
subtree.

Examples

1. If Γ is a 1-loop with weight (m,n), then G = BS(n,m).

2. If Γ is a 1-edge with weight (m,n), then G = K(m,n).

3. As a more complex example, consider the GBS-graph shown below.

•y•x

•u

•z
s(4,−1)

ff

t(20,12)
44jjjjjjjjjjjjjjj

(4,4) **TTTTTTTTTTTTTTT (5,3)

OO(2,−3)

&&
r(2,2)

66

Choose as the maximal subtree T the path xyzu and let the stable letters be
r, s, t as indicated. Then the corresponding GBS-group G has a presentation
with generators

r, s, t, gx, gy, gz, gu

and relations

(g2
x)r = g2

x, g
2
x = g−3

y , g4
y = g4

z , g
5
z = g3

u, (g12
u )t = g20

y , (g4
x)s = g−1

y .

3 Some Properties of GBS-groups

We list some known properties of GBS-groups. Let G = π1(Γ, ω) be a GBS-
group.

(3.1). The group G is finitely presented and torsion-free.

For if F is a finite subgroup of G, it intersects each conjugate of a vertex
group trivially, which implies that it is free and therefore trivial ([5], p.212).
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(3.2). If Γ is a tree, so that G is a GBS-tree product, then G is locally extended
residually finite. Hence G is hopfian.

Recall here that a group is locally extended residually finite (or LERF) if every
finitely generated subgroup is closed in the profinite topology.

Proof of (3.2). Since Γ is a tree and < gx > ∩ < gy >6= 1 for all x, y ∈ V (Γ),
each vertex generator has a positive power lying in the centre. Hence Z(G) =<
z > 6= 1 and G/ < z > is the fundamental group of a graph of finite cyclic groups.
It follows that G/ < z > is virtually free (see Karrass, Pietrowski and Solitar
[9]). If n > 0, then G/ < zn > is also virtually free. Since finitely generated free
groups are LERF, (M. Hall [8]), G is LERF. �

Corollary 1. The generalized word problem soluble in any GBS-tree prod-
uct.

GBS-tree products have another strong residual property.

(3.3). A GBS-tree product G is conjugacy separable, i.e., if two elements are

conjugate in every finite quotient of G, then they are conjugate in G.

This follows from a theorem of Kim and Tang [10]: if G is a (finite) tree
product of groups each of which is finitely generated torsion-free nilpotent and
if the amalgamations are cyclic, then G is conjugacy separable.

Corollary 2. The conjugacy problem is soluble in any GBS-tree product.

Remark. In general BS(m,n) is not hopfian, and hence is not even residually
finite. For example, let G =< t, g| (gm)t = gn > where gcd(m,n) = 1. Define
an endomorphism θ of G by

tθ = t, gθ = gn.

Then θ is a surjective since Im(θ) contains gn and also (gn)t−1

= gm, so g ∈
Im(θ). But θ is not an automorphism of G if m,n 6= ±1, since [g, gt−1

]θ = 1 and
[g, gt−1

] 6= 1.

The next result is an important characterization of GBS-groups due to
Kropholler [11].

(3.4). The non-cyclic GBS-groups are exactly the finitely generated groups of
cohomological dimension 2 that have an infinite cyclic subgroup which is com-
mensurable with its conjugates, i.e., intersecting each conjugate non-trivially.

Kropholler also showed that there is a type of Tits alternative for GBS-
groups, (Kropholler [11]).
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(3.5). The second derived subgroup of a GBS-group is free.

Since free groups are residually soluble, we deduce from the last result:

Corollary 3. Every GBS-group is residually soluble.

The subgroups of a GBS-group are of very restricted type, as the next result
shows.

(3.6). Let H be a finitely generated subgroup of a GBS-group G. Then H is
either free or a GBS-group.

Proof. Assume that H is not free, so G is certainly non-cyclic. Now cd(H) ≤
cd(G) = 2 . If cd(H) = 1, then by a result of Stallings and Swan the group
H is free, since it is torsion-free: (for these results see [2], Chapter II). By this
contradiction cd(H) = 2. Now H must contain a commensurable element since
otherwise it is free. Therefore by (3.4) H is a GBS-group. �

Corollary 4. A GBS-group is coherent, i.e., all its finitely generated sub-
groups are finitely presented.

Since GBS-groups have cohomological dimension 2 in general, it is natural
to enquire about their (co)homology in dimensions 1 and 2. We begin with
homology. Recall that

H1(G) ≃ Gab = G/G′ and H2(G) ≃M(G),

the Schur multiplier. We will investigate these groups in the next two sections.

4 The Abelianization of a GBS-group

Let G = π1(Γ, ω) be a GBS-group defined with respect to a maximal subtree
T of Γ. Then Gab = G/G′ is the finitely generated abelian group with generators

te, gx where e ∈ E(Γ\T ), x ∈ V (Γ),

and (abelian) defining relations

(ge−)ω−(e) = (ge+)ω+(e), e ∈ E(Γ).

To find the complete structure of Gab the weight matrix W must be transformed
into Smith normal form. This matrix has rows indexed by edges and columns
indexed by vertices: row e has entries

0, . . . , 0, ω−(e) − ω+(e), 0 . . . , 0
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if e is a loop, and

0, . . . , 0, ω−(e), 0 . . . , 0,−ω+(e), 0, . . . 0

if e is not a loop.
Let

r0(G)

denote the torsion-free rank of Gab, i.e., the rank of Gab modulo its torsion-
subgroup. A formula for r0(G) can be found without resorting to the lengthy
process of determining the Smith normal form of the matrix W . Since the te,
(e ∈ E(Γ\T )), are linearly independent, linear algebra shows that

r0(G) = |E(Γ)| − |E(T )| + |V (Γ)| − rank(W ) = |E(Γ)| + 1 − rank(W ).

Let W0 be the submatrix of W consisting of the rows which correspond to
edges of the maximal subtree T . Then W0 gives the structure of (G0)ab where
G0 = π1(T, ω). Since each pair of generators of G0 is linearly dependent, we
have r0(G0) = 1 and rank(W0) = |V (Γ)| − 1. Now rank(W ) = rank(W0) or
rank(W0) + 1, depending on whether each non-tree row of W is linearly depen-
dent on the rows of W0 or not. Therefore r0(G) = |E(Γ)| − |V (Γ)| + 1 + ǫ
where ǫ = 1 if rank(W ) = rank(W0) and otherwise ǫ = 0.

Tree dependence
Let e ∈ E(Γ\T ) and put e− = x and e+ = y; then there is a unique path from

x to y in T . The defining relations associated with this path lead to a relation
xh = yk, (h, k ∈ Z∗). (If x = y, then h = k). Let ω(e) = (m,n), so that xm ≡ yn

mod G′. We will say that e is T -dependent if (m,n) is a rational multiple of
(h, k), (which means that m = n if e− = e+). Otherwise e is T-independent. If
every non-tree edge of Γ is T-dependent, then (Γ, ω) is said to be tree dependent.
By (4.1) below this property does not dependent on the tree T . If (Γ, ω) is tree
dependent, then rank(W ) = rank(W0), and otherwise rank(W ) = rank(W0)+1.
Thus we obtain:

(4.1). Let G = π1(Γ, ω) be a GBS-group defined relative to a maximal subtree
T . Then

r0(G) = |E(Γ)| − |V (Γ)| + 1 + ǫ,

where ǫ = 0 or 1, the rule being that ǫ = 1 if and only if (Γ, ω) is tree dependent.

For example, consider Example 3 above. Here the maximal subtree is the
path xyzu. All the non-tree edges with the exception of 〈y, x〉 are T-dependent,
so (Γ, ω) is not tree dependent. Therefore ǫ = 0 and r0(G) = |E(Γ)|−|V (Γ)|+1 =
3 by (4.1).
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5 The Schur multiplier of a GBS-Group

Next we consider how to compute the Schur multiplier of a GBS-group. First
recall an inequality which is valid for any finitely presented group.

(5.1). Let G be a finitely presented group with n generators and r relations.
Then

n− r ≤ r0(G) − d(M(G)),

where d(H) denotes the minimum number of generators of H.

Proof. Let 1 → R→ F → G→ 1 be a presentation of G where F is free of rank
n and R is the normal closure of an r-element subset of F . Then M(G) is given
by Hopf’s formula

M(G) ≃ (F ′ ∩R)/[F,R].

Now r ≥ d(R/[F,R]), and since F/F ′ is free abelian, we have

d(R/[F,R]) = d((F ′ ∩R)/[F,R]) + d(F ′R/F ′)

= d(M(G)) + n− r0(F/F
′R).

This shows that r ≥ d(M(G)) + n− r0(G), from which the result follows. �

Observe the consequence that there is a least upper bound for the integer
n− r over all finite presentations of G: this is the deficiency of G,

def(G).

Now apply (5.1) to a GBS-group G = π1(Γ, ω), using the standard presen-
tation with respect to a maximal subtree T . Here n = |V (Γ)| + |E(Γ\T )| and
r = |E(Γ)|, so that

n− r = |V (Γ)| − |E(T )| = 1

and we have def(G) ≥ 1. Then d(M(G)) ≤ r0(G)− (n− r) = r0(G)−1 by (5.1).
Therefore we have:

(5.2). If G is a GBS-group, then d(M(G)) ≤ r0(G) − 1. Thus M(G) = 0 if
r0(G) = 1.

Corollary 5. If G is a GBS-tree product, then M(G) = 0.

On the other hand, a Baumslag-Solitar group can have non-zero Schur mul-
tiplier.

(5.3). Let G = BS(m,n). Then M(G) = 0 if m 6= n and M(G) ≃ Z if m = n.
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Proof. Suppose that m 6= n. Then Gab ≃ Z ⊕ Z|m−n|, so that r0(G) = 1 and
M(G) = 0 by (5.2). Now assume that m = n. Note that r0(G) = 2 in this case
and hence d(M(G)) ≤ 2− 1 = 1; thus it is enough to show that r0(M(G)) = 1.
From the exact sequence 1 → G′ → G → Gab → 1 we obtain the 5-term exact
homology sequence

M(G) →M(Gab) → G′/[G′, G] → Gab → Gab → 1.

Now G′/[G′, G] is finite since

[x, t]m ≡ [xm, t] ≡ x−m(xm)t ≡ 1 mod [G′, G].

Also r0(M(Gab)) = 1, because r0(G) = 2. Hence Im(M(G) → M(Gab)) is
infinite. Thus we have 1 ≥ d(M(G)) ≥ r0(M(G)) ≥ 1, so that r0(M(G)) = 1
and M(G) ≃ Z. �

In fact there is a remarkably simple formula for the Schur multiplier of an
arbitrary GBS-group ([14]).

(5.4). If G is an arbitrary GBS-group, then M(G) is free abelian of rank
r0(G) − 1.

The proof of this result uses the 5-term homology sequence and the Mayer-
Vietoris sequence for the homology of a generalized free product: for details see
[14].

Corollary 6. If G is any GBS-group, then def(G) = 1.

For by (5.1) and (5.2) we have

1 ≤ def(G) ≤ r0(G) − d(M(G)) = r0(G) − r0(G) + 1 = 1.

Corollary 7. Let Γ be a bouquet of k loops. Then M(G) ≃ Zℓ where ℓ =
k + 1 if each loop has equal weight values and otherwise ℓ = k.

The underlying reason here is that a bouquet of loops is tree dependent if and
only if each loop has equal weight values.

For example, consider the GBS-group G in Example 3. Here r0(G) = 3 and
thus M(G) ≃ Z ⊕ Z.

Central extensions
Knowledge of the Schur multiplier of a GBS-group G allows one to study

central extensions of an arbitrary abelian group C by G. By the Universal
Coefficients Theorem we have

H2(G,C) ≃ Ext(Gab, C) ⊕ Hom(M(G), C).
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Now(5.4) shows that Hom(M(G), C) ≃
⊕
Cr0(G)−1, while Gab ≃ Zr0(G) ⊕ F

with F finite. Hence Ext(Gab, C) ≃ Ext(F,C), which can be computed if the
structure of F is known. On the basis of these remarks we can characterize those
GBS-groups G for which every central extension by G splits.

(5.5). Every central extension by a generalized Baumslag-Solitar group G splits,
i.e., is a direct product, if and only if Gab is infinite cyclic.

Proof. Let C be a trivial G-module and denote the periodic subgroup of Gab

by F ; thus Gab ≃ Zr0(G) ⊕ F where F is finite. Since H2(G,C) ≃ Ext(F,C) ⊕
Cr0(G)−1, we have H2(G,C) = 0 for every C if and only if r0(G) = 1 and
Ext(F,C) = 0 for all C. By taking C to be Z, we see that this happens precisely
when r0(G) = 1 and F = 1, i.e., Gab ≃ Z. �

6 Nilpotent quotients of GBS-Tree Products

Let G = π1(Γ, ω) be a GBS-group where Γ is a tree and let Ḡ be a nilpotent
quotient of G. Then Ḡ has a central cyclic subgroup Z̄ which contains a positive
power of every generator. Thus Ḡ/Z̄ is a finitely generated periodic nilpotent
group, so it is finite. Clearly r0(G) = 1 , which implies that all lower central
factors of Ḡ after the first are finite (by the usual tensor product argument for
lower central factors). Hence r0(Z̄) = 1, which shows that Ḡ is central cyclic-
by-finite, and hence finite-by-cyclic. Thus we have:

(6.1). A nilpotent quotient of a GBS-tree product is finite-by-cyclic.

Information about the second derived quotient group is also available.

(6.2). If G is a GBS-tree product, then G/G′′ is virtually abelian.

Proof. Write Ḡ = G/G′′ and note that there exists an element u ∈ G such
that G/< u > G′ is finite. Next let x, y, z be generators of G; since G is a
tree product, < x > ∩ < y > ∩ < z >6= 1. Hence ([x, y]<z>)G′′/G′′ is finitely
generated and it follows that [x, y]GG′′/G′′ is finitely generated, as is G′/G′′

since G/G′′ satisfies max-n. Also zm centralizes G′/G′′ for some m > 0, from
which it follows that < zm > G′/G′′ is abelian and clearly it has finite index in
G. �

Note that G′′ is a free group by (3.5), so further derived factors may be
complex. Furthermore the next result shows that one cannot expect to be able
to say anything about finite factors of a GBS-group.

(6.3). Every finite group is a quotient of a GBS-tree product.

Proof. Let F = {f1, . . . , fn} be an arbitrary finite group with mi = |fi|. Let T be
the line graph with edges < f1, f2 >,< f2, f3 >, . . . , < fn−1, fn >, the weight of
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edge < fi, fi+1 > being (mi,mi+1). By Von Dyck’s theorem there is a surjective
homomorphism from π1(T, ω) to F such that gfi

7→ fi since fmi

i = 1 = f
mi+1

i+1 .
�

7 Geometric quotients of GBS-groups

We now restrict attention to quotients of a GBS-group which arise in a
natural way from the underlying GBS-graph. Let (Γ, ω) and (Γ̄, ω̄) be GBS-
graphs and let G, Ḡ be the corresponding GBS-groups defined with respect to
the maximal subtrees T, T̄ . A pair of functions (γ, δ),

γ : V (Γ) → V (Γ̄), δ : E(Γ\T ) → E(Γ̄\T̄ )

is called a vertex-edge pair for (Γ, ω, T ), (Γ̄, ω̄, T̄ ) if
(i) (δ(e))− = γ(e−) and (δ(e))+ = γ(e+), e ∈ E(Γ\T );
(ii) if < x, y >∈ E(T ) and γ(x) 6= γ(y), then < γ(x), γ(y) >∈

E(T̄ ).
Thus non-tree edges of Γ are mapped to non-tree edges of Γ̄ and an edge in T
is mapped to an edge in T̄ provided that γ has distinct values at the endpoints.

Definition 2. A homomorphism between the GBS-groups above

θ : π1(Γ, ω) → π1(Γ̄, ω̄)

is called geometric if there is a vertex-edge pair (γ, δ) such that

gθ
x = g

r(x)
γ(x), x ∈ V (Γ)

tθe = t
s(e)
δ(e), e ∈ E(Γ\T ),

where r(x), s(e) ∈ Z. Thus θ is determined by the parameters

(γ, δ, r(x), s(e) | x ∈ V (Γ), e ∈ E(Γ\T )),

which are of course subject to certain restrictions.

A quotient group G/K of a GBS-group G is called a geometric quotient if
K = Ker(θ) where θ is a surjective geometric homomorphism from G to some
GBS-group. (Note that in general the image of a geometric homomorphism need
not be a GBS-group).
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Some natural examples of geometric homomorphisms

1. Loop deletion
Suppose that the graph Γ has two loops e, e′ through the same vertex and

that e has weight (1,1). Then deleting e and mapping the associated generator
te to 1 gives rise to a geometric homomorphism θ : π1(Γ, ω) → π1(Γ̄, ω̄) where
Γ̄ is Γ with e removed and ω̄ is the restriction of ω. Here the vertex pair fixes
vertices and maps e and e′ to e′.

2. Loop identification
Suppose that the graph Γ has two loops e, e′ through a vertex and that they

have the same weight. Identify the two loops to form a new graph Γ̄, which is Γ
with the loop e′ removed. Map te and te′ to te: here the vertex pair fixes vertices
and maps e and e′ to e, with other edges fixed.

3. Pinch maps
Let G = π1(Γ, ω) and let T be a maximal subtree in Γ. Choose any e ∈ E(Γ) and
write m = ω−(e), n = ω+(e). Let d be a common divisor of m and n. Define a
new weight function ω̄ on Γ by replacing the weight (m,n) by (m/d, n/d), with
all other weights unchanged. Write Ḡ = π1(Γ, ω̄). Then there is a surjective
homomorphism

θ : G→ Ḡ

in which
x 7→ x̄, y 7→ ȳ.

Indeed x̄m/d = ȳn/d implies that x̄m = ȳn, while (x̄m/d)t = ȳn/d implies that
(x̄m)t = ȳn. Note that θ is a geometric homomorphism induced by the vertex-
edge pair of identity functions. Also, if e ∈ E(T ), then

[xm/d, yn/d]θ = 1

and [xm/d, yn/d] 6= 1 if d 6= ±1. There is a similar discussion if e 6∈ E(T ). Hence
θ is not an isomorphism if d 6= ±1. Call θ a pinch map on e.

4. Edge contractions
Let G = π1(Γ, ω) and let T be a maximal subtree of Γ. Suppose that e =

< y, z >∈ E(T ) has relatively prime weights m = ω−(e), n = ω+(e). We aim
to define a contraction along the edge e =< y, z >. The diagram which follows
exhibits a part of the graph Γ.

•y•x •z •u
(p,q)

//
(m,n)

//
(r,s)

//

Form a new graph Γ̄ by deleting the edge e and adjusting the weights of adjacent
edges appropriately: the relevant segment of Γ̄ is
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•b•a •c
(p,qn)

//
(rm,s)

//

Now define a vertex pair (γ, δ) by

γ(x) = a, γ(y) = b, γ(z) = b, γ(u) = c,

with other vertices fixed and δ preserving non-tree edges. A homomorphism

θ : G→ Ḡ

is defined by the rules

gx
θ = ga, gy

θ = gb
n, gz

θ = gb
m, gu

θ = gc, . . . .

Then θ is a geometric homomorphism induced by (γ, δ): for example, the relation
gz

r = gu
s in G becomes gb

rm = gc
s in Ḡ. Since gcd(m,n) = 1, we have gb ∈

Im(θ), so θ is surjective. Finally, note that

[gy, gz]
θ = [gb

n, gb
m] = 1,

while if |m| 6= 1 and |n| 6= 1, then [gy, gz] 6= 1 and θ is not an isomorphism.
Notice that edge contraction does not decrease weights in absolute value. (In a
similar way it is possible to define a contraction along a loop.)

It is an important property of geometric homomorphisms that their com-
posites are also geometric.

(7.1) Let Gi = π1(Γi, ωi), i = 1, 2, 3, be GBS-groups with associated maximal
subtrees Ti, and let φi : Gi → Gi+1, i = 1, 2, be geometric homomorphisms with
parameters (γi, δi, ri(x), si(e)) relative to the Ti. Then the composite φ1φ2 is a
geometric homomorphism from G1 to G3 with parameters

(γ2γ1, δ2δ1, r1(x)r2(γ1(x)), s1(e)s2(δ1(e)).

Proof. First observe that (γ2γ1, δ2δ1) is a vertex-edge pair. For, if e ∈ E(Γ1\T1),
then (δ2δ1(e))

± = γ2(δ1(e)
±) = γ2γ1(e

±). Also, if 〈x, y〉 ∈ E(T1) and γ2γ1(x)
6= γ2γ1(y), then γ1(x) 6= γ1(y), so 〈γ1(x), γ1(y)〉 ∈ E(T2). Thus we have
〈γ2γ1(x), γ2γ1(y)〉 ∈ E(T3). Next, if x ∈ V (Γ1), then

(gx)φ1φ2 = (g
r1(x)
γ1(x))

φ2 = (gγ2γ1(x))
r1(x)r2(γ1(x)),

and there is a similar calculation for (te)
φ1φ2 . �
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8 GBS-Simple Groups and GBS-Free groups

Every GBS-group has Z as a quotient, although not necessarily as a geomet-
ric quotient. We will say that a GBS-group is GBS-simple relative to a maximal
subtree T if there are no surjective, geometric homomorphisms relative to T ,
with non-trivial kernel, from G to any non-cyclic GBS-group. Equivalently G
has no proper, non-cyclic, geometric GBS-quotients. (Here a quotient is called
proper if the associated normal subgroup is non-trivial). If a GBS-group has no
proper, non-cyclic GBS-quotients at all, whether geometric or not, it is called
GBS-free.

The following result, which is proved in [6], provides a complete classification
of the GBS-groups which are GBS-simple: it also shows that the properties
“GBS-free” and “GBS-simple” are identical.

(8.1). Let (Γ, ω) be a GBS-graph and let G = π1(Γ, ω) be the GBS-group de-
fined with respect to a maximal subtree T . Then the following statements are
equivalent:

(a) G is GBS-free;

(b) G is GBS-simple;

(c) there is a geometric isomorphism from G to one of the groups

BS(1, n),K(1, 1),K(p, q),K(p, pd), where n ∈ Z∗, p, q are

distinct primes and d > 0.

Thus, for example, K(2, 4), K(2, 3), BS(1, 3) are GBS-free, but K(4, 9) and
BS(2, 3) are not GBS-free. Notice that the theorem also shows that the property
GBS-simple is independent of the maximal subtree T .

Sketch of proof of (8.1).

Assume G is GBS-simple, but not cyclic. The idea of the proof is to show there
is a surjective, geometric homomorphism from G to a non-cyclic GBS-group
whose underlying graph is either a 1-edge or a 1-loop. This will show that there
is no loss in assuming the original graph to have one of these forms. Then these
special cases can be dealt with. The geometric homomorphisms used will be
composites of the special types (1)–(4) listed above: thus (7.1) is relevant.

Suppose first that Γ is a tree with more than one edge. Contract all edges
with a weight vaue ±1, which does not change G up to isomorphism. Thus
we can assume that there are no such edges. There must be some edges left,
otherwise the graph consists of a single vertex and G is infinite cyclic. If two or
more edges are left, pinch and contract all edges but one, noting that after a
pinch-contraction there are still no ±1 labels. The resulting graph has a single
edge and the group is non-cyclic, so we have reduced to the case of a 1-edge.
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Now suppose Γ is not a tree and let T be a maximal subtree. Pinch and
contract edges in T to a single vertex to get a bouquet of loops. Note that the
group is non-cyclic.

From now on assume that Γ is a bouquet of k ≥ 2 loops. Moreover, by
pinching we can also assume that all the weights are relatively prime. The next
step is to establish

(8.2). If not all weights have absolute value 1, then G has a proper, non-cyclic
geometric quotient and hence is not GBS-simple.
Proof. We have

G =< t1, . . . , tk, x| (xmi)ti = xni , i = 1, . . . , k >

where gcd(mi, ni) = 1. We can assume that |mi| ≤ |ni|. Define

ℓ = ℓcm(n1, . . . , nk);

then the assignments
x 7→ xℓ, ti 7→ ti

determine a geometric endomorphism θ of G, where the vertex pair consists of
identity functions. We have to prove that θ is surjective. First Gθ contains ti and
xℓ = x(ℓ/ni)ni , and hence x(ℓ/ni)mi . Since mi, ni are relatively prime, xℓ/ni ∈ Gθ.
Also the ℓ/ni are relatively prime, so x ∈ Gθ and Im(θ) = G. Notice in addition
that

[x, xti ]θ = [xℓ, (xℓ)ti ] = [xℓ, ((xni)ti)ℓ/ni ] = [xℓ, xmiℓ/ni ] = 1

and [x, xti ] 6= 1 if |mi| 6= 1. On the other hand, if all the |mi| = 1, then in a

similar way [xt−1
i , xt−1

i tj ] ∈ Ker(θ) and this is non-trivial if j 6= i. �

The discussion so far shows that we can assume that Γ is a bouquet of k ≥ 2
loops where |mi| = 1 = |ni| for all i. We can delete any loop with label (1,1).
Then, if there are multiple loops with label (1,−1), pass to a 1-loop quotient
with G = BS(1,−1) by identifying loops. The effect of the above analysis is
to reduce to the case of a 1-loop. Thus it remains to deal with the cases of a
1-loop and a 1-edge. In these cases a complete description of all GBS-quotients
is possible.

(8.3). There is a surjective homomorphism from G = K(m,n) to Ḡ = K(m′, n′),
where Ḡ non-cyclic, if and only if there exist integers k, r, s such that either

(i) m′ = m/ks, n′ = n/kr and gcd(r,m/k) = 1 = gcd(s, n/k),

or
(ii) m′ = n/kr, n′ = m/ks and gcd(r,m/k) = 1 = gcd(s, n/k).
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The sufficiency of the conditions in the theorem is proved by observing that
if m,n are relatively prime and p divides m, then there is a surjective geometric
homomorphism

θ : K(m,n) −→ K(
m

p
, n)

in which x 7→ x̄, y 7→ ȳp, where x, y and x̄, ȳ are the respective generators of
the groups G, Ḡ.

(8.4). There is a surjective homomorphism θ from BS(m,n) to BS(m̄, n̄) if
and only if m̄ = m/q and n̄ = n/q or m̄ = n/q and n̄ = m/q for some integer
q dividing m and n.

Sketch of proof

Let G =< t, x > and Ḡ =< t̄, x̄ > be the two groups and assume there is a
surjective homomorphism from G to Ḡ. To prove the result we will produce
invariants of the groups. An obvious one is obtained from

Gab ≃ Z × Z|m−n|.

Since θ maps Gab onto Ḡab, we see that m̄ − n̄ divides m − n. Assume that
m 6= n: the case where m = n requires a special argument.

Next we analyze the structure of G/T where T/(xG)′ is the torsion-subgroup
of xG/(xG)′. In fact

G/T ≃ < t > ⋉A

where A = Qπ is the additive group of rational numbers with π-adic denomi-
nators, π being the set of primes involved in n

m (after cancellation). Here t acts
on A by multiplication by n

m , this being the additive version of the relation
(xm)t = xn.

Note that xG is generated by all the elements commensurable with their
conjugates, (i.e., elements g such that < g > ∩ < g >h 6= 1, for all h ∈ G).
Therefore xG is characteristic in G. Hence θ maps < t > ⋉A onto < t̄ > ⋉Ā,
where Ā = Qπ̄ is the additive group of rational numbers with π̄-adic denomina-
tors, with π̄ the set of primes involved in n̄

m̄ . It follows that n
m = n̄

m̄ (or m̄
n̄ , in

which case a similar argument applies).

Let d = gcd(m,n) and write m′ = m
d and n′ = n

d : similarly define d̄, m̄′, n̄′.

Then m′

n′ = m̄′

n̄′ and hence m′ = m̄′ and n′ = n̄′. Therefore m̄ = d̄m/d and
n̄ = d̄n/d, so that

m− n

m̄− n̄
=
d

d̄
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is an integer and d̄ divides d. Writing q = d/d̄, we have m̄ = m
q and n̄ =

n
q . Conversely, if m,n, m̄, n̄ satisfy the conditions, then by pinching we get a

surjective homomorphism G→ G. �

The proof of (8.1) is now essentially complete: for fuller details see [6].

Remark. It follows from the discussions of (8.3) and (8.4) that (m,n) is an
invariant of the groups BS(m,n) and K(m,n) up to multiplication by −1 (of
either component in the second case) and interchange of components. It is more
challenging to find invariants of arbitrary GBS-groups, although one example is
the number of non-tree edges in the graph when the group is not BS(1,−1).

We end with what is probably a hard question. Is the isomorphism problem
soluble for GBS-groups, i.e., is there an algorithm which, when two GBS-graphs
(Γ, ω) and (Γ̄, ω̄) are given, decides if π1(Γ, ω) ≃ π1(Γ̄, ω̄) ? A positive answer
is known in various special cases, particularly in the case of GBS-trees – for
details see [4], [7], [12], [13].
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