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Introduction

In the past, all of Banach-Steinhaus type results have been established only
for some special classes of locally convex spaces, e.g.,barrelled spaces ([2],[3],[4]),
s-barrelled spaces ([5]), strictly s-barrelled spaces ([6]), etc. Recently, Cui Chen-
gri and Songho Han ([1]) have obtained a Banach-Steinhaus type result which
is valid for every locally convex space as follows

1 Theorem. Let (X, λ), (Y, µ) be locally convex spaces and Tn : X → Y
bounded linear operators, n ∈ N. If weak-lim

n
Tny = Ty exists at each y ∈ X,

then the limit operator T send η(X, Xb)−bounded sets into bounded sets.

In this paper we would like to obtain the same result by taking the topology
λ in place of η(X, Xb).

Let (X, λ) and (Y, µ) be locally convex spaces. Assume that the locally
convex topology µ is generated by the family (qβ)β∈I of semi-norms on Y .

An operator T : X → Y is said to be sequentially continuous if {xn} is a
sequence in X such that xn → x then Txn → Tx; T is said to be bounded
if T sends bounded sets into bounded sets. Clearly, continuous operators are
sequentially continuous, and sequentially continuous operators are bounded but
in general, converse implications fail. Let X ′, Xs and Xb denote the families
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of continuous linear functionals, sequentially continuous linear functionals and
bounded linear functionals on X, respectively. In general, the inclusions X ′ ⊂
Xs ⊂ Xb are strict.

For a linear dual pair (E, F ) let β(E, F ) denote the strongest (E, F ) polar
topology on E which is just the topology of uniform convergence on σ(F, E)-
bounded subsets of F .

Let C(Xλ), B(Xλ) and C0(Xλ) denote the families of conditionally λ− se-
quentially compact sets, bounded sets in (X, λ) and convergent sequences in
(X, λ) to 0, respectively.

Let σ ⊂ B(Xλ) such that
⋃

C∈σ

C = X.

Let ζ be the topology on Xb generated by the family of semi-norms

PC(f) = sup
y∈C
| f(y) |, C ∈ σ.

Let η(X, Xs
ζ ) denote the topology of uniform convergence on conditionally

(Xs, ζ)− sequentially compacts sets of Xs.
Remark that η(X, Xs

ζ ) is coarser than η(X, Xb). It follows immediately

2 Proposition. For every locally convex space X the following conditions
are equivalent.
(1) For every locally convex space Y and for every sequence {Tn}n of bounded
linear operators from X into Y such that for every C ∈ σ µ − lim

n
Tnx = Tx

uniformly in x ∈ C, the limit operator T is also (λ, µ)-bounded.
(2) (Xb, ζ) is sequentially complete.

Proof. (1)⇒ (2). Let {fn} be a Xb
ζ− Cauchy sequence in Xb. then, there

exists a linear functional f such that for every C ∈ σ lim
n

fn(x) = f(x) uniformly

in x ∈ C. Consequently, f ∈ Xb by (1).
(2)⇒ (1). Let Y be a locally convex space and {Tn} a sequence of bounded

linear operators from X into Y such that for every C ∈ σ µ − lim
n

Tnx = Tx

uniformly in x ∈ C. Suppose that B is a bounded subset of Xλ and y′ ∈ Y ′. Then
there exists β0 ∈ I and c1 > 0 such that for every z ∈ Y | y′(z) |≤ c1qβ0(z).
Therefore, for every C ∈ σ lim

n
y′(Tnx) = y′(Tx) uniformly in x ∈ C. Since

y′ ◦ Tn ∈ Xb for all n ∈ N, y′ ◦ T ∈ Xb by (2). Therefore, {y′(Tx) : x ∈ B} is
bounded. Since y′ ∈ Y ′ is arbitrary, T (B) is µ−bounded by the classical Mackey
theorem. QED

The proof of proposition 1 gives the following

3 Proposition. For every locally convex space X the following conditions
are equivalent.
(1) For every locally convex space Y and for every sequence Tn of sequentially
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continuous linear operators from X into Y such that for every C ∈ σ µ −
lim
n

Tny = Ty uniformly in y ∈ C, the limit operator T is also (λ, µ)-bounded.

(2) Xs
ζ is sequentially complete.

Assume now that σ satisfies also the condition C(Xλ) ⊂ σ. It follows imme-
diately

4 Proposition. Xs
ζ is sequentially complete.

Proof. Suppose that {An}n is Cauchy sequence in Xs
ζ . Then,

∀ε > 0 ∀C ∈ σ ∃n0 ∈ N

such that

∀n, m ≥ n0 ∀y ∈ C | Any −Amy |< ε. (1)

On the other hand, ∀y ∈ X {Any}n is Cauchy sequence in R. Consequently,
Any → Ay in R, as n→∞. Letting m→∞ in (1), it follows that

∀ε > 0 ∀C ∈ σ ∃n0 ∈ N

such that

∀n ≥ n0 ∀y ∈ C | Any −Ay |≤ ε. (2)

We will show now that A ∈ Xs.

Let {xn}n ∈ C0(Xλ). Pick any ε > 0. As {xn} ∈ C(Xµ) ⊂ σ, then there
exists n0 ∈ N such that for all n ∈ N and forall y ∈ C

| An0xn −Axn |≤
ε

2
.

On the other hand, there exists n1 ∈ N such that ∀n > n1 | An0xn |≤ ε
2 .

In this case

∀n > n1 | Axn |≤ ε.

Consequently, A ∈ Xs. Thus, Xs
ζ is sequentially complete. QED

5 Proposition. Let (X, λ), (Y, µ) be locally convex spaces and Tn : X → Y
sequentially continuous linear operators, n ∈ N. If for every C ∈ σ µ−lim

n
Tnz =

Tz uniformly in z ∈ C, then the limit operator T send η(X, Xs
ζ )−bounded sets

into bounded sets.

Proof. Let y′ ∈ Y ′, C ∈ σ. Then there exists β0 ∈ I and c1 > 0 such that
for every z ∈ Y | y′(z) |≤ c1qβ0(z). Consequently, sup

z∈C
| y′(Tnz)− y′(Tz) |→ 0.
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Since Xs
ζ is sequentially complete, then {y′ ◦ Tn : n ∈ N} is conditionally

(Xs, ζ)−sequentially compact.
Suppose that B is a η(X, Xs

ζ )−bounded subset of X and {xk} ⊂ B. Then
∃c > 0 ∀k ∈ N ∀n ∈ N | y′(Tnxk) |≤ c. Fix a k ≥ k0 and ε > 0. Since
lim
n

y′(Tnxk) = y′(Txk) there is an n0 ∈ N such that | y′(Tn0xk)− y′(Txk) |< ε
2 .

Therefore,

| y′(Txk) |≤| y′(Txk)− y′(Tn0xk) | + | y′(Tn0xk) |<
ε

2
+ c.

This shows that {y′(Tx) : x ∈ B} is bounded. Since y′ ∈ Y ′ is arbitrary,
T (B) is µ−bounded by the classical Mackey theorem. Thus, we achieve the
proof. QED

Let us denote by θ(X, Xs
ζ ) the topology of uniform convergence on (Xs, ζ)−

Cauchy sequences. A subset B of X is said to be θ(X, Xs
ζ )−bounded if for every

Xs
ζ−Cauchy sequence {fn} there exists c > 0 such that for every sequence {xk}

in B | fn(xk) |≤ c ∀n ∈ N ∀k ∈ N.
Then the proof of proposition 4 gives the following.

6 Proposition. Let (X, λ), (Y, µ) be locally convex spaces and Tn : X → Y
bounded linear operators, n ∈ N. If for every C ∈ σ µ− lim

n
Tny = Ty uniformly

in y ∈ C, then the limit operator T send θ(X, Xs
ζ )bounded sets into bounded

sets.

Now we have a useful proposition as follows.

7 Proposition. Let (X, λ), (Y, µ) be locally convex spaces and Tn : X → Y
sequentially continuous linear operators, n ∈ N. If for every C ∈ σ µ−lim

n
Tny =

Ty uniformly in y ∈ C, then the limit operator T send λ−bounded sets into
bounded sets.

Proof. By propositions 2 and 3, we deduce the result. QED
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