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Abstract. In this note, we study two types of spatial theta-curves having two (1, 1)-knots
whose each has two (1, 1)-knots and a trivial knot or two trivial knots and a 2-bridge knot
as constituent knots. We show that there is a 3-manifold M such that M is the (Z2 ⊕ Z2)-
fold and 2-fold covering of S3 branched over each type of spatial theta-curve. Furthermore,
we investigate certain relations between the spatial theta-curves and between the closed 3-
manifolds which are coverings of S3 branched over them.
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1 Introduction

A theta-curve G is a graph formed by two vertices and three edges(joining
the vertices). Let f : G→ S3 be an embedding of G into the 3-sphere S3. Then
f(G) is called a spatial theta-curve. We denote the three edges of G by x, y, and
z. Then f(x∪y), f(y∪z), and f(z∪x) are called the constituent knots of f(G).
From now on, we use G, θ, or θ(·), instead of f(G), as a spatial theta-curve.

The concept of spatial theta-curve is important both in knot theory and
in the theory of branched coverings. Knot theory of graphs is to seek knots
or links associated with a graph so that questions about the graph can be
translated into questions about knots and links. A spatial theta-curve contains
three knots and, of course, if two theta-curves contain different knots, then they
are different. Branched covering theory of theta-curve is related to the following
open question: how many different knots may have the same 2-fold branched
covering? For example, in [16], Zimmermann constructed infinitely many triples
of different knots such that the three knots of each triple have the same 2-fold
branched covering. Here the three knots are the preimages of the third edge in
the 2-fold branched coverings of these three trivial knots, that is, if the three
knots defined by a spatial theta-curve are trivial we get three knots with the



112 S. H. Kim

same 2-fold branched covering. The case of three(resp. two) different knots was
considered in [16](resp. [7]). For the literature on open question written above,
we refer to [1] and [12]-[14].

We are interested in two spatial theta-curves having the following restricted
forms: (1) For a knot K with a strong inversion i, we has a double covering
projection π : S3 → S3/i branched over a trivial knot π(fix(i)), where fix(i)
is the axis of the strong inversion i. Then the set π(fix(i) ∪ K) is called the
spatial theta-curve associated with (K, i), denoted by θ(K, i); (2) Let K̄ be a
tunnel number one knot and τ an unknotting tunnel for K̄ in S3. Then K̄ ∪ τ
is called the spatial theta-curve associated with (K̄, τ), denote θ(K̄, τ).

Since tunnel number one knot is a strongly invertible knot, for any tunnel
number one knot K̄, there are two spatial theta-curves θ(K̄, i) and θ(K̄, τ) such
that i and τ are a strong inversion and an unknotting tunnel for K̄, respec-
tively. Thus at least one constituent knot of θ(K̄, i) is trivial, and at least one
constituent knot of θ(K̄, τ) is trivial if K̄ is a (1, 1)-knot([8]).

In this paper, we consider the class of covering spaces having the spatial
theta-curves θ(K, i) and θ(K̄, τ) as branching sets in S3. Furthermore, we show
that θ(K, i) and θ(K̄, τ) have the same (Z2 ⊕ Z2)-fold and 2-fold branched
covering, and investigate relations between these theta-curves.

In section 2, we construct a spatial theta-curve θ(K, i) obtained from a
genus two Heegaard splitting with three involutions. Furthermore, we show that
a closed 3-manifold admitting such Heegaard splittings is the (Z2 ⊕ Z2)-fold
covering of S3 branched over θ(K, i).

In section 3, we construct a spatial theta-curve θ(K̄, τ) obtained from a
(1, 1)-decomposition and an unknotting tunnel. Note that there is a closed 3-
manifold M admitting genus two Heegaard splittings which is homeomorphic
to the 2-fold covering of S3 branched over θ(K̄, τ) and to the (Z2 ⊕ Z2)-fold
covering of S3 branched over θ(K, i). Further, we show that given a (1, 1)-knot
K̄ and a strongly invertible knot K there exist 3-manifold M(θ) such that (i)
M(θ) is the (Z2 ⊕ Z2)-fold covering of S3 branched over θ(K̄, τ) and (ii) M(θ)
is the 2-fold branched covering of the (Z2 ⊕ Z2)-fold covering of S3 branched
over θ(K, i).

2 The construction of spatial theta-curve derived by

genus two Heegaard splitting

We introduce a class of genus two Heegaard splittings determined by 6-
tuples of integers (d, a, b, c, r, s). In connection with such a class, Neuwirth([9])
describes an algorithm (called the Neuwirth algorithm) for deciding if a group
presentation with n generators and n relations corresponds to the spine (or
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equivalently the Heegaard diagram) of a closed compact 3-manifold. Based on
the Neuwirth algorithm, Dunwoody([3]) has introduced 6-tuples (d, a, b, c, r, s),
where d = 2a + b + c, yielding a family of genus n Heegaard splittings (or,
combinatorial, Heegaard diagram) of closed orientable 3-manifolds, denoted
Dn(d, a, b, c, r, s) for n ≥ 1.

1 Theorem. ([3]) Let d = 2a + b + c be odd. The 6-tuple (d, a, b, c, r, s)
represents the Heegaard diagram of a closed orientable 3-manifold if and only
if (i) αβ has two cycles of length d, and (ii) ps + q ≡ 0(mod n), where p
is the number of arrows pointing down the page minus the number of arrows
pointing up whereas q is the number of arrows pointing from left to right minus
the number of arrows pointing from right to left in the oriented path determined
by αβ (for the definition of the permutations α and β we refer to [3]).

We are interested in certain classes of genus two Heegaard splittings of
the closed orientable 3-manifolds D2(d, a, b, c, r, s), or D2 in short, which are
obtained by truncating mod 2 the infinite Heegaard diagram with b + c ≡
1(mod 2). For example, D∞(9, 3, 1, 2, 2,−1) is the Heegaard diagram which is
obtained from p = 2 − 1 = 1, q = 4 − 3 = 1, and s = −1. Thus it can be
reduced mod 2 to give the genus two Heegaard diagram D2(9, 3, 1, 2, 2,−1).
See Figure 1.

Figure 1. D∞(9, 3, 1, 2, 2,−1) and D2(9, 3, 1, 2, 2,−1)

Due to cyclic symmetry of the infinite Heegaard diagram, D2(d, a, b, c, r, s)
is independent of method used for truncating mod 2. For more details on the
structure of the infinite Heegaard diagram see [3], [5], and [7].

In [2], Birman and Hilden proved that any 3-manifolds with genus two Hee-
gaard splittings admits an orientation preserving involution, called the standard
involution in [11] and denoted ε, whose quotient space is S3 and whose branch-
ing locus is a 3-bridge knot. Thus D2(d, a, b, c, r, s) represent closed orientable
3-manifolds which are homeomorphic to 2-fold cyclic coverings of S3 branched
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over 3-bridge knots.

Consider other involution, denote σ, that rotates a genus two handlebody
around the diameter of a separating disk exchanging the two solid tori. This
will be called the minor involution on genus two handlebody. See Figure 2. The
diameter is the set of fixed points, and its quotient space by the diameter is a
solid torus. Thus D2(d, a, b, c, r, s) is homeomorphic to the 2-fold cyclic covering
of a lens space branched over the set of fixed points which is a (1, 1)-knot, as
we see later.

The final involution, denote ρ, is the product of two involutions introduced
above, i.e., ρ = ε ◦ σ = σ ◦ ε. Note that it has a different axis of symmetry,
and the quotient space by the axis is a solid torus. Thus D2(d, a, b, c, r, s) is
homeomorphic to the 2-fold cyclic covering of a lens space branched over a
(1, 1)-knot. As result, we have three involutions ε, σ and ρ on D2, and denote
the set of such involutions by I = {ε, σ, ρ}. See Figure 2 below.

Figure 2. Genus two handlebody with involutions I = {ε, σ, ρ}

In particular, the quotient space of D2 by σ, call a (1, 1)-decomposition
induced by the 6-tuple (d, a, b, c, r, s) is defined as follows. Let D1 be the quotient
space of D2 by σ and K1 a trivial arc with branching index 2 in D1. Then there
is a pair (V1, K1) of a solid torus and a trivial arc such that ∂V1 = D1 and
K1 ∩ V1 = ∂K1 = {P, Q}. See Figure 3.

Figure 3. (1, 1)-decomposition consisting of D1 and a trivial arc K1
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Note that D1(d, a, b, c, r, s) is independent of a parameter s, and let d =
2a + b + c.

As results, we have following theorems:

2 Theorem. Let d = 2a + b + c be odd, and D2 a Heegaard splitting de-
termined by the 6-tuple (d, a, b, c, r, s). Then the quotient spaces of D2 by σ and
ρ admit (1, 1)-decomposition of lens spaces, and the quotient space of D2 by ε
admits a (0, 3)-decomposition of the 3-sphere.

3 Lemma. The quotient spaces of D2(d, a, b, c, r, s) by σ admit (1, 1)-de-
compositions of the 3-sphere if and only if it satisfies condition p = ±1, where
p is the defined number in Theorem 1.

Proof. Sufficient condition is a clear from the standard Heegaard splitting
of the 3-sphere.

To prove necessary condition, suppose that D2 is a genus two Heegaard
splitting determined by the 6-tuple (d, a, b, c, r, s). Then we have an orientation
preserving homeomorphism on D2 induced by σ. The rotation by an angle ( 2π

2 )
of σ defines an action of the cyclic group Z2 =< σ|σ2 = 1 > on D2. The quotient
space D2/Z2 admit a (1, 1)-decomposition consisting of D1 and a trivial arc
with branching index 2 as in Figure 3. The axis of the rotation is drawn as a
trivial arc that lies below the diagram as in Figure 3. Let l1 be the number of
arrows pointing down the page in D1, l2 the number of arrows pointing up, l3
the number of arrows pointing from left to right, and l4 the number of arrows
pointing from right to left. We then obtain that l1 − l2 = p and l3 − l4 = q.
Furthermore it be seen that l1+ l2 = b+c and l3+ l4 = 2a+b. We can reduce D1

in order to remove a edges completely by means of Whitehead algorithm(also
called the band move). As result we have the fact that the number of vertices
in a disc pair {+,−} is equal to d − 2a = b + c, and that p ≤ b + c. Thus
π(D1) =< x|x±p >= Z|p| for some p ≤ b + c, and it is a group presentation
of lens spaces. Therefore if p = ±1, then D1 is the Heegaard splitting of the
3-sphere. QED

After this, we now use 4-tuple (a, b, c, r) briefly instead of 6-tuple (d, a, b, c, r, s)
since d = 2a+b+c and s = (−q)/p. We denote briefly such a (1, 1)-decomposition
by D1(a, b, c, r).

4 Theorem. A closed orientable 3-manifold M admitting a genus two Hee-
gaard splitting D2(a, b, c, r) is the (Z2⊕Z2)-fold covering of the 3-sphere branched
over a spatial theta-curve.

Proof. Let h be a gluing homeomorphism of the two handlebodies W1

and W2 such that W1 ∩W2 = D2, W1 ∪D2 W2 = M , and σ|∂W1
◦ h = h ◦ σ|∂W2

.
Then M is a genus two closed orientable 3-manifold with G = Z2⊕Z2-symmetry
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Figure 4. Genus two Handlebody and theta-curve

generated by ε and σ. In fact, it is a clear that h is compatible with the involution
ε by [2], and that ρ = ε ◦ σ = σ ◦ ε. Let I = {ε, σ, ρ} be the set of involutions
satisfying the above facts as shown in Figure 3. For each involution i ∈ I on D2,
we has a double covering projection P : D2 → D2/i branched over P (Ai) = Ki,
where Ai is the axis of the involution i. On D2/I, there are three involutions
ρ/σ ∪ ε/σ, σ/ε ∪ ρ/ε and σ/ρ ∪ ε/ρ for Aσ, Aε and Aρ, respectively. We denote
the set of three involutions by J . For each involution i ∈ I and j ∈ J , we has
a double covering projection Q : D2/i → (D2/i)/j = S3. The action of G on
D2 yields a covering projection ΠG : M → S3 branched over ΠG(Aε ∪Aσ ∪Aρ)
defined by

ΠG = Qρ/σ∪ε/σ ◦ Pσ = Qσ/ρ∪ε/ρ ◦ Pρ = Qσ/ε∪ρ/ε ◦ Pε.

Then ΠG(Aε ∪ Aσ ∪ Aρ) is a spatial theta-curve associate with (D2, G) having
(ρ/σ ∪ ε/σ), (σ/ε ∪ ρ/ε), and (σ/ρ ∪ ε/ρ) as constituent knots. We denote it by
θ(I). QED

For example, in [7] the class of the theta-curves was used to compare two
non-isotopic Heegaard decompositions of a closed 3-manifold.

5 Remark. We denote the set of constituent knots of θ(I) by {K12, K23,
K31}. Then we can construct the 2-fold branched covering of S3 branched along
K12, and denote it by M2(K12). Let 3̄ be the lift of the edge 3 in M2(K12). Hence
we can construct the 2-fold branched covering of M2(K12) branched along 3̄.
Then, this covering coincides with the formerly defined (Z2⊕Z2)-fold branched
covering M of θ(I). By the same way, we can also construct M by choosing
M2(K23) or M2(K31) instead of M2(K12). That is, M is independent of the
choice of the constituent knots.
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6 Lemma. ([10]) Let M be the (Z2 ⊕ Z2)-fold covering of S3 branched
over θ(I). Let K12, K23, and K31 be the three constituent knots of θ(I), and
M2(K12), M2(K23), and M2(K31) the 2-fold branched coverings of K12, K23,
and K31, respectively. Then we have

H1(M, Z) ∼= H1(M2(K12), Z)⊕H1(M2(K23), Z)⊕H1(M2(K31), Z).

7 Theorem. Let M be the (Z2⊕Z2)-fold covering of S3 branched over θ(I).
Then at least one of the following propositions holds:
(1) M is the 2-fold covering of 3-sphere branched over at most three different
knots;
(2) M is the 2-fold branched covering of 3-sphere over at most two different knot
and is the 2-fold branched covering of a lens space;
(3) H1(M, Z) is isomorphic to the trivial group, the homology group of a lens
space, or the direct sum of the homology groups of two lens spaces.

Proof. By the construction of standard involution ε on D2, we can see that
the quotient D2/ε represents the 3-sphere. By Lemma 3, we can take 4-tuples
(a, b, c, r) such that D2/σ is homeomorphic to D1(a, b, c, r) representing the 3-
sphere. In this case, at least two constituent knots of θ(I) are trivial and the
remaining one is a 2-bridge knot. Therefore two 3-spheres and a lens space have
M as the same 2-fold branched covering, hence (2) holds. If D2/ρ represents the
3-sphere, then θ(I) is locally unknotted(equivalently it has all trivial constituent
knots). Thus, three 3-spheres have M as the same 2-fold branched covering
whose branching sets have at most three different knots. Then (1) is verified.
Applying Lemma 6 gives (3). This completes the proof. QED

8 Remark. 1. It was proved in [16] that there exist infinitely many different
triples of different knots coming from locally unknotted theta-curves such that
the three knots of any triple have the same 2-fold branched covering M which
is a homology 3-sphere. But we don’t know whether the result of [16] occurs or
not in our case.
2. Examples in [7] satisfy (1) and (3) of Theorem 7, i.e., θ(I) has all trivial con-
stituent knots, but two different knots. For (2) and (3) we refer D2(7, 1, 2, 3, 3, 4)
with two trivial knots and a 2-bridge knot as elements of θ(I).

In general, if D2/σ is homeomorphic to D1 representing Lens space, then we
obtain the generalized results compared with preceding theorem:

9 Theorem. Suppose that M is the closed orientable 3-manifold having
a genus two Heegaard splitting with the set I of involutions. Then M is the
(Z2⊕Z2)-fold covering of the 3-sphere branched over a spatial theta-curve, whose
constituent knots are a trivial knots and two 2-bridge knots.
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3 Spatial theta-curves arising from (1, 1)-decomposit-

ions and unknotting tunnels

In this section, we introduce another theta-curve induced by D1(a, b, c, r)
and an unknotting tunnel as follows. Let σ be the minor involution on the
genus two Heegaard splitting D2(a, b, c, r). Then D2/σ = D1(a, b, c, r) admits a
(1, 1)-decomposition consisting of a genus one handlebody V and a 1-bridge(or
trivial arc) K1 such that K1∩∂V = ∂K1. See Figure 3. In addition, we consider
a trivial arc τ in int(V ) such that τ ∩ int(K1) = ∂τ and τ ∩D = 1pt, where D
is a meridian disk of V . Then (D1, K1 ∪ τ) admits a theta-curve in lens space,
and denote it by θ(a, b, c, r).

We are interested in spatial theta-curves, and thus we assume that θ(a, b, c, r)
is a theta-curve in the 3-sphere. For example, Figure 5 illustrates the (1, 1)-
decomposition induced by 4-tuple (2, 2, 3, 5), which is equivalent to D1(2, 2, 3, 5)
and its spatial theta curve θ(2, 2, 3, 5).

Let E(K) be the exterior of a knot K in S3. A tunnel τ (which is a properly
embedded arc in E(K)) is an unknotting tunnel if Cl(E(K)−N(τ)) is a genus
two handlebody. We denote a regular neighborhood of X in Y by N(X; Y ).

10 Theorem. A trivial arc τ in spatial theta-curve θ(a, b, c, r) is an un-
knotting tunnel of the (1, 1)-knot K induced by D1(a, b, c, r).

Proof. Let (V1, K1)∪D1 (V2, K2) be a (1, 1)-decomposition of K such that
V1∪D1V2 = S3, ∂V1 = ∂V2 = D1 and K1∪D1K2 = K. Then W1 = N(K2; V2)∪V1

and W2 = cl(V2−N(K2; V2)) are genus two handlbodies such that W1∪W2 = S3.
Since W1

∼= N(K; S3) ∪ N(C1; V1), where C1 is a core of V1, the trivial arc τ̄
obtained by joining K1 and C1 with another trivial arc is an unknotting tunnel
which is equivalent to τ . QED

11 Theorem. A spatial theta-curve θ(a, b, c, r) consists of two (1, 1)-knots
and a trivial knot as constituent knots.

Proof. Let θ(a, b, c, r) be a theta-curve in S3 consisting of two vertices and
three edges and {1, 2, 3} the set of numbers which label the edges. Suppose that
the edges on τ with two vertices of ∂K1, and remaining edge of K1 separated
by ∂τ are labelled by 1, 2, and 3, respectively. Then K13, K23, and K12 are
constituent knots of the theta-curve θ(a, b, c, r). As seen in Figure 5, K13 is trivial
because it is independent of 6-tuple (d, a, b, c, r, s), and K23 is the (1, 1)-knot
induced by D1(a, b, c, r). Finally, K12 is a trivial arc in a genus one handlebody
V1 such that V1 ∩ K12 = ∂K12. Moreover, it meets a meridian disk of V1 in
exactly one point. To keep form of Figure 3, we perform isotopy moves on the
(V1, K12) (like the Singer moves on Heegaard diagram). This produces a (1, 1)-
decomposition, denoted by D1(ā, b̄, c̄, r̄) or D̄1 briefly, such that d̄ = 2ā+ b̄+ c̄ <
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Figure 5. (1, 1)-decomposition D1(2, 2, 3, 5) and theta curve θ(2, 2, 3, 5)

d = 2a + b + c. QED

Let (S3, 2̄) be the 2-fold covering of S3 branched along K13, where 2̄ is
the lift of the edge 2 of the spatial theta-curve θ(a, b, c, r). Then we can also
construct the 2-fold covering of S3 branched over 2̄, and denote it by M(θ). This
covering coincides with the (Z2⊕Z2)-fold branched covering of the theta-curve
θ(a, b, c, r). Since M(θ) is independent of the choice of the constituent knots,
we can also construct M(θ) by choosing (M2(K23), 1̄) or (M2(K12), 3̄) instead
of (S3, 2̄). In fact, M2(K23) and M2(K12) are equivalent to D2(a, b, c, r) and
D2(ā, b̄, c̄, r̄), respectively. Thus we have the followings:

12 Theorem. Let θ(a, b, c, r) be the spatial theta-curve defined in previous
section. Then the closed orientable 3-manifold M(θ), constructed above, is the
(Z2 ⊕ Z2)-fold covering of the 3-sphere branched over θ(a, b, c, r). Furthermore,
the spatial theta-curve θ(a, b, c, r) has three 2-fold coverings of S3 branched over
itself.

The following result is obtained from Theorem 4 and Theorem 12:

13 Corollary. The closed orientable 3-manifold M admitting a genus two
Heegaard splitting D2(a, b, c, r) is the (Z2 ⊕ Z2)-fold (resp. 2-fold) covering of
the 3-sphere branched over θ(I) (resp. θ(a, b, c, r)). Moreover, the closed ori-
entable 3-manifold M̄ admitting a genus two Heegaard splitting D2(ā, b̄, c̄, r̄) is
the (Z2 ⊕ Z2)-fold (resp. 2-fold) covering of the 3-sphere branched over θ̄(I)
(resp. θ(ā, b̄, c̄, r̄)).

As similar results of Lemma 6 and Theorem 7, we have the following corol-
lary:

14 Corollary. Let M(θ) be the (Z2⊕Z2)-fold covering of S3 branched over
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θ(a, b, c, r). Then at least one of the following propositions holds:
(1) M(θ) is the 2-fold covering of the 3-sphere branched over at most three
different knots;
(2) M(θ) is a 2-fold covering of the 3-sphere branched over at most two different
knots, and it is a 2-fold branched covering of D2(a, b, c, r);
(3) M(θ) is the 2-fold branched covering of 3-sphere, D2(a, b, c, r), and
D2(ā, b̄, c̄, r̄);
(4) H1(M(θ), Z) is isomorphic to H1(D2(a, b, c, r), Z) or H1(D2(a, b, c, r), Z) ⊕
H1(D2(ā, b̄, c̄, r̄), Z).

For two theta-curves θ1 and θ2 in S3, they are equivalent if and only if there
exists an orientation-preserving homeomorphism of S3 that maps θ1 to θ2.

15 Theorem. If two (1, 1)-knots of the spatial theta-curve θ(a, b, c, r) as
its constituent knots are non-isotopic by Reidemeister moves, then the spatial
theta-curves θ̄(I) and θ(I) in Corollary 13 are non-equivalent.

Proof. As stated in Theorem 12, we assume that the two (1, 1)-knots of
θ(a, b, c, r) are K23 and K12. Suppose that θ̄(I) and θ(I) are equivalent. Then
standard arguments of graph theory imply that sets of constituent knots of θ̄(I)
and θ(I) are equivalent. Let M2(K23) and M2(K12) be the 2-fold coverings of
S3 branched along K23 and K12, respectively. Since they are the (Z2⊕Z2)-fold
coverings of S3 branched over the two theta-curves, they have to be equivalent.
This contradicts the hypothesis on K23 and K12. QED

For each of the three trivial simple closed curves Ji in a locally unknotted
spatial theta-curve θ, the arc θ − Ji lifts to a knot Ki in the two-fold cyclic cover
of S3 branches over Ji. From facts about branched covers([4]), it is clear that
the unordered triple (K1, K2, K3) of knots in S3 is an isotopy invariant of θ.

16 Lemma. ([15]) Let θ be a locally unknotted spatial theta-curve with K1,
K2 and K3 obtained as above. Then the following are equivalent:

(i) θ is planar;

(ii) All the knots K1, K2 and K3 are trivial;

(iii) At least one of K1, K2 and K3 is trivial.

The following theorems are further results obtained from Lemma 16.

17 Theorem. If the theta-curves θ(I) and θ̄(I) are planar graphs, then the
spatial theta-curve θ(a, b, c, r) is locally unknotted.

Proof. Assume that θ(I) and θ̄(I) are two theta-curves induced by D2(a, b,
c, r) and D2(ā, b̄, c̄, r̄), respectively. By the hypothesis of theorem, Lemma 16
implies that D2(a, b, c, r) and D2(ā, b̄, c̄, r̄) are homeomorphic to the 3-sphere.
Therefore, θ(a, b, c, r) is locally unknotted. QED
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18 Theorem. Let the theta-curve θ(a, b, c, r) be a planar graph. Then two
theta-curves θ(I) and θ̄(I) are planar graphs.

Proof. Suppose that (K1, K2, K3) (resp. (K̄1, K̄2, K̄3)) is obtained by lift-
ing the trivial simple closed curves Ji (resp. J̄i), i = 1, 2, 3, of θ(I) (resp. θ̄(I)).
Since θ(a, b, c, r) is a planar graph, (K1, K2, K3) and (K̄1, K̄2, K̄3) are formed
by trivial knots. Thus the result follow from Lemma 16. QED
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