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1 Introduction

In the mathematical study of relativity theory, a material particle in a space-
time is understood as a future-pointing timelike curve of unit speed in a space-
time, i.e., a connected and time-oriented 4-dimensional Lorentz manifold. The
unit-speed parameter is called the proper time of a material particle. Motivated
by this fundamental observation, timelike curves in Lorentzian manifolds have
been studied extensively by both physicists and differential geometers.

On the other hand, in relativity theory, a lightlike particle is a future-
pointing null geodesic [7], [8].

More generally, from the differential geometric point of view, the study of
null curves has its own geometric interest.

Many of the classical results from Riemannian geometry have Lorentz coun-
terparts. In fact, spacelike curves or timelike curves can be studied by a similar
approach to that in positive definite Riemannian geometry.

However, null curves have many properties very different from spacelike or
timelike curves. In other words, null curve theory has many results which have
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no Riemannian analogues.

The presence of null curves often causes important and interesting differ-
ences, as will be the case in the present study.

In this paper we shall give an example of such “different aspects” of null
curves.

For other applications of null curve theory to general relativity, we refer to
[2].

In the classical differential geometry of curves, J. Bertrand studied curves in
Euclidean 3-space whose principal normals are the principal normals of another
curve. Such a curve is nowadays called a Bertrand curve. Bertrand curves have
a characteristic property that curvature and torsion are in linear relation. For
classical and basic treatments of Bertrand curves, we refer to [3].

In the recent work [1], the first and second named author and Ergüt stud-
ied spacelike and timelike Bertrand curves in Minkowski 3-space R3

1. (See also
independently obtained results by N. Ekmekçi and K. İlarslan [4] ).

In this paper, we study Cartan framed null curves with the Bertrand prop-
erty in Minkowski 3-space R3

1.

We shall show that null Bertrand curves are null geodesics or Cartan framed
null curves with constant second curvature.

2 Preliminaries

Let R3
1 = (R3(t, x, y), g) be a Minkowski 3 -space with metric g = −dt2 +

dx2 + dy2. A tangent vector v of R3
1 is said to be

spacelike if g(v, v) > 0 or v = 0

timelike if g(v, v) < 0, or

lightlike or null if g(v, v) = 0 and v 6= 0.

A null frame of R3
1 is a positively oriented ordered triple (λ, N, W ) of vectors

satisfying

g(λ, λ) = g(N, N) = 0, g(λ, N) = 1,

g(λ, W ) = g(N, W ) = 0, g(W, W ) = 1.

A parametrized curve α(p) in R3
1 is said to be null if its tangent vector field

is null everywhere, i.e., g( dα
ds , dα

ds ) = 0 and dα/ds 6= 0.

A null frame for a null curve α(s) is a frame field F (s) = (λ(s), N(s), W (s))
such that dα/ds is a positive scalar multiple of λ (p. 371, [5]). In such a case, α
is said to be framed by F (s). Frames for null curves are not unique. Moreover
frames are changed under reparametrizations of a curve. Therefore, the curve
and a frame must be given together.
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Now suppose that α is framed by F = (λ, N, W ) with λ = dα/ds. Then the
vector fields N and W define line bundles ntr(α) and S(α⊥) over α respectively.
The line bundle S(Tα⊥) is called the screen vector bundle and ntr(α) the null
transversal vector bundle of α with respect to S(Tα⊥), respectively.

The Frenet formula of α with respect to the frame F is given by (p. 55, [2]):

dλ

ds
= hλ + κ1W,

dN

ds
= −hN + κ2W, (1)

dW

ds
= −κ2λ− κ1N.

The functions h, κ1 and κ2 are called the curvature functions of α.
There always exists a parameter p of α such that h = 0 in (1). This param-

eter p is called a distinguished parameter of α [2]. The distinguished parameter
is uniquely determined for prescribed screen vector bundle up to affine trans-
formation.

In case that p is a distinguished parameter of a null curve α. Then we put

`(p) :=
dα

dp
(p), n(p) := −N(p), u(p) := W (p).

Then the Frenet formula of α with respect to F = (`, n, u) become

`′ = κ1u,

n′ = −κ2u, (2)

u′ = −κ2` + κ1n.

Here the prime “′” denotes differentiation with respect to the distinguished pa-
rameter p. The null frame F is called the Cartan frame of α(p). A parametrized
null curve parametrized by the distinguished parameter p together with its Car-
tan frame is called a Cartan framed null curve.

Since we demanded that det(λ, N, W ) > 0, Cartan frames are negatively
oriented, that is, det(`, n, u) < 0.

For general theory of parametrized null curves, we refer to [2].

3 Bertrand curves in R3
1

In [1], we have studied non null Bertrand curves in R3
1. In this section we

introduce the notion of Bertrand curve for null curves in the following way:
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1 Definition. Let α = (α(p); `(p), n(p), u(p)) and ᾱ = (ᾱ(p̄); ¯̀(p̄), n̄(p̄), ū(p̄))
be two Cartan framed null curves in R3

1. Then a pair of curves (α, ᾱ) is said to
be a (null) Bertrand pair if u and ū are linearly dependent.

The curve ᾱ is called a Bertrand mate of α and vice versa. A Cartan framed
null curve is said to be a Bertrand curve if it admits a Bertrand mate.

By definition, for a null Bertrand pair (α, ᾱ), there exists a functional rela-
tion p̄ = p̄(p) such that

ū(p̄(p)) = ε u(p), ε = ±1.

The following is the main result of this paper.

2 Theorem. Let α be a Cartan framed null curve. Then α is a Bertrand
curve if and only if α is a null geodesic or a Cartan framed null curve with
constant second curvature k2.

Proof. Let (α, ᾱ) be a Bertrand pair. Then ᾱ can be expressed as

ᾱ(p) := α(p) + r(p)u(p) (3)

for some function r(p) 6= 0 and some parametrization p̄ = p̄(p) with respect to
the distinguished parameter p of α. Differentiating (3) with respect to p,

¯̀ dp̄

dp
= ` + r′ u + ru′. (4)

Here p̄ is the distinguished parameter of ᾱ. By using the Frenet formula (2), we
have

¯̀ dp̄

dp
= (1− rκ2)` + rκ1n + r′ u. (5)

Since ¯̀ is null,
(r′)2 = 2rκ1(1− rκ2). (6)

Next, since ᾱ is a Bertrand mate of α, ū is in the direction of u, thus
g(¯̀, u) = 0, hence r is a constant.

From (6), we get the following equation:

κ1(1− rκ2) = 0.

Thus we conclude that κ1 = 0 or κ2 = 1/r = constant.
We investigate these curves in more detail.

Case 1 κ1 = 0: In this case α is a null geodesic. Thus α is represented as
α(p) = α0 + p `. Here α0 is a constant vector and ` is a constant null vector.
Moreover α is framed by a constant frame (`, n, u). Hence k2 = 0. Thus ᾱ differs
from α only by translation. Hence ᾱ is congruent to α.
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Note that two Cartan frames are related by

¯̀= µ1`, n̄ = µ−1
1 n, ū = u

for some constant µ1.

Case 2 κ2 = 1/r:

In this case, by (5), we notice that

¯̀(p̄(p)) = µ n(p), µ(p) = r κ1(p)
dp

dp̄
(p) 6= 0. (7)

This equation implies that

n̄(p̄(p)) = µp−1`(p), ū(p̄(p)) = −u(p).

Differentiating (7) with respect to p,

dp̄

dp

d¯̀

dp̄
=

dµ

dp
n + µ

dn

dp
.

Using the Frenet formulae for α and ᾱ, we obtain

dp̄

dp
κ̄1 ū =

dµ

dp
n− µ

r
u.

This formula implies µ is constant and

κ̄1(p̄(p)) =
µ

r
/
dp̄

dp
(p), κ̄2(p̄(p) =

κ1(p)

µ
/
dp̄

dp
(p).

Inserting µ = rκ1/(dp̄/dp) into these equations, we get

κ1(p)κ̄1(p̄(p)) =
(µ

r

)2
, κ̄2(p̄(p)) = κ2(p) ≡ 1

r
.

Conversely let α be a Cartan framed null curve and r a nonzero constant.
The case, “α is a null geodesic” is trivial. We only have to investigate Cartan
framed null curves with κ1 6= 0 and κ2 = 1/r.

For a non-zero constant µ define a function p̄ by

p̄ :=
r

µ

∫
κ1(p)dp.

Next put

ᾱ(p̄) := α(p) + ru(p).



12 H. Balgetir, M. Bektaş, J. Inoguchi

Then ᾱ is a Cartan framed null curve with distinguished parameter p̄ and framed
by

¯̀(p̄(p)) = µn(p), n̄(p̄(p) = µ−1`(p), ū(p̄(p) = −u(p).

Thus (α, ᾱ) is a Bertrand pair. The curvature functions of ᾱ are computed as

κ̄1(p̄(p)κ1(p) =
(µ

r

)2
, κ̄2(p̄(p) = κ2(p) =

1

r
.

This completes the proof. QED

3 Corollary. Let (α, ᾱ) be a Bertrand pair of Cartan framed null curves
which are not geodesics. Then their curvature functions satisfy the following
relations:

κ̄1 · κ1 = constant > 0, κ̄2 = κ2 = constant 6= 0.

Theorem 2 implies that every Cartan framed proper null helix admits a
Bertrand mate. Moreover, by Corollary 3 the Bertrand mate is also a proper
null helix.

4 Example. Let α be a parametrized null curve defined by

α(p) = (
1

2
sinh(2p),

1

2
cosh(2p), p).

Then α is framed by a Cartan frame F = (`, n, u):

`(p) = α′(p) = (cosh(2p), sinh(2p), 1),

n(p) = (
1

2
cosh(2p),

1

2
sinh(2p),−1

2
),

u(p) = (sinh(2p), cosh(2p), 0).

Note that det(`, n, u) < 0. The curvature functions of α with respect to F are
κ1 = 2, κ2 = −1. Define p̄ = (−2/µ)p. Then the curve

ᾱ(p̄) = α(p)− u(p) = −1

2
(sinh(−µp̄), cosh(−µp̄), µ p̄)

gives a one-parameter family of Bertrand mates of α framed by

¯̀(p̄) = µ n(p), n̄(p̄) = µ−1 `(p), ū(p̄) = −u(p).

The curvature functions of ᾱ are

κ̄1 =
µ2

2
, κ̄2 = −1.
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5 Remark. Let (α, ᾱ) be a pair of Cartan framed null curves such that n
and n̄ are linearly dependent. Then both the curves are null geodesics or Cartan
framed null curves with same constant second curvatures [6].

6 Remark. In Euclidean 3-space, Bertrand curves are characterized as fol-
lows (See [3], p. 41):

Let α be a curve in Euclidean 3-space parametrized by arclength.
Then α is a Bertrand curve if and only if α is a plane curve or a
curve whose curvature κ and torsion τ are in linear relation:

µκ + ντ = 1

for some constant µ and ν.

The product of torsions of a Bertrand pair is constant.
Our Corollary 3 says null Bertrand curves provide us an example of pecu-

liarity of Lorentz geometry.
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