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Abstract. Let F be a field and A an (infinite dimensional) vector space over F . A group
G of linear transormations of A is said to be finitary linear if for each element g ∈ G the
centralizer CA(g) has finite codimension over F . Finitary linear groups are natural analogs of
FC-groups (i.e. groups with finite conjugacy classes). In this paper we consider linear analogs
of groups with boundedly finite conjugacy classes, and also some generalizations corresponding
to groups with Chernikov conjugacy classes.
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Let F be a field and A a vector space over F . Denote by GL(F,A) the group
of all F -automorphisms of A. The subgroups of GL(F,A) are called the linear
groups. Linear groups play a very important role in algebra and other branches
of mathematics. If dimF (A) (the dimension of A over F ) is finite, say n, then
a subgroup G of GL(F,A) is a finite dimensional linear group. It is well known
that in this case, GL(F,A) can be identified with the group of all invertible
n×n matrices with entries in F . The theory of finite dimensional linear groups
is one of the most developed in group theory. It uses not only algebraic, but
also topological, geometrical, combinatorial, and many other methods.

However, in the case when A has infinite dimension over F , the study of the
subgroups of GL(F,A) requires some additional restrictions. This case is more
complicated and requires some additional restrictions allowing an effective em-
ploying of already developed techniques. The most natural restrictions here are
the finiteness conditions. Finitary linear groups demonstrate the efficiency of
such approach. We recall that a subgroup G of GL(F,A) is called finitary if
for each element g ∈ G its centralizer CA(g) has finite codimension over F .
The theory of finitary linear groups is now well-developed and many interest-
ing results have been proved (see, for instance, the survey [1]). We begin with
consideration on some generalizations of such groups.
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1 On some generalizations of finitary linear groups

If G is a subgroup of GL(F,A), we can consider the vector space A as a
module over the group ring FG. We can obtain the following generalizations of
finitary groups. Replacing the field F by the ring R, artinian and noetherian R-
modules are natural generalizations of the concept of a finite dimensional vector
space. Some related generalizations of finitary groups have been considered by
B.A.F. Wehrfritz (see [2], [3], [4], [5]).

LetR be a ring,G a group andA anRG-module. Following B.A.F. Wehrfritz,
a group G is called artinian - finitary, if for every element g ∈ G, the factor-
module A/CA(g) is artinian as an R-module. In this case, we say that A is an
artinian - finitary RG-module.

We observe that we can consider finitary linear groups as linear analogs of
the FC-groups (we can define an FC-groupG as a group such that |G : CG(x)| is
finite for each element g ∈ G). Similarly, if R = Z and G is an artinian - finitary
group, then the additive group of the factor-module A/CA(g) is Chernikov for
every element g ∈ G. This shows that we can consider artinian - finitary groups
as linear analogs of the groups with Chernikov conjugacy classes (shortly CC-
groups).

One of the first important result of theory of FC-groups was a theorem due
to B. H. Neumann that described the structure of FC- groups with bounded
conjugacy classes. Following B. H. Neumann, a group G is called a BFC-group
if there exists a positive integer b such that |gG| ≤ b for each element g ∈ G. B.
H. Neumann proved that a group G is a BFC-group if and only if the derived
subgroup [G,G] is finite ([6], Theorem 3.1).

A group G ≤ GL(F,A) is said to be a bounded finitary linear group, if
there is a positive integer b such that dimFA/CA(g) ≤ b for each element
g ∈ G. These groups are some linear analogs of BFC-groups. Let ωRG be
the augmentation ideal of the group ring RG, i.e. the two-sided ideal of RG
generated by the all elements g − 1, g ∈ G. The submodule A(ωFG) is called
the derived submodule. We can consider the derived submodule as a linear
analog of the derived subgroup. Note that in the general case we cannot obtain
an analog of Neumann’s theorem. It is not hard to construct an FpG-module
A over an infinite elementary abelian group G such that G is bounded finitary
linear group but A(ωFpG) has infinite dimension over Fp (see [7]). However,
under some natural restrictions on the p-sections of a bounded finitary linear
group, the finiteness of dimF (A(ωFG)) can be proved. Thus some linear analog
of B. H. Neumann’s theorem can be established. We considered a more general
situation.

Let A be an artinian Z-module. Then a set Π(A) is finite. If D is a divisible
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part of A, then D = K1 ⊕ . . .⊕Kd where Kj is a Prüfer subgroup, 1 ≤ J ≤ d.
The number d is an invariant of A. Another important invariant here is the
order of A/D.

If D is a Dedekind domain, the structure of the artinian D-module A is very
similar to that described above. Let D be a Dedekind domain. Put

Spec(D) = {P |P is a maximal ideal of D}

Let P be a maximal ideal of D. Denote by AP the set of all elements a such
that AnnD(a) = Pn for some positive integer n. If A is a D-periodic module,
then define

AssD(A) = {P ∈ Spec(D)|AP 6=< 0 >}.

In this case, A = ⊕P∈πAP where π = AssD(A) (see, for instance, [8], Corollary
6.25). If A is an artinian D-module, then A is D-periodic and the set AssD(A)
is finite. Furthermore, A = K1 ⊕ · · · ⊕Kd ⊕B where Kj is a Prufer submodule,
1 ≤ j ≤ d, B is a finitely generated submodule (see, for instance, [9], Theorem
5.7). Here the Prufer submodule is a D-injective evelope of a simple submodule.
Observe that this decomposition is unique up to isomorphism. It follows that
the number d is an invariant of the module A. Put d = ID(A). The submodule
B has a finite series of submodules with D - simple factors. The Jordan-Holder
Theorem implies that the length of this composition series is also an invariant
of B, and hence of A. Denote this number by IF (A).

Let D be a Dedekind domain and G a group. The DG-module A is said to
be a bounded artinian finitary if A is artinian finitary and there are positive
integers b and d and a finite subset τ ⊆ Spec(D) such that IF (A/CA(g)) ≤ b,
ID(A/CA(g)) ≤ d and AssD(A/CA(g)) ⊆ bσ(A). We will use the following
notation:

π(A) = {p|p = charD/P for all P ∈ bσ(A)}.

The group G is said to be generalized radical if G has an ascending series
whose factors are either locally nilpotent or locally finite. Let p be a prime.
We say that a group G has finite section p-rank rp(G) = r if every elementary
abelian p-section U/V ofG is finite of order at most pr and there is an elementary
abelian p-section A/B of G such that |A/B| = pr.

In the paper [10], the following analog of Neumann’s theorem has been
obtained.

Theorem 1. (L.A.Kurdachenko, I.Ya.Subbotin, V.A.Chepurdya [10]) Let
D be a Dedekin domain, G a locally generalized radical group, and A a DG-
module. Suppose that A is a bounded artinian finitary module. Assume also that
there exists a positive integer r such that the section p-rank of G is at most r
for all p ∈ π(A). Then
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a) the submodule A(ωFG) is artinian as a D-module,

b) the factor-group G/CG(A) has finite special rank.

Corollary 1. Let F be a field, A a vector space over F , G a locally gener-
alized radical subgroup of GL(F,A). Suppose that there exists a positive integer
r such that the section p-rank of G is at most r were p = charF . Then

a) the submodule A(ωFG) is finite dimensional,

b) the factor-group G/CG(A) has finite special rank.

As we noted above the restriction on the section p-rank is essential.

2 Linear groups that are dual to finitary

Consider another analog of FC-groups which is dual in some sense to finitary
linear groups. We introduce this concept not only for linear groups, but in a more
general situation.

Let R be a ring, G a group and A an RG-module. If a is an element of A,
then the set

aG = {ag|g ∈ G}

is called the G-orbit of a.
We say that G has finite orbits on A if the orbit aG is finite for all a ∈ A.
By the orbit stabilizer theorem, it is clear that in this situation, |aG| =

|G : CG(a)| is finite, so we can think of aG as the analog of a conjugacy class.
Let F be a field and let G be a subgroup of GL(F,A). Suppose that dimF (A)

is finite and choose a basis a1, ..., an for the vector space A. Suppose that G has
finite orbits on A. Then every element of CG(a1)∩ ...∩CG(an) acts trivially on
A, and hence CG(a1)∩ ...∩CG(an) =< 1 >. However, this intersection has finite
index in G and hence G is finite. Thus, we can think of linear groups with finite
orbits as generalizations of finite groups.

We say that G has boundedly finite orbits on A if there is a positive integer b
such that |aG| ≤ b for each element a ∈ A. The smallest such b will be denoted
by loA(G).

Since |aG| = |G : CG(a)| for all a ∈ A, it is not hard to see that any group
G in which G/CG(A) is finite has boundedly finite orbits on A. However, as the
following example shows, the converse statement is far from being true.

Let A be a vector space over the field F admitting the basis {an|n ∈ N}.
For every n ∈ N the mapping gn : A −→ A, given by

amgn =

{
a1 + am if m = n+ 1
am if m 6= n+ 1
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is an F -automorphism of A. Then G = 〈gn|n ∈ N〉 is a subgroup of GL(F,A).
Clearly [gn, gm] = 1 whenever n 6= m, so that G is abelian. Moreover, if charF =
p > 0, then G is an elementary abelian p-group. It follows in this case that
ag = a+ ta1 for every a ∈ A, where 0 ≤ t < p. Consequently,

aG = {a, a+ a1, a+ 2a1, ..., a+ (p− 1)a1}.

Therefore, |aG| ≤ p for each element a ∈ A, and G has boundedly finite
orbits on A. However, it is clear that CG(A) =< 1 >, so that G/CG(A) is
infinite.

Let B be a vector space over a field F of characteristic p > 0 admitting the
basis {bn|n ∈ N}. We define the mapping x : B −→ B by the rule

bmx =

{
bm if m is even
b2n + b2n+1 if m = 2n+ 1.

Clearly, x is an F -automorphism of B and B(ωF < x >) = ⊕n∈Nb2nF . In
particular, the dimension ofB(ωF < x >) is infinite. Since |x| = p, |b < x >| ≤ p
for each element b ∈ B. Now let A and G be the vector space and the linear
group from the first example, respectively. Then L = G× < x > acts on the
vector space C = A⊕B in the natural way. Clearly, |cL| ≤ p2 for every element
c ∈ C. However, the factor-group L/CL(C) is infinite and the dimension of
C(ωFL) is infinite. In other words, we cannot have an analog of Neumann’s
theorem.

Next result describes linear groups acting with boundedly finite orbits.

Theorem 2. (M.R.Dixon, L.A.Kurdachenko, J.Otal [11]) Let G be a group,
R a ring and A an RG-module. Suppose that G acts on A with boundedly finite
G-orbits, and let b = loA(G). Then

i) G/CG(A) contains a normal abelian subgroup L/CG(A) of finite exponent
such that G/L is finite.

ii) A contains an RG-submodule C such that C is finitely generated as an
R-module and L acts trivially on C and A/C.

iii) There is a positive integer m such that m is a divisor of b! and
mA(ωRG) =< 0 >.

Note that in the above statement the submodules of C need not be finitely
generated. Therefore, we cannot deduce in this theorem that A(ωRG) is finitely
generated as an R-module. However, if R is noetherian, then every finitely gen-
erated R-submodule is also noetherian. So in this case, every submodule of C is
finitely generated. Even when R is a noetherian ring so that A(ωRG) is finitely
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generated, in general it appears that nothing can be deduced concerning its
number of generators. We can now establish our next main theorem.

Theorem 3. (M.R.Dixon, L.A.Kurdachenko, J.Otal [11]) Let G be a group,
R a noetherian ring and A an RG-module.

i) Suppose that G acts on A with boundedly finite G-orbits, and let b =
loA(G). Then G/CG(A) contains a normal abelian subgroup L/CG(A) of
finite index such that A(ωRG) is finitely generated.

ii) If a factor-group G/CG(A) has a normal subgroup L/CG(A) of finite index
such that A(ωRG) is finite, then G has boundedly finite orbits on A.

iii) If there is an integer b such that R/b! R is finite and b = loA(G), then
G/CG(A) contains a normal abelian subgroup L/CG(A) of finite index and
finite exponent such that A(ωRG) is finite.

Next we give some specific examples of rings satisfiyng the conditions of
Theorem 3. Of course, one particular interesting example is the ring of integer.

Corollary 2. (M.R.Dixon, L.A.Kurdachenko, J.Otal [11]) Let G be a group
acting on the ZG-module A. Then G has boundedly finite orbits on A if and
only if G contains a normal subgroup L such that G/L and A(ωZL) are finite.

Next result is a generalization of Corollary 2. An infinite Dedekin domain
D is said to be a Dedekind Z0-domain if for every maximal ideal P of D, the
quotient ring D/P is finite (see for instance [9], Chapter 6). If F is a finite field
extension of Q and R is a finitely generated subring of F , then R is an example
of a Dedekind Z0 domain.

Corollary 3. (M.R.Dixon, L.A.Kurdachenko, J.Otal [11]) Let G be a group,
D a Dedekind Z0-domain and A a DG-module. Then G has boundedly finite
orbits on A if and only if there exists a normal abelian subgroup L/CG(A) of
G/CG(A) of finite index and finite exponent such that A(ωDG) is finite.

For the case when the ring of scalars is a field, we obtain

Theorem 4. (M.R.Dixon, L.A.Kurdachenko, J.Otal [11]) Let G be a group,
F a field of characteristic p > 0 and A an FG-module. Suppose that G acts on
A with boundedly finite G-orbits. Then

i) G/CG(A) contains a normal abelian p-subgroup L/CG(A) of finite expo-
nent such that G/L is finite.

ii) A contains an FG-submodule C such that dimF (C) is finite and L acts
trivially on C and A/C.

Next result deals with the situation when G/CG(A) is finite.
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Theorem 5. (M.R.Dixon, L.A.Kurdachenko, J.Otal [11]) Let G be a group,
F a field and A an FG-module. Suppose that G acts on A with boundedly finite
G-orbits. Assume that if charF = p > 0, then G/CG(A) is a p′-group. Then
G/CG(A) is finite.

In particular, if F is a field of characteristic 0, then G acts on the FG-module
A with boundedly finite G-orbits if and only if G/CG(A) is finite.

We consider now the following generalization. If a group G acts on A with
finite G-orbits, then an FG-submodule aFG has finite dimension over F .

Let F be a field, A a vector space over F and G a subgroup of GL(F,A).
We say that G is a linear group with finite dimensional G-orbits (or that A has
finite dimensional G-orbits) if the G-orbit aG generates a finite dimensional
subspace for each element a ∈ A.

As we have seen above, if a group G has finite G-orbits then G has finite
dimensionalG-orbits, but the converse is false. Every ordinary finite dimensional
linear group G is a group with finite dimensional G-orbits. But we have seen
above that if a finite dimensional linear group G has finite G-orbits, then G is
finite.

We say that a linear group G has boundedly finite dimensional orbits on A
if there is a positive integer b such that dimF (aFG) ≤ b for each element a ∈ A.
Put

md(G) = max{dimF (aFG) | a ∈ A}.

Every linear group G defined over a finite dimensional vector space A is a group
with boundedly finite dimensional orbits.

In view of Neumann’s result, a natural question arises: when is dimF (A(ωFG))
finite? An easy computation shows that aFG ≤ A(ωFG) + aF for each a ∈ A,
and hence if dimF (A(ωFG)) ≤ d then aFG is of F -dimension at most d + 1.
Thus, if A(ωFG) is finite dimensional, then G has boundedly finite dimensional
orbits. However, as we showed above, even for linear groups having boundedly
finite orbits on A, the converse is false. It would be interesting to know which
conditions imposed on a group G implies that A(ωFG) is finite dimensional.

Let B be a subspace of A, then the norm of B in G is the subgroup

NormG(B) =
⋂

b∈B

NG(bF ).

Observe thatNormG(B) is the intersection of the normalizers of all F -subspaces
of B, and that G = NormG(A) if and only if every subspace of A is G-invariant.

The following theorem provides us with a description of linear groups having
boundedly finite dimensional orbits on A.
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Theorem 6. (M.R.Dixon, L.A.Kurdachenko, J.Otal [12]) Let F be a field,
A a vector space over F and G a subgroup of GL(F,A). Suppose that G has
boundedly finite dimensional orbits on A and let b = md(G). Then

i) A has an FG-submodule D such that dimF (D) is finite and if K = CG(D),
then K ≤ NormG(A/D). Moreover there exists a function f such that
dimF (D) ≤ f(b).

ii) K is a normal subgroup of G and has a G-invariant abelian subgroup
T such that A(ωFT ) ≤ D and K/T is isomorphic to a subgroup of the
multiplicative group of a field F .

iii) T is an elementary abelian p-subgroup if charF = p > 0 and is a torsion-
free abelian group otherwise.

In particular, G is an extension of a metabelian group by a finite dimen-
sional linear group.

We use Theorem 6 to establish several properties of groups with boundedly
finite dimensional orbits that are analogs to corresponding results for finite
dimensional linear groups. There are many applications of Theorem 6. Here we
just select some of them. It is a well-known theorem of Schur that periodiic
finite dimensional linear groups are locally finite.

Corollary 4. (M.R.Dixon, L.A.Kurdachenko, J.Otal [12]) Suppose that G
has boundedly finite dimensional orbits on A.

i) If G is periodic then G is locally finite.

ii) If G is locally generalized radical then G is locally (finite and soluble).

iii) If G is a periodic p′-group, where p = charF , then the centre of G includes
a locally cyclic subgroup K such that G/K is soluble-by-finite.

Now we consider another topic: the reduction to the groups with finite di-
mensional orbits.

Let again G be a subgroup of GL(F,A). We say that G is a linear group with
finite G-orbits of subspaces if the set clG(B) = {Bg | g ∈ G} is finite for each
F -subspace B of A. Groups with this property are natural analogs of groups
with finite G-orbits of elements. Since it is clear that |clG(B)| = |G : NG(B)|,
it follows that G has finite G-orbits of subspaces if and only if the indexes
|G : NG(B)| are finite for all F -subspaces B of A. It is not hard to prove that if
G has finite G-orbits of subspaces then dimF (aFG) is finite, for each element
a ∈ A.



On some infinite dimensional linear groups 29

Observe that if every F -subspace B is G-invariant, then G is abelian. Linear
groups with finite G-orbits of subspaces can be considered as natural general-
izations of abelian linear groups.

For these groups we obtain the following result.

Theorem 7. (M.R.Dixon, L.A.Kurdachenko, J.Otal [12]) Let F be a field, A
a vector space over F and G a subgroup of GL(F,A). Suppose that G is a linear
group with finite G-orbits of subspaces. Then the factor group G/NormG(A) is
finite and G is central-by-finite.

We say that a group has boundedly finite G-orbits of subspaces if there is a
positive integer b such that |clG(B)| ≤ b for all subspaces B of A.

Corollary 5. (M.R.Dixon, L.A.Kurdachenko, J.Otal [12]) Let F be a field,
A a vector space over F and G a subgroup of GL(F,A). Then G has finite G-
orbits of subspaces if and only if G has boundedly finite G-orbits of subspaces.

3 Linear groups with restriction on subgroups of in-

finite central dimension

If H is a subgroup of GL(F,A), then H really acts on the factor-space
A/CA(H). Following [13] we say that H has finite central dimension, if
dimF (A/CA(H)) is finite. In this case dimF (A/CA(H)) = centdimF (H) will be
called the central dimension of the subgroup H.

If H has finite central dimension, then A/CA(H) is finite dimensional. Put
C = CG(A/CA(H)). Then, clearly, C is a normal subgroup of H and H/C is
isomorphic to some subgroup of GLn(F ) where n = dimF (A/CA(H)). Each
element of C acts trivially on every factor of the series < 0 >≤ CA(H) ≤ A,
so that C is an abelian subgroup. Moreover, if charF = 0, then C is torsion-
free; if charF = p > 0, then C is an elementary abelian p-subgroup. Hence,
the structure of H in general is defined by the structure of G/C, which is an
ordinary finite dimensional linear group.

Let G ≤ GL(F,A) and let Licd(G) be the set of all proper subgroups of G
having infinite central dimension. In the paper [13], it has been proved that if
every proper subgroup of G has finite central dimension, then either G has finite
central dimension or G is a Prufer p-group for some prime p (under some natural
restrictions on G). This shows that it is natural to consider those linear groups
G, in which the family Licd(G) is ”very small” in some particular sense. But
what means ”very small” for infinite groups? One of the natural approaches
possible here is to consider finiteness conditions. More precisely, it is natural
to consider the groups in which the family Licd(G) satisfies a suitable strong
finiteness condition. In the paper [14] we considered some of such situations. In
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particular, linear groups in which the family Licd(G) satisfies either the minimal
or the maximal condition and some rank restriction were considered. The weak
minimal and weak maximal conditions are natural group-theoretical generaliza-
tions of the ordinary minimal and maximal conditions. These conditions have
been introduced by R.Baer [15] and D.I.Zaitsev [16]. The definition of the weak
minimal condition in the most general form is the following.

Let G be a group and M a family of subgroups of G. We say that M
satisfies the weak maximal (respectively minimal) condition (or that G satisfies
the weak maximal (respectively minimal) condition for M-subgroups), if for
every ascending (respectively descending) chain {Hn | n ∈ N} of subgroups
in the family M there exists a number m ∈ N such that the indexes |Hn+1 : Hn|
(respectively |Hn : Hn+1|) are finite for all n ≥ m.

Groups with the weak minimal or maximal conditions for some important
families of subgroups have been studied by many authors (see, for instance, the
book [17],5.1, and the survey [18]).

We say that a group G ≤ GL(F,A) satisfies the weak maximal (respec-
tively minimal) condition for subgroups of infinite central dimension, or shortly
Wmax− icd (respectively Wmin− icd), if the family Licd(G) satisfies the weak
maximal (respectively minimal) condition.

The first results about linear groups satisfying the conditions Wmin − icd
and Wmax − icd have been obtained in [19]. More precisely, this paper was
devoted to the study of periodic groups with such properties. The main results
are the following

Theorem 8. (J.M. Munoz-Escolano, J. Otal, N.N. Semko [19]) Let F be
a field, A a vector space over F and G a locally soluble periodic subgroup of
GL(F,A). Suppose that G has infinite central dimension and satisfies Wmin−
icd or Wmax− icd. The following assertions hold

1) If charF = 0, then G is a Chernikov group.

2) If charF = p > 0, then either G is a Chernikov group or G has a series
of normal subgroups H ≤ D ≤ G satisfying the following conditions:

2a) H is a nilpotent bounded p-subgroup.

2b) D = HλQ for some non-identity divisible Chernikov subgroup Q such
that p /∈ Π(Q).

2c) H has finite central dimension, Q has infinite central dimension.

2d) If K is a Prufer q-subgroup of Q and K has infinite central dimen-
sion, then H has a finite K-composition series.

2e) G/D is finite.
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Corollary 6. (J.M. Munoz-Escolano, J. Otal, N.N. Semko [19]) Let F be
a field, A a vector space over F and G a locally soluble periodic subgroup of
GL(F,A). Then the following conditions are equivalent:

i) G satisfies the weak minimal condition on subgroups of infinite central
dimension;

ii) G satisfies the weak maximal condition on subgroups of infinite central
dimension;

iii) G satisfies the minimal condition on subgroups of infinite central dimen-
sion.

Corollary 7. (J.M.Munoz-Escolano, J.Otal, N.N.Semko [19]) Let F be a
field, A a vector space over F and G a locally nilpotent subgroup of GL(F,A).
Suppose that G has infinite central dimension. Then the following conditions
are equivalent:

i) G satisfies the weak minimal condition on subgroups of infinite central
dimension;

ii) G satisfies the weak maximal condition on subgroups of infinite central
dimension;

iii) G satisfies the minimal condition on subgroups of infinite central dimen-
sion;

iv) G is Chernikov; and

v) G satisfies the minimal condition on all subgroups.

For non-periodic groups, the situation is more complicated. The study of
locally nilpotent linear groups satisfying Wmin− icd and Wmax− icd has been
initiated in the papers [20], [21]. The first result shows that nilpotent groups
with these conditions are minimax.

Theorem 9. (L.A. Kurdachenko, J.M. Munoz-Escolano, J. Otal [20]) Let
F be a field, A a vector space over F and G a subgroup of GL(F,A) having
infinite central dimension. Suppose that H is a normal subgroup of G such that
G/H is nilpotent. If G satisfies either Wmin− icd or Wmax− icd, then G/H
is minimax. In particular, if G is nilpotent, then G is minimax.

Further results deal with to the case of prime characteristic.

Theorem 10. (L.A. Kurdachenko, J.M. Munoz-Escolano, J. Otal [20]) Let
F be a field of prime characteristic, A a vector space over F and G a locally
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nilpotent subgroup of GL(F,A) having infinite central dimension. if G satisfies
either Wmin− icd or Wmax− icd, then G/Tor(G) is minimax. In particular,
if Tor(G) has infinite central dimension, then G is minimax.

Here Tor(G) is the maximal normal periodic subgroup of G. If G is locally
nilpotent group, then Tor(G) consists of all elements of finite order, so that
G/Tor(G) is torsion-free.

Let F be the class of finite groups. If G is a group, then the intersection GF

of all subgroups of G, having finite index, is called the finite reidual of G.

Theorem 11. (L.A.Kurdachenko, J.M.Munoz-Escolano and J.Otal [20])
Let F be a field of prime characteristic, A a vector space over F and G a locally
nilpotent subgroup of GL(F,A) having infinite central dimension. If G satisfies
either Wmin− icd or Wmax− icd, then G/GF is minimax and nilpotent.

Let N be the class of nilpotent groups. The intersection GN of all normal
subgroups H such that G/H is nilpotent, is called the nilpotent residual of G.

Theorem 12. (L.A. Kurdachenko, J.M. Munoz-Escolano, J. Otal [20]) Let
F be a field of prime characteristic, A a vector space over F and G a locally
nilpotent subgroup of GL(F,A) having infinite central dimension. If G satisfies
either Wmin− icd or Wmax− icd, then G/GN is minimax.

For the case of non-finitary linear groups, the following results were obtained.

Theorem 13. (L.A. Kurdachenko, J.M. Munoz-Escolano, J. Otal, N.N.
Semko [21]) Let F be a field, A a vector space over F and G a locally nilpotent
subgroup of GL(F,A) having infinite central dimension. If G is not finitary and
satisfies Wmin− icd, then G is minimax.

For the case of hypercentral groups and prime characteristic the study was
completed. In fact, the following holds

Theorem 14. (L.A. Kurdachenko, J.M. Munoz-Escolano, J. Otal, N.N.
Semko [21]) Let F be a field of prime characteristic, A a vector space over
F and G a hypercentral subgroup of GL(F,A) having infinite central dimension.
If G nsatisfies Wmin− icd, then G is minimax.

We observe that for the condition Wmax−icd a similar result is not true. In
the paper [21], a hypercentral linear group over the field of prime characteristic
sarisfying Wmax− icd which is not minimax was constructed.

The paper [22] began the study of soluble linear groups satisfying Wmin−
icd. The following main result of this paper shows that their structure is rather
similar to the structure of finite dimenional soluble groups.

Let G ≤ GL(F,A). We recall that an element x ∈ G is called unipotent if
there is a positive integer n such that A(x − 1)n = 0. A subgroup H of G is
called unipotent if every element of H is unipotent. A subgroup H of G is called
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boundedly unipotent if there is a positive integer n such that A(x− 1)n = 0 for
each element x ∈ H.

Theorem 15. (L.A. Kurdachenko, J.M. Munoz-Escolano, J. Otal [22]) Let
F be a field, A a vector space over F and G a soluble subgroup of GL(F,A).
Suppose that G has infinite central dimension and satisfies Wmin − icd. If G
is not minimax, then G satisfies the following conditions:

i) G has a normal boundedly unipotent subgroup L such that G/L is mini-
max;

ii) L has finite central dimension;

iii) if charF = 0, then L is nilpotent torsion-free subgroup;

iv) if charF = p for some prime p, then L is a nilpotent bounded p-subgroup;

v) G is a finitary linear group.

If G is a subgroup of GL(F,A), then G acts trivially on the factor-space
A/A(ωFG). Hence G properly acts on the subspace A(ωFG). As in paper [23],
we define the augumentation dimension of G to be the F -dimension of A(ωFG)
and denote it by augdimF (G). This concept is opposite in some sense to the
concept of central dimension. As for groups having finite central dimension, a
group G of finite augmentation dimension contains a normal abelian subgroup C
such that G/C is an ordinary finite dimensional group. Moreover, if charF = 0,
then C is torsion-free, if charF = p > 0, then C is an elementary abelian
p-subgroup. In the paper [23] linear groups in which the set of all subgroups
having infinite augmentation dimension satisfies the minimal condition have
been considered. In the paper [24] linear groups in which the set of all subgroups
having infinite augmentation dimension satisfies some rank restrictions have
been considered.

We can define finitary linear groups as the groups whose cyclic (and therefore
finitely generated) subgroups have finite augmentation dimension. Therefore the
following groups are the antipodes to finitary linear groups.

We say that a group G ≤ GL(F,A) is called antifinitary linear group if each
proper infinitely generated subgroup of G has finite augmentation dimension (a
subgroup H of an arbitrary group G is called infinitely generated if H has no a
finite set of generators). These groups have been studied in the paper [25]. This
study splits into two cases depending on whether or not the group is finitely
generated.

Let G ≤ GL(F,A). Then the set

FD(G) = {x ∈ G | < x > has finite augmentation dimension}



34 L.A. Kurdachenko

is a normal subgroup of G.
Let D be a divisible abelian group and G a subgroup of Aut(D). Then D

is said to be G-divisibility irreducible if D has no proper divisible G-invariant
subgroups.

Theorem 16. (L.A. Kurdachenko, J.M. Munoz-Escolano, J. Otal [25]) Let
F be a field, A a vector space over F and G a infinitely generated locally gen-
eralized radical subgroup of GL(F,A). Suppose that G is not finitary and has
infinite augmentation dimension. If G is not minimax, then G satisfies the fol-
lowing conditions:

1) If the factor-group G/FD(G) is infinitely generated, then G is a Prüfer
p-group for some prime p.

2) If G/FD(G) is finitely generated, then G satisfies the following conditions:

2a) G = K < g > where K is a divisible abelian Chernikov subgroup and
g is a p-element, where p is a prime such that p = |G/FD(G)|;

2b) K is a normal subgroup of G;

2c) K is G-divisibly irreducible;

2d) K is a q-subgroup for some prime q;

2f) if q = p, then K has finite special rank equal to pm−1(p − 1) where
pm = |< g > /C < g > (K)|;

2g) if q 6= p, then K has finite special rank o(q, pm) where as above pm =
|< g > /C < g > (K)| and o(q, pm) is the order of q modulo pm.

Theorem 17. (L.A. Kurdachenko, J.M. Munoz-Escolano, J. Otal [25]) Let
F be a field, A a vector space over F and G a finitely generated radical sub-
group of GL(F,A). Suppose that G is not finitary and has infinite augmentation
dimension. Then the following conditions holds:

1) augdimFFD(G) is finite;

2) G has a normal subgroup U such that G/U is polycyclic;

3) there is a positive integer m such that A(x− 1)m =< 0 > for each x ∈ U ;
in particular, U is nilpotent;

4) U is torsion-free if charF = 0 and is a bounded p-subgroup if charF =
p > 0;

5) if
< 0 >= Z0 ≤ Z1 ≤ · · · ≤ Zm = U (1)
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is the upper central series of U , then Z1/Z0, . . . , Zm/Zm−1 are finitely
generated Z < g >-modules for each element g ∈ G\FD(G). In particular,
U satisfies the maximal condition on < g >-invariant subgroups for each
element g ∈ G\FD(G).
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