On The Maximum Jump Number

$$
M(2 k-1, k)
$$

Lin You ${ }^{\text {i }}$
Department of Mathematics, Hainan Normal University, Haikou, 571158, P. R. China
mryoulin@263.net
Tianming Wang
Department of Applied Mathematics, Dalian University of Technology, Dalian 116023, P. R. China
wangtm@dlut.edu.cn

Received: $15 / 7 / 2002$; accepted: $2 / 12 / 2003$.

Abstract

If n and $k(n \geq k)$ are large enough, it is quite difficult to give the value of $M(n, k)$. R. A. Brualdi and H. C. Jung gave a table about the value of $M(n, k)$ for $1 \leq k \leq$ $n \leq 10$. In this paper, we show that $4(k-1)-\lceil\sqrt{k-1}\rceil \leq M(2 k-1, k) \leq 4 k-7$ holds for $k \geq 6$. Hence, $M(2 k-1, k)=4 k-7$ holds for $6 \leq k \leq 10$, which verifies that their conjecture $M(2 k+1, k+1)=4 k-\lceil\sqrt{k}\rceil$ holds for $5 \leq k \leq 9$, and disprove their conjecture $M(n, k)<M\left(n+l_{1}, k+l_{2}\right)$ for $l_{1}=1, l_{2}=1$.

Keywords: (0,1)-matrices, jump number, stair number, conjecture.
MSC 2000 classification: 05B20 (primary), 15A36.

Introduction and Lemmas

Let P be a finite poset(partially ordered set) and its cardinality $|P|=n$. Let \mathbf{n}_{\leq}denote the n-element poset formed by the set $\{1,2, \ldots, n\}$ with its usual order. Then an order-preserving bijective map $L: P \longrightarrow \mathbf{n}_{\leq}$is called a linear extension of P to a totally ordered set. If $P=\left\{x_{i} \mid 1 \leq i \leq n\right\}$, then we can simply express a linear extension L by $x_{1}--x_{2}--\cdots--x_{n}$ with the property $x_{i}<x_{j}$ in P implies $i<j$.

A consecutive pair $\left(x_{i}, x_{i+1}\right)$ is called a jump(or setup) of P in L if x_{i} is not comparable to x_{i+1}. If $x_{i}<x_{i+1}$ in P, then $\left(x_{i}, x_{i+1}\right)$ is called a stair(or bump) of P in L. Let $s(L, P)[b(L, P)]$ be the number of jumps[stairs] of P in L, and let $s(P)[b(P)]$ be the minimum [maximum] of $s(L, P)[b(L, P)]$ over all linear extensions L in P. The number $s(P)[b(P)]$ is called the jump[stair] number of

[^0]P.
Let $A=\left[a_{i j}\right]$ be an $m \times n(0,1)$-matrix. Let $\left\{x_{1}, \ldots, x_{m}\right\}$ and $\left\{y_{1}, \ldots, y_{n}\right\}$ be disjoint sets of m and n elements, respectively, and define the order as $x_{i}<x_{j}$ iff $a_{i j}=1$. Then the set $P_{A}=\left\{x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right\}$ with the defined order becomes a poset. For simplicity, $s(A)[b(A)]$ is used for the jump [stair] number of P_{A}.

Let $\Lambda(n, k)$ denote the set of all $(0,1)$-matrices of order n with k 's in each row and column and $M(n, k)=\max \{s(A): A \in \Lambda(n, k)\}$. In [1], Brualdi and Jung first studied the maximum jump number $M(n, k)$ and gave out its values when $1 \leq k \leq n \leq 10$. They also put forward several conjectures, including the two conjectures that $M(2 k+1, k+1)=4 k-\lceil\sqrt{k}\rceil$ for $k \geq 1$ and that $M(n, k)<M\left(n+l_{1}, k+l_{2}\right)$ for $l_{1} \geq 0, l_{2} \geq 1, k \geq 1$. In [2], B. Cheng and B. L. Liu pointed out that the later conjecture does not hold for $l_{1}=0, l_{2}=1$. In this paper, we show that $M(2 k+1, k+1)=4 k-\lceil\sqrt{k}\rceil$ holds for $5 \leq k \leq 9$ and that $M(n, k)<M\left(n+l_{1}, k+l_{2}\right)$ does not hold for $l_{1}=1, l_{2}=1$.

Let $J_{a, b}$ denote the $a \times b$ matrix with all 1's, and let J denote any matrix with all 1's of an appropriate size.

The following lemmas obviously hold or come from [1] and [2].
1 Lemma. Let A and B be two $m \times n(0,1)$-matrices. Then
(a) $s(A)+b(A)=m+n-1$;
(b) $s(A \oplus B)=s(A)+s(B)+1$;
(c) If there exist two permutation matrices R and S such that $B=R A S$, that is, A can be permuted to B, expressed $A \sim B$, then
(i) $b(A)=b(B)$ and $s(A)=s(B)$.
(ii) A and B have the same row sum and column sum.

2 Lemma. $b(A) \geq b(B)$ holds for every submatrix B of A.
3 Lemma. Let A be a $(0,1)$-matrix with no zero row or column. Let $b(A)=$ p. Then there exist permutation matrices R and S and integers m_{1}, \ldots, m_{p} and n_{1}, \ldots, n_{p} such that $R A S$ equals

$$
\left[\begin{array}{llll}
J_{m_{1}, n_{1}} & A_{1,2} & \cdots & A_{1, p} \\
O & J_{m_{2}, n_{2}} & \cdots & A_{2, p} \\
\vdots & \vdots & \ddots & \vdots \\
O & O & \cdots & J_{m_{p}, n_{p}}
\end{array}\right]
$$

4 Lemma. $M(2 k+1, k+1) \geq 4 k-\lceil\sqrt{k}\rceil$ holds for every positive integer k.
$\mathbf{5}$ Lemma. Let A be a $(0,1)$-matrix with stair number $b(A)=1$. Then A can be permuted to

$$
J \text { or }\left[\begin{array}{ll}
J & O
\end{array}\right] \text { or }\left[\begin{array}{l}
J \\
O
\end{array}\right] \text { or }\left[\begin{array}{ll}
J & O \\
O & O
\end{array}\right] \text {. }
$$

6 Lemma. Let A be a (0,1)-matrix having no rows or columns consisting of all 0 's or all 1's. Then $b(A)=2$ if and only if the rows and columns of A can be permuted to an oblique direct sum

$$
O \bar{\oplus} \cdots \bar{\oplus} O
$$

of zero matrices.
7 Lemma. Let n and k be integers, and let $n \equiv m(\bmod k)$. If $k \mid n$ or $m \mid k$, then $M(n, k)=2 n-1-\left\lceil\frac{n}{k}\right\rceil$.

8 Lemma. If A is an $m \times n(0,1)$ matrix without zero row[column] and there are at most l 1's in each column[row], then $b(A) \geq\left\lceil\frac{m}{l}\right\rceil\left\lceil b(A) \geq\left\lceil\frac{n}{l}\right\rceil\right\rceil$.

1 Main Theorem

For a matrix M in block form, we use $M\left[i_{1}, i_{2}, \ldots, i_{s} \mid j_{1}, j_{2}, \ldots, j_{t}\right]$ to denote the submatrix composed of the i_{1} th, i_{2} th, \ldots, i_{s} th block-rows and the j_{1} th, j_{2} th,..., j_{t} th block-columns from M. Obviously,

$$
b(M) \geq b\left(M\left[i_{1}, i_{2}, \ldots, i_{s} \mid j_{1}, j_{2}, \ldots, j_{t}\right]\right) .
$$

9 Theorem. If $k \geq 6$, then $b(A) \geq 4$ holds for every $A \in \Lambda(2 k-1, k)$.
Proof. Suppose that there exists a matrix $A \in \Lambda(2 k-1, k)$ such that $b(A)=3$. Then, according to Lemma 3, we may assume A has the following block triangular form

$$
\left[\begin{array}{lll}
J_{k, k-q-1} & B_{12} & B_{13} \\
O & J_{p, q} & B_{23} \\
O & O & J_{k-p-1, k}
\end{array}\right],
$$

where $1 \leq p, q \leq k-2$.
Since $b(A)=b\left(A^{T}\right)=3$, we may assume $p \leq q, 1 \leq b\left(B_{12}\right) \leq b\left(B_{23}\right) \leq 2$ and $0 \leq b\left(B_{13}\right) \leq 3$. First of all, we have the following lemmas.

10 Lemma. $b\left(B_{12}\right)=2$.
Proof. Suppose $b\left(B_{12}\right)=1$. Since B_{12} has evidently no zero or all 1's column, by Lemma 5 we have $B_{12} \sim\left[\begin{array}{c}J_{k-p, q} \\ O\end{array}\right]$, and hence

$$
A \sim A_{1}=\left[\begin{array}{lll}
J_{k-p, k-q-1} & J_{k-p, q} & B_{1} \\
J_{p, k-q-1} & O & B_{2} \\
O & J_{p, q} & B_{23} \\
O & O & J_{k-p-1, k}
\end{array}\right]
$$

The proof will be complete by the following Proposition 11 and Proposition 12 and Proposition 13.

11 Proposition. B_{1} has zero columns and $b\left(B_{1}\right) \neq 3$.
Proof. If B_{1} has no zero column, then B_{1} has at least k 1's. On the other hand, each row of B_{1} has just one 1 since the row sum of A_{1} equals k, and hence B_{1} has just $k-p 1$'s. It follows $k-p \geq k$, impossible.

If $b\left(B_{1}\right)=3$, then $b\left(\left[\begin{array}{l}B_{1} \\ J_{k-p-1, k}\end{array}\right]\right)=4$ since B_{1} has zero column. Hence $b\left(A_{1}\right) \geq 4$ by Lemma 2, a contradiction.

12 Proposition. $b\left(B_{1}\right) \neq 1$.
Proof. If $b\left(B_{1}\right)=1$, then by Lemma $5 B_{1} \sim\left[\begin{array}{ll}J_{k-p, 1} & O\end{array}\right]$, and hence

$$
A_{1} \sim A_{2}=\left[\begin{array}{llll}
J_{k-p, k-q-1} & J_{k-p, q} & J_{k-p, 1} & O \\
J_{p, k-q-1} & O & C_{1} & C_{2} \\
O & J_{p, q} & C_{3} & C_{4} \\
O & O & J_{k-p-1,1} & J_{k-p-1, k-1}
\end{array}\right]
$$

Obviously, $p \geq\left\lceil\frac{k-1}{2}\right\rceil$ and $\left[\begin{array}{l}C_{2} \\ C_{4}\end{array}\right\rceil$ has no zero row or column. It is also clear that $\left[\begin{array}{l}C_{2} \\ C_{4}\end{array}\right]$ has no all 1's column, and hence $b\left(\left[\begin{array}{l}C_{2} \\ C_{4}\end{array}\right]\right)=2$.

If C_{4} has all 1's rows, then $k \geq q+k-1$, that is, $0 \geq q-1 \geq p-1 \geq$ $\left\lceil\frac{k-1}{2}\right\rceil-1>1$ for $k \geq 6$, a contradiction. Hence $b\left(C_{4}\right)=2$, and by Lemma 3 we have $C_{4} \sim\left[\begin{array}{ll}J_{s, t} & * \\ O & J_{p-s, k-t-1}\end{array}\right]$, where $t=q-1$ or q.

If C_{2} has all 1's rows, then $k-1 \leq(k-q-1)+(k-1) \leq k$, that is, $k=q+1$ or $q+2$, and hence $k=q+2$ due to $k-q-1 \geq 1$. Hence $k \geq q+t=2 q-1$ (or $2 q)=2(k-2)-1($ or $2(k-2))$, that is, $k \leq 5($ or $k \leq 4)$, which contradicts $k \geq 6$.

Thus by Lemma 6 we have

$$
\left[\begin{array}{l}
C_{2} \\
C_{4}
\end{array}\right] \sim O_{r, t_{1}} \bar{\oplus} \cdots \bar{\oplus} O_{r, t_{m}},
$$

where $(m-1) r=p+1, m r=2 p$ and $t_{1}+\cdots+t_{m}=k-1$. Hence $p=3, r=2$ and $m=3$, and so

$$
\left[\begin{array}{l}
C_{2} \\
C_{4}
\end{array}\right] \sim O_{2, t_{1}} \bar{\oplus} O_{2, t_{2}} \bar{\oplus} O_{2, t_{3}}, t_{1}+t_{2}+t_{3}=k-1
$$

Since both C_{2} and C_{4} have no zero column, we have $b\left(C_{2}\right)=b\left(C_{4}\right)=2$. Due to $p=3$ and $p \geq\left\lceil\frac{k-1}{2}\right\rceil$, we have $k \leq 7$.

If $k=6$ or 7 , then $C_{1}=O$ or $C_{3}=O$ or $\left[\begin{array}{l}C_{1} \\ C_{3}\end{array}\right]=O$, and hence

$$
b\left(A_{2}[1,2,3,4 \mid 2,3,4]\right)=4,
$$

a contradiction.
Therefore, $b\left(B_{1}\right) \neq 1$.
QED
13 Proposition. $b\left(B_{1}\right) \neq 2$.
Proof. Assume $b\left(B_{1}\right)=2$. Because B_{1} has no all 1's row or all 1's column, we may suppose $B_{1} \sim\left[\begin{array}{cc}J_{s, 1} \oplus J_{t, 1} & O_{k-p, k-2}\end{array}\right]$, where $s+t=k-p$. Thus

$$
A_{1} \sim A_{3}=\left[\begin{array}{llll}
J_{k-p, k-q-1} & J_{k-p, q} & J_{s, 1} \oplus J_{t, 1} & O \\
J_{p, k-q-1} & O & D_{1} & D_{2} \\
O & J_{p, q} & D_{3} & D_{4} \\
O & O & J_{k-p-1,2} & J_{k-p-1, k-2}
\end{array}\right]
$$

Obviously $b\left(\left[\begin{array}{l}D_{2} \\ D_{4}\end{array}\right]\right)=1$, and both D_{2} and D_{4} have no zero column. It is also clear that $2(k-p-1)+(s+t) \leq 2 k$, that is, $k \leq 3 p+2$.

If D_{2} has zero rows, then $k \leq(k-q-1)+2=k-q+1$, that is, $q \leq 1$, which implies $k \geq 5$, contradicting $k \geq 6$.

If D_{4} has zero rows, then $k \leq q+2$, and hence $q=k-2$ due to $q \leq k-2$. Since we have $D_{4} \sim\left[\begin{array}{l}J \\ O\end{array}\right]$, it follows that $k \geq q+(k-2)=2(k-2)>k$ for $k \geq 6$, a contradiction.

Hence $\left[\begin{array}{l}D_{2} \\ D_{4}\end{array}\right]=J_{2 p, k-2}$, and so $2 k \geq(k-q-1)+q+2(k-2)$. $\operatorname{But}(k-q-1)+$ $q+2(k-2)=3 k-5>2 k$ for $k \geq 6$, a contradiction. Therefore Proposition 13 holds.

QED
Due to Lemma 10, we have
14 Lemma. B_{12} has no zero row or zero column.
15 Lemma. B_{12} has no all 1's column or all 1's row.
Proof. B_{12} has obviously no all 1's column.
Suppose B_{12} has t all 1's rows, then $B_{12} \sim\left[\begin{array}{l}J_{t, q} \\ E\end{array}\right]$, where

$$
E=O_{p, q_{1}} \bar{\oplus} \cdots \bar{\oplus} O_{p, q_{m}}, m p=k-t, q_{1}+\cdots+q_{m}=q, \quad m \geq 2,
$$

and hence

$$
A \sim A_{5}=\left[\begin{array}{lll}
J_{t, k-q-1} & J_{t, q} & E_{1} \\
J_{k-t, k-q-1} & E & E_{2} \\
O & J_{p, q} & B_{23} \\
O & O & J_{k-p-1, k}
\end{array}\right]
$$

Obviously E_{1} has zero columns and $1 \leq b\left(E_{1}\right) \leq 2$.
The proof will be complete by the following Proposition 16 and Proposition 17

16 Proposition. $b\left(E_{1}\right) \neq 2$.
Proof. If $b\left(E_{1}\right)=2$, then $E_{1} \sim\left[\begin{array}{lll}J_{t_{1}, 1} & O & O \\ O & J_{t-t_{1}, 1} & O\end{array}\right]$, and hence

$$
A_{4} \sim A_{5}=\left[\begin{array}{lllll}
J_{t_{1}, k-q-1} & J_{t_{1}, q} & J_{t_{1}, 1} & O & O \\
J_{t-t_{1}, k-q-1} & J_{t-t_{1}, q} & O & J_{t-t_{1}, 1} & O \\
J_{k-t, k-q-1} & E & E_{2}^{\prime} & E_{2}^{\prime \prime} & E_{2}^{\prime \prime \prime} \\
O & J_{p, q} & B_{23}^{\prime} & B_{23}^{\prime \prime} & B_{23}^{\prime \prime \prime} \\
O & O & J_{k-p-1,1} & J_{k-p-1,1} & J_{k-p-1, k-2}
\end{array}\right]
$$

Obviously $E_{2}^{\prime \prime \prime}$ has no zero column and $b\left(E_{2}^{\prime \prime \prime}\right)=b\left(B_{23}^{\prime \prime \prime}\right)=1$.
If $E_{2}^{\prime \prime \prime}$ or $B_{23}^{\prime \prime \prime}$ has a submatrix of the form $\left[\begin{array}{ll}J & O\end{array}\right]$, then $b\left(A_{5}\right) \geq 4$, a contradiction. Hence both $E_{2}^{\prime \prime \prime}$ and $B_{23}^{\prime \prime \prime}$ have all 1 's rows. It follows that $2 k \geq$ $((k-q-1)+1+(k-2))+(q+k-2)=3 k-4>2 k$ for $k \geq 6$, a contradiction. Hence $b\left(E_{1}\right) \neq 2$.

17 Proposition. $b\left(E_{1}\right) \neq 1$.
Proof. If $b\left(E_{1}\right)=1$, then $E_{1} \sim\left[\begin{array}{ll}J_{t, 1} & O\end{array}\right]$, and hence

$$
A_{4} \sim A_{6}=\left[\begin{array}{llll}
J_{t, k-q-1} & J_{t, q} & J_{t, 1} & O \\
J_{k-t, k-q-1} & E & F_{3} & F_{1} \\
O & J_{p, q} & F_{4} & F_{2} \\
O & O & J_{k-p-1,1} & J_{k-p-1, k-1}
\end{array}\right]
$$

Obviously $1 \leq b\left(F_{i}\right) \leq 2(i=1,2)$.
If F_{1} has all 1 's columns, then $k \geq(k-t)+(k-p-1)=m p+k-p-1=k+$ $(m-1) p-1>k$, a contradiction. Besides, due to $E=O_{p, q_{1}} \bar{\oplus} \cdots \bar{\oplus} O_{p, q_{m}}(m \geq 2)$, F_{1} has no zero row or all 1's row, and hence by Lemma $6 F_{1} \sim O \bar{\oplus} \ldots \bar{\oplus} O$.

The proof will be complete by the following Claim 18 and Claim 19.
18 Claim. $b\left(F_{2}\right) \neq 1$.
Proof. It is clear that F_{2} has no zero row or all 1's row. If $b\left(F_{2}\right)=1$, then we may assume $F_{2} \sim\left[\begin{array}{cc}J_{p, s} & O\end{array}\right]$, and hence

$$
A_{6} \sim A_{7}=\left[\begin{array}{lllll}
J_{t, k-q-1} & J_{t, q} & J_{t, 1} & O & O \\
J_{k-t, k-q-1} & E & F_{3} & F_{1}^{\prime} & F_{1}^{\prime \prime} \\
O & J_{p, q} & F_{4} & J_{p, s} & O \\
O & O & J_{k-p-1,1} & J_{k-p-1, s} & J_{k-p-1, k-s-1}
\end{array}\right]
$$

Obviously, $F_{3} \neq J_{k-t, 1}$ and $F_{1}^{\prime \prime} \sim J_{p+1, k-s-1}$ or $\left[\begin{array}{c}J_{p+1, k-s-1} \\ O\end{array}\right]$. If $F_{1}^{\prime \prime} \sim$ $J_{p+1, k-s-1}$, then $k-t=p+1$, and hence $m p=p+1$ or $(m-1) p=1$, impossible. Hence $F_{1}^{\prime \prime} \sim\left[\begin{array}{c}J_{p+1, k-s-1} \\ O\end{array}\right]$. Since each column of F_{1}^{\prime} has only one 1, we have $F_{1}^{\prime} \sim\left[\begin{array}{c}J_{1, s} \\ O\end{array}\right]$ or $\left[\begin{array}{cc}J_{1, s_{1}} & O \\ O & J_{1, s-s_{1}} \\ O & O\end{array}\right]$. But if $F_{1}^{\prime} \sim\left[\begin{array}{cc}J_{1, s_{1}} & O \\ O & J_{1, s-s_{1}} \\ O & O\end{array}\right]$, then $b\left(A_{7}[1,2,4 \mid 1,4,5]\right)=4$, a contradiction. Hence $F_{1}^{\prime} \sim\left[\begin{array}{c}J_{1, s} \\ O\end{array}\right]$.

Since $\left[\begin{array}{ll}F_{1}^{\prime} & F_{1}^{\prime \prime}\end{array}\right]$ has obviously no zero rows, we conclude that $\left[\begin{array}{ll}F_{1}^{\prime} & F_{1}^{\prime \prime}\end{array}\right] \sim$ $\left[\begin{array}{cc}J_{1, s} & O \\ O & J_{p+1, k-s-1}\end{array}\right]$, and hence $k-t=p+2$, which implies $m=p=2$ and $k=4+t$. Due to $k \geq 6$ and the column sum of A_{7} equals k, we have $F_{4}=O$ and $t=2$ or 3 . If $t=3$, then $F_{3}=O$, and hence $b\left(A_{7}[1,2 \mid 2,3,4]\right)=4$, a contradiction. Hence $t=2$ and $F_{3} \sim\left[\begin{array}{c}J_{1,1} \\ O\end{array}\right]$. It follows that $\left[\begin{array}{lll}F_{3} & F_{1}^{\prime} & F_{1}^{\prime \prime}\end{array}\right] \sim$ $\left[\begin{array}{ccc}J_{1,1} & J_{1, s} & O \\ O & O & J_{3,5-s}\end{array}\right]$ or $\left[\begin{array}{ccc}O & J_{1, s} & O \\ J_{1,1} & O & J_{1,5-s} \\ O & O & J_{2,5-s}\end{array}\right]$, which implies $b\left(A_{7}[1,2 \mid 2,3,4,5]\right)=$ 4 or $b\left(A_{7}[2,3 \mid 1,3,4,5]\right)=4$, a contradiction.

Therefore Claim 18 holds.
19 Claim. $b\left(F_{2}\right) \neq 2$.
Proof. Assume $b\left(F_{2}\right)=2$. Then F_{2} has no zero column. Let

$$
F_{2} \sim\left[\begin{array}{ll}
J_{p, r} & O \bar{\oplus} \cdots \bar{\oplus} O
\end{array}\right](r \geq 0)
$$

If $r>0$, then

$$
F_{1} \sim\left[\begin{array}{cc}
J_{1, r} & O \\
O & J_{k-t-1, k-r-1}
\end{array}\right]
$$

and hence $k \geq(k-t-1)+1+(k-p-1)=k+(m-1) p-1>k$, a contradiction. Hence $r=0$, and so $F_{2} \sim O_{p_{1}, b_{1}} \bar{\oplus} \cdots \bar{\oplus} O_{p_{h}, b_{h}}$, where $p_{1}+\cdots+p_{h}=p, b_{1}+\cdots+$ $b_{h}=k-1$.
(a). If $F_{4}=J_{p, 1}$, then $b_{1}=\cdots=b_{h}=q, h q=k-1, F_{3}=O$ and $t=1$.

Since F_{1} is a $(k-1) \times(k-1)(0,1)$-matrix without zero row or column, and there are at most p 1's in each column and at most q 1's in each row, and hence by Lemma 8 we have $b\left(F_{1}\right) \geq\left\lceil\frac{k-1}{p}\right\rceil=\left\lceil\frac{m p}{p}\right\rceil=m$ and $b\left(F_{1}\right) \geq\left\lceil\frac{k-1}{q}\right\rceil=\left\lceil\frac{h q}{q}\right\rceil=h$.

If $m \geq 3$ or $h \geq 3$, then $b\left(F_{1}\right) \geq 3$, and hence

$$
b\left(A_{6}\right) \geq b\left(\left[\begin{array}{ll}
J_{t, k-q-1} & O \\
J_{k-t, k-q-1} & F_{1}
\end{array}\right]\right) \geq 4
$$

a contradiction. Hence $m=h=2$, which implies $k=2 p+1$ and $p=q$, and it follows that
$A_{6} \sim A_{8}=\left[\begin{array}{llllll}J_{1, k-q-1} & J_{1, q_{1}} & J_{1, q-q_{1}} & J_{1,1} & O & O \\ J_{p, k-q-1} & J_{p, q_{1}} & O & O & H_{1} & H_{2} \\ J_{p, k-q-1} & O & J_{p, q-q_{1}} & O & H_{3} & H_{4} \\ O & J_{p_{1}, q_{1}} & J_{p_{1}, q-q_{1}} & J_{p_{1}, 1} & J_{p_{1}, q} & O \\ O & J_{p-p_{1}, q_{1}} & J_{p-p_{1}, q-q_{1}} & J_{p-p_{1}, 1} & O & J_{p-p_{1}, q} \\ O & O & O & J_{k-p-1,1} & J_{k-p-1, q} & J_{k-p-1, q}\end{array}\right]$.
Obviously $b\left(H_{i}\right) \leq 1(i=1,2,3,4)$.
Without loss of generality, we assume $p_{1} \leq p-p_{1}$ and $q_{1} \leq q-q_{1}$.
Since $\left[\begin{array}{ll}H_{1} & H_{2}\end{array}\right]$ is a $p \times 2 q(0,1)$-matrix without zero row and there are at most $p-p_{1}+11$'s in each column, by Lemma $8 b\left(\left[\begin{array}{ll}H_{1} & H_{2}\end{array}\right]\right) \geq\left\lceil\frac{p}{p-p_{1}+1}\right\rceil \geq 1$ and the equality holds iff $p=p-p_{1}+1$, that is, $p_{1}=1$. If $b\left(\left[\begin{array}{ll}H_{1} & H_{2}\end{array}\right]\right)>1$, then $b\left(A_{8}\right) \geq 4$, a contradiction. Hence $p_{1}=1$. Similarly, $q_{1}=1$.

If $H_{i} \sim\left[\begin{array}{ll}J & O \\ O & O\end{array}\right]$ or $\left[\begin{array}{l}J \\ O\end{array}\right]$ or $\left[\begin{array}{ll}J & O\end{array}\right]$, then we have $b\left(A_{8}\right) \geq 4$. Hence $H_{i} \sim O$ or J, and so $\left[\begin{array}{ll}H_{1} & H_{2} \\ H_{3} & H_{4}\end{array}\right] \sim\left[\begin{array}{cc}J_{p, q} & O \\ O & J_{p, q}\end{array}\right]$. Thus, $k=p+\left(p-p_{1}\right)+(k-p-1)$ or $p=p_{1}+1=2$, and hence $k=2 p+1=5$, which contradicts $k \geq 6$.
(b). If $F_{4} \sim\left[\begin{array}{c}J_{d, 1} \\ O\end{array}\right]$, then

$$
A_{6} \sim A_{9}=\left[\begin{array}{llll}
J_{t, k-q-1} & J_{t, q} & J_{t, 1} & O \\
J_{k-t, k-q-1} & E & F_{3} & F_{1} \\
O & J_{d, q} & J_{d, 1} & F_{2}^{\prime} \\
O & J_{p-d, q} & O & F_{2}^{\prime \prime} \\
O & O & J_{k-p-1} & J_{k-p-1, k-1}
\end{array}\right]
$$

Obviously $F_{2}^{\prime \prime} \sim\left[\begin{array}{cc}J_{p-d, k-q} & O\end{array}\right]$, and so

$$
A_{9} \sim A_{10}=\left[\begin{array}{lllll}
J_{t, k-q-1} & J_{t, q} & J_{t, 1} & O & O \\
J_{k-t, k-q-1} & E & F_{3} & G_{1} & G_{2} \\
O & J_{d, q} & J_{d, 1} & G_{3} & G_{4} \\
O & J_{p-d, q} & O & J_{p-d, k-q} & O \\
O & O & J_{k-p-1,1} & J_{k-p-1, k-q} & J_{k-p-1, q-1}
\end{array}\right]
$$

It is clear that $b\left(G_{4}\right)=1$. If $G_{4} \sim\left[\begin{array}{ll}J & O\end{array}\right]$ or $\left[\begin{array}{ll}J & O \\ O & O\end{array}\right]$, then $b\left(A_{10}[1,3,4,5 \mid 3,4,5]\right)$ $=4$, a contradiction. If $G_{4} \sim\left[\begin{array}{l}J \\ O\end{array}\right]$, then $b\left(A_{10}[1,3,4 \mid 1,2,3,5]\right)=4$, a contradiction. If $G_{4}=O$, then $G_{3} \sim\left[\begin{array}{ll}J_{d, k-q-1} & O\end{array}\right]$, and hence $b\left(A_{10}[1,3,4,5 \mid 3,4,5]\right)=4$,
a contradiction. Hence $G_{4}=J_{d, q-1}$, and so $G_{2} \sim\left[\begin{array}{c}J_{l, q-1} \\ O\end{array}\right](l=p+1-d)$. It follows that

$$
A_{10} \sim A_{11}=\left[\begin{array}{lllll}
J_{t, k-q-1} & J_{t, q} & J_{t, 1} & O & O \\
J_{l, k-q-1} & E^{\prime} & F_{3}^{\prime} & G_{1}^{\prime} & J_{l, q-1} \\
J_{k-t-l, k-q-1} & E^{\prime \prime} & F_{3}^{\prime \prime} & G_{1}^{\prime \prime} & O \\
O & J_{d, q} & J_{d, 1} & G_{3} & J_{d, g-1} \\
O & J_{p-d, q} & O & J_{p-d, k-q} & O \\
O & O & J_{k-p-1,1} & J_{k-p-1, k-q} & J_{k-p-1, q-1}
\end{array}\right]
$$

First, we have $F_{3}^{\prime \prime} \nsim O$ or $\left[\begin{array}{l}J \\ O\end{array}\right]$, otherwise $b\left(A_{11}[1,3,4,5 \mid 1,2,3,5]\right)=4$, a contradiction.

Second, we have $F_{3}^{\prime \prime} \neq J_{k-t-l, 1}$, otherwise $k \geq t+(k-t-l)+d+(k-p-1)$, that is, $0 \geq 2(d-1)+t+(m-2) p$, impossible.

Hence Claim 19 holds.
Next, we continue the proof of Theorem 9.
By Lemma 10, Lemma 14 and Lemma 15, we have
$B_{12} \sim O_{p, t_{1}} \bar{\oplus} \cdots \bar{\oplus} O_{p, t_{n}}, t_{1}+\cdots+t_{n}=q, k=n p$.
Similarly, we have
$B_{23} \sim O_{s_{1}, q} \bar{\oplus} \cdots \bar{\oplus} O_{s_{m}, q}, s_{1}+\cdots+s_{m}=p, k=m q$.
Since B_{13} has obviously no zero row or column and no all 1's row or column, and each column(or row) of B_{13} has at most $p($ or $q)$ 1's, by Lemma 8 we have $b\left(B_{13}\right) \geq\left\lceil\frac{k}{p}\right\rceil=\left\lceil\frac{n p}{p}\right\rceil=n$ and $b\left(B_{13}\right) \geq\left\lceil\frac{k}{q}\right\rceil=\left\lceil\frac{m q}{q}\right\rceil=m$. While $b\left(B_{13}\right)=2$ or 3 , and hence $n=2$ or 3 and $m=2$ or 3 . Due to the assumption $p \leq q$, we have $(n, m)=(2,2)$ or $(3,2)$ or $(3,3)$.

Now we continue our proof in the following three steps.
(a). Let $(n, m)=(2,2)$. Then $p=q$ and $k=2 p$, and hence

$$
A \sim A_{12}=\left[\begin{array}{lllll}
J_{p, k-p-1} & J_{p, t_{1}} & O & L_{1} & L_{2} \\
J_{p, k-p-1} & O & J_{p, p-t_{1}} & L_{3} & L_{4} \\
O & J_{s_{1}, t_{1}} & J_{s_{1}, p-t_{1}} & J_{s_{1, p}} & O \\
O & J_{p-s_{1}, t_{1}} & J_{p-s_{1}, p-t_{1}} & O & J_{p-s_{1}, p} \\
O & O & O & J_{k-p-1, p} & J_{k-p-1, p}
\end{array}\right] .
$$

Without loss of generality, we assume $O \leq b\left(L_{1}\right) \leq b\left(L_{2}\right) \leq 2$.
Let $L_{1}=O$, then $b\left(L_{2}\right)=1$, and hence $p-s_{1}=1$ and $L_{2} \sim J_{p, p}$ or $\left[\begin{array}{ll}J_{p, p+1-t_{1}} & O\end{array}\right]$. It follows that L_{4} has zero columns. Hence L_{3} is a submatrix of stair number $b\left(L_{3}\right)=1$ and has no zero column or zero row, which implies $L_{3}=J_{p, p}$, and hence $s_{1}=1$. Thus, $k=2 p=2\left(s_{1}+1\right)=4$, contradicting $k \geq 6$.

Let $b\left(L_{1}\right)=1$. If $L_{1} \sim\left[\begin{array}{cc}J & O \\ O & O\end{array}\right]$, then $b\left(A_{13}[1,3,4 \mid 1,3,4]\right)=4$, a contradiction. If $L_{1}=J$, then $L_{4}=J$, and hence $t_{1}=p-t_{1}=1$, which implies $p=2$, and so $k=4$, contradicting $k \geq 6$. Similarly, we will also have a contradiction if $L_{1} \sim\left[\begin{array}{ll}J & O\end{array}\right]$ of $\left[\begin{array}{l}J \\ O\end{array}\right]$.

Let $b\left(L_{1}\right)=b\left(L_{2}\right)=2$. Then both L_{1} and L_{2} have no zero row or zero column, and hence $\left[\begin{array}{ll}L_{1} & L_{2}\end{array}\right]$ is a $p \times 2 p(0,1)$ matrix without zero column, and there are at most $p+1-t_{1} 1$'s in its each row. By Lemma 8 we conclude that

$$
b\left(\left[\begin{array}{ll}
L_{1} & L_{2}
\end{array}\right]\right) \geq\left\lceil\frac{2 p}{p+1-t_{1}}\right\rceil=\left\lceil\frac{2 p}{p-\left(t_{1}-1\right)}\right\rceil=2+\left\lceil\frac{2\left(t_{1}-1\right)}{p-\left(t_{1}-1\right)}\right\rceil \geq 2
$$

where the equality holds if and only if $t_{1}=1$.
If $t_{1}>1$, then $b\left(\left[\begin{array}{ll}L_{1} & L_{2}\end{array}\right]\right)>2$, and hence $b\left(A_{12}[1,3 \mid 3,4,5]\right) \geq 4$, a contradiction. Thus, $t_{1}=1$. Similarly, we have $p-t_{1}=1$. It follows that $p=2$ and $k=2 p=4$, which contradicts $k \geq 6$.
(b). Let $(n, m)=(3,2)$. Then we have $k=3 p=2 q$ and hence
$A \sim A_{13}=\left[\begin{array}{llllll}J_{p, k-q-1} & J_{p, t_{1}} & J_{p, t_{2}} & O & K_{1} & K_{2} \\ J_{p, k-q-1} & J_{p, t_{1}} & O & J_{p, q-t_{1}-t_{2}} & K_{3} & K_{4} \\ J_{p, k-q-1} & O & J_{p, t_{2}} & J_{p, q-t_{1}-t_{2}} & K_{5} & K_{6} \\ O & J_{s_{1}, t_{1}} & J_{s_{1}, t_{2}} & J_{s_{1}, q-t_{1}-t_{2}} & J_{s_{1}, q} & O \\ O & J_{p-s_{1}, t_{1}} & J_{p-s_{1}, t_{2}} & J_{p-s_{1}, q-t_{1}-t_{2}} & O & J_{p-s_{1}, q} \\ O & O & O & O & J_{k-p-1, q} & J_{k-p-1, q}\end{array}\right]$.
Without loss of generality we assume $0 \leq b\left(K_{1}\right) \leq b\left(K_{2}\right) \leq 2$.
Let $K_{1}=O$. Then $b\left(K_{2}\right)=1$, and hence $K_{2} \sim J_{p, q}$ or $\left[\begin{array}{ll}J_{p, l} & O\end{array}\right](l=$ $q+1-t_{1}-t_{2}$). If $K_{2} \sim J_{p, q}$, then $t_{1}+t_{2}=1$, impossible. If $K_{2} \sim\left[\begin{array}{ll}J_{p, l} & O\end{array}\right]$, then $p-s_{1}=1$ and $\left[\begin{array}{l}K_{2} \\ K_{4} \\ K_{6}\end{array}\right] \sim\left[\begin{array}{cc}J_{p, l} & O \\ O & K_{4}^{\prime} \\ O & K_{6}^{\prime}\end{array}\right]$, where $b\left(\left[\begin{array}{l}K_{4}^{\prime} \\ K_{6}^{\prime}\end{array}\right]\right)=1$, and each column of $\left[\begin{array}{l}K_{4}^{\prime} \\ K_{6}^{\prime}\end{array}\right]$ has just $p 1$'s. Hence $\left[\begin{array}{l}K_{4}^{\prime} \\ K_{6}^{\prime}\end{array}\right] \sim\left[\begin{array}{c}J_{p, q-l} \\ O\end{array}\right]$, and it follows $b\left(A_{13}[2,3,6 \mid 1,2,6]\right)=$ 4, a contradiction.

Let $b\left(K_{1}\right)=1$. Due to $t_{1}+t_{2} \geq 2$, we have that both K_{1} and K_{2} have no all 1 's row, and hence $K_{1} \sim\left[\begin{array}{ll}J_{p, t} & O\end{array}\right](1 \leq t<q)$. Thus $K_{2} \sim\left[\begin{array}{ll}J_{p, q+1-t_{1}-t_{2}-t} & O\end{array}\right]$, and so $s_{1}=p-s_{1}=1$, which implies $p=2$ and $k=3 p=6$. Hence $t_{1}=t_{2}=t=1$ and $\left[\begin{array}{l}K_{3} \\ K_{5}\end{array}\right] \sim\left[\begin{array}{cc}O & J_{2,2} \\ O & O\end{array}\right]$ or $\left[\begin{array}{ccc}O & J_{2,1} & O \\ O & O & J_{2,1}\end{array}\right]$, and it follows $b\left(A_{13}[2,3,4 \mid 2,3,5]\right)=4$, a contradiction.

Let $b\left(K_{1}\right)=b\left(K_{2}\right)=2$. Then both K_{1} and K_{2} have no zero row or zero column, and hence $\left[\begin{array}{ll}K_{1} & K_{2}\end{array}\right]$ is a $p \times 2 q(0,1)$-matrix without zero column
and its each row has at most $q+1-t_{1}-t_{2} 1$'s. Thus by Lemma 8 we have $b\left(\left[\begin{array}{ll}K_{1} & K_{2}\end{array}\right]\right) \geq\left\lceil\frac{2 q}{q+1-t_{1}-t_{2}}\right\rceil=2+\left\lceil\frac{2\left(t_{1}+t_{2}-1\right)}{q+1-t_{1}-t_{2}}\right\rceil=3$, and so $b\left(A_{13}[1,2 \mid 4,5,6]\right)=4$, a contradiction.
(c). Let $(m, n)=(2,3)$. Then we have $k=3 p=3 q$ and $p=q$, and hence $A \sim A_{14}=$

$$
\left[\begin{array}{llllll}
J_{p, k-p-1} & J_{p, t_{1}} & J_{p, t_{2}} & O & & \\
J_{p, k-p-1} & J_{p, t_{1}} & O & J_{p, p-t_{1}-t_{2}} & & \\
J_{p, k-p-1} & O & J_{p, t_{2}} & J_{p, p-t_{1}-t_{2}} & & \\
O & J_{s_{1}, t_{1}} & J_{S_{1}, T_{2}} & J_{s_{1}, p-t_{1}-t_{2}} & & \\
O & J_{s_{2}, t_{1}} & J_{s_{2}, t_{2}} & J_{s_{2}, p-t_{1}-t_{2}} & \\
O & J_{p-s_{1}-s_{2}, t_{1}} & J_{p-s_{1}-s_{2}, t_{2}} & J_{p-s_{1}-s_{2}, p-t_{1}-t_{2}} & \\
O & O & & O & & \\
& & & N_{1} & N_{2} & N_{3} \\
& & & * & * & * \\
& & & * & * & * \\
& & & J_{s_{1, p}} & J_{s_{1}, p} & O \\
& & & J_{s_{2, p}} & O & J_{s_{2}, p} \\
& & & O & J_{p-s_{1}-s_{2}, p} & J_{p-s_{1}-s_{2}, p} \\
& & & J_{k-p-1, p} & J_{k-p-1, p} & J_{k-p-1, p}
\end{array}\right]
$$

where $*$ denotes any matrix of appropriate size.
Without loss of generality we assume $0 \leq b\left(N_{1}\right) \leq b\left(N_{2}\right) \leq b\left(N_{3}\right) \leq 2$.
Let $N_{1}=O$, then $b\left(\left[\begin{array}{ll}N_{2} & N_{3}\end{array}\right]\right)=1$ and $\left[\begin{array}{ll}N_{2} & N_{3}\end{array}\right]$ has no zero row, and hence $\left[\begin{array}{ll}N_{2} & N_{3}\end{array}\right] \sim\left[\begin{array}{ll}J & O\end{array}\right]$. It follows $p-s_{1}-s_{2} \leq 0$, impossible.

If $b\left(N_{2}\right)=1$, then $\left[\begin{array}{ll}N_{2} & N_{3}\end{array}\right] \sim\left[\begin{array}{llll}J_{p, t} & O & J_{p, l} & O\end{array}\right]\left(t+l=p+1-t_{1}-t_{2}\right)$. Thus we also have $p-s_{1}-s_{2} \leq 0$, impossible.

Let $b\left(N_{1}\right)=1$. If $N_{1} \sim J$ or $\left[\begin{array}{l}J \\ O\end{array}\right]$, then $t_{1}+t_{2} \leq 1$, impossible. If $N_{1} \sim$ $\left[\begin{array}{cc}J & O \\ O & O\end{array}\right]$, then $b\left(A_{14}[1,6,7 \mid 2,4,5]\right)=4$, a contradiction. If $N_{1} \sim\left[\begin{array}{ll}J & O\end{array}\right]$, then we have $k \geq p+s_{1}+s_{2}+(k-p-1)$, that is, $1 \geq s_{1}+s_{2}$, impossible.

Let $b\left(N_{1}\right)=2$, then $b\left(N_{2}\right)=b\left(N_{3}\right)=2$, and hence $\left[\begin{array}{lll}N_{1} & N_{2} & N_{3}\end{array}\right]$ is a $p \times 3 p$ $(0,1)$-matrix without zero column, and there are at most $p+1-t_{1}-t_{2} 1$'s in its each row. Thus, by Lemma 8 we have $b\left(\left[\begin{array}{lll}N_{1} & N_{2} & N_{3}\end{array}\right]\right) \geq\left\lceil\frac{3 p}{p+1-t_{1}-t_{2}}\right\rceil=$ $3+\left\lceil\frac{3\left(t_{1}+t_{2}-1\right)}{p+1-t_{1}-t_{2}}\right\rceil=4$, which implies $b\left(A_{14}\right) \geq 4$, a contradiction.

By the above showed, we have proved that there does not exist a $A \in \Lambda(2 k-$ $1, k)$ such that $b(A)=3$ for $k \geq 6$, which implies Theorem 9 holds. QED

2 Corollaries

20 Corollary. $4(k-1)-\lceil\sqrt{k-1}\rceil \leq M(2 k-1, k) \leq 4 k-7$ holds for $k \geq 6$.
Proof. By Lemma 4, we have $M(2 k-1, k) \geq 4(k-1)-\lceil\sqrt{k-1}\rceil$. On the other hand, by Theorem $9 M(2 k-1, k) \leq 2(2 k-1)-1-4=4 k-7$. Hence Corollary 20 holds.

21 Corollary. Brualdi's conjecture $M(2 k+1, k+1)=4 k-\lceil\sqrt{k}\rceil$ holds for $k=5,6,7,8$ and 9.

Proof. Trivial by Corollary 20.
22 Corollary. Brualdi's conjecture $M(n, k)<M\left(n+l_{1}, k+l_{2}\right)$ does not hold for $l_{1}=1, l_{2}=1$.

Proof. By Lemma $7 M(2 k, k)=4 k-1-\left\lceil\frac{2 k}{k}\right\rceil=4 k-3$. While by Corollary $21 M(2 k+1, k+1)=4 k-3$ holds for $k=5,6,7,8$ and 9 . Hence $M(2 k, k)=$ $M(2 k+1, k+1)$ holds for $k=5,6,7,8$ and 9 . Therefore $M(n, k)<M\left(n+l_{1}, k+l_{2}\right)$ does not hold for $n=2 k$ and $l_{1}=l_{2}=1$ and $k=5,6,7,8$ and 9 .

References

[1] R. A. Brualdi, H. C. Jung: Maximum and minimum jump number of posets from matrices, Linear Algebra Appl. 172 (1992), 261-282.
[2] B. Cheng, B. Liu: Matrices of zeros and ones with the maximum jump number, Linear Algebra Appl. 277 (1998), 83-95.
[3] Y. P. Hou: Maximum jump number of (0,1)-matrices with constant line sum, Journal of Beijing Normal University(Natural Science). vol. 34, no. 1 (1998), 35-37.

[^0]: ${ }^{i}$ This work is partially supported by the Great Research Project of the National Science Foundation of China(No.90104004) and the National 973 High Technology Projects(No.G1998030420)

