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Irrational sequences of rational numbers
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Abstract. The main result of this paper is a criterion for irrational sequences which consist
of rational numbers for which the corresponding convergent series does not converge very fast.
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1 Introduction

One approach to proving the irrationality of sums of infinite series is due to
Mahler. A nice survey of this kind of result can be found in the book of Nishioka
[7]. Other methods are described in Badea [1], [2], Sándor [8] and Duverney [3].

In 1975 in [4] Erdős proved the following theorem.

1 Theorem. (Erdős) Let a1 < a2 < a3 < · · · be an infinite sequence of
integers satisfying

lim sup
n→∞

a1/2n

n =∞

and

an > n1+ε

for some fixed ε > 0 and n > n0(ε). Then

α =
∞∑

n=1

1

an

is irrational.

In this paper he also introduced the notion of irrational sequences of positive
integers and proved that the sequence {22n}∞n=1 is irrational. Later in [5] the
author extended this definition of irrational sequences to sequences of positive
real numbers.
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2 Definition. Let {an}∞n=1 be a sequence of positive real numbers. If for
every sequence {cn}∞n=1 of positive integers the sum

∑∞
n=1

1
ancn

is an irrational
number, then the sequence is called irrational. If the sequence is not irrational
then it is called rational.

In this paper he also proved the following theorem.

3 Theorem. Let {rn}∞n=1 be a nondecreasing sequence of positive real num-
bers such that limn→∞ rn =∞. Let B be a positive integer, and let {an}∞n=1 and
{bn}∞n=1 be sequences of positive integers such that

bn+1 ≤ rB
n

and
an ≥ r2n

n

hold for every large n. Then

A =
∞∑

n=1

bn

an

is irrational. Furthermore the sequence { an

bn
}∞n=1 is irrational.

2 Main results

Theorem 4 deals with a criterion for irrationality of sums of infinite series
and sequences consisting of rational numbers which depends on the speed and
character of the convergence. In particular it does not depend on arithmetical
properties like divisibility.

For notational convenience we define the sequence of iterated logarithm func-
tions by L0(x) = x and Lj+1(x) = log2 Lj(x) j = 0, 1, . . ..

4 Theorem. Let α and ε be positive real numbers with 0 < α < ε. Suppose
{an}∞n=1 and {bn}∞n=1 are two sequences of positive integers such that {an}∞n=1

is nondecreasing. Assume also that for a positive integer s

lim sup
n→∞

L
1

2n
s (an) > 1, (1)

an > (
s∏

j=0

Lj(n))Lε
s(n), (2)

and
bn < Lα

s (an) (3)

for all sufficiently large positive integers n. Then the sequence { an

bn
}∞n=1 and the

series
∑∞

n=1
bn

an
are irrational.
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5 Remark. Theorem 4 does not hold if s = 0. To see this let a0 be a positive
integer greater than 1 and for every positive integer n, an = a2

n−1 − an−1 + 1.

Then lim supn→∞ a
1

2n
n > 1 and the series α =

∑∞
n=0

1
an

= 1
a0−1 is a rational

number.

6 Example. Let {dn}∞n=1 be a sequence of positive integers such that d1 =

222
and for every positive integer n, dn+1 = 222dn

. Let {an}∞n=1 be a sequence
of positive integers such that a1 = d1 and for every positive integer n and
k = dn + 1, . . . , dn+1, ak = 22.2dn

dn+1 + k. Then the sequences

{ an

[
√

log2 n]
}∞n=1, { an

[( n
pn

)
3
4 ]
}∞n=1, and { an

[(log2 qn)
2
3 ]
}∞n=1

are irrational, where [x] is the greatest integer less than or equal to x, pn is the
number of primes less than or equal to n, and qn is the number of divisors of
the number n. It follows that for every sequence {cn}∞n=1 of positive integers the
series

∞∑

n=1

[
√

log2 n]

ancn
,

∞∑

n=1

[( n
pn

)
3
4 ]

ancn
, and

∞∑

n=1

[(log2 qn)
2
3 ]

ancn

are irrational numbers.

Open problem. Let the sequence {dn}∞n=1 be defined as in Example 6. Let
{an}∞n=1 be a sequence of positive integers such that a1 = d1 and for every

positive integer n and k = dn +1, . . . , dn+1, ak = 22dn22dn
dn+1 +k. It is an open

problem to determine if the sequence {an}∞n=1 is irrational or not.

3 Proof

Proof. (of Theorem 4) Let {cn}∞n=1 be a sequence of positive integers. Then
the sequences {ancn}∞n=1 and {bn}∞n=1 also satisfy conditions (1)-(3) and there
exists a bijection ϕ : N → N such that the sequence {aϕ(n)cϕ(n)}∞n=1 is nonde-
creasing. From the definition of the bijection ϕ and the fact that the sequences
{an}∞n=1 and {aϕ(n)cϕ(n)}∞n=1 are nondecreasing we obtain that aϕ(n)cϕ(n) ≥
an holds for all n ∈ N. This implies that the sequences {aϕ(n)cϕ(n)}∞n=1 and
{bϕ(n)}∞n=1 will satisfy (1)-(3) also. Thus it suffices to prove that the series

β =
∑∞

n=1
bn

an
is an irrational number, where the sequences {an}∞n=1 and {bn}∞n=1

satisfy all the conditions of Theorem 4. Arguing as in Theorem 3 of [6], for every
δ > 0 we find a positive integer n such that

(
n∏

j=1

aj)
∞∑

j=1

bn+j

an+j
< δ. (4)
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Inequality (1) and the fact that s > 0 (for s = 0 Theorem 4 does not hold)
imply that

lim sup
n→∞

a
1

3n
n =∞.

From this we obtain that for infinitely many n

a
1

3n+1

n+1 > max
1≤j≤n

a
1

3j

j .

Thus

a
1
2
n+1 > ( max

1≤j≤n
a

1

3j

j )
3n+1

2 > ( max
1≤j≤n

a
1

3j

j )
3n+1

−1
2 =

( max
1≤j≤n

a
1

3j

j )3
n+3n−1+···+1 >

n∏

j=1

aj . (5)

From (1) we also obtain that there is a real number c > 1 such that for infinitely
many n

L
1

2n
s (an) > c > 1. (6)

Now the proof falls into two parts.
1. First assume that

an > 2n (7)

for every sufficiently large n. From (3) we obtain that for every large positive
integer n

∞∑

j=n+1

bj

aj
≤

∞∑

j=n+1

Lα
s (aj)

aj
=

∑

n<j≤log2 an+1

Lα
s (aj)

aj
+

∑

log2 an+1<j

Lα
s (aj)

aj
. (8)

Now we will estimate these summands on the right hand side of inequality (8).
For the first summand. The facts that the function g(x) = Lα

s (x)x−1 is
decreasing for sufficiently large x and the sequence {an}∞n=1 is nondecreasing
imply that for every sufficiently large positive integer n

∑

n<j≤log2 an+1

Lα
s (aj)

aj
≤ Lα

s (an+1) log2 an+1

an+1
. (9)

For the second summand. The fact that the function g(x) = Lα
s (x)x−1 is

decreasing for sufficiently large x and (7) imply that for every sufficiently large
positive integer n

∑

log2 an+1≤j

Lα
s (aj)

aj
≤

∑

log2 an+1≤j

Lα
s (2j)

2j
≤

∑

log2 an+1≤j

jα

2j
≤ logα+1

2 an+1

an+1
. (10)
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From (8), (9) and (10) we obtain that for every sufficiently large positive
integer n

∞∑

j=n+1

bj

aj
≤

∑

n<j≤log2 an+1

Lα
s (aj)

aj
+

∑

log2 an+1<j

Lα
s (aj)

aj
≤

Lα
s (an+1) log2 an+1

an+1
+

logα+1
2 an+1

an+1
≤ logα+2

2 an+1

an+1
. (11)

The inequalities (5) and (11) yield

(
n∏

j=1

aj)
∞∑

j=1

bn+j

an+j
< a

1
2
n+1

logα+2
2 an+1

an+1
< a

− 1
4

n+1

for infinitely many n and (4) follows.
2. Now assume

an < 2n (12)

for infinitely many n. A brief sketch of the proof is following. First we prove that
for some real number K with 1 < K < 2 there exist infinitely many positive
integers t such that at > 2Kt ∏t−1

j=1 aj . Then we will estimate
∑∞

j=1
bt+j

at+j
and

finally we will prove (4) for every positive real number δ.
Let k be a sufficiently large positive integer satisfying (6). It follows that

Ls(ak) > c2k

= 2(log2 c)2k

. (13)

Let k0 be the largest positive integer not greater than k and satisfying (12). Let
t be the least positive integer greater than k0 such that

a
1

2t+1

t+1 > (1 +
1

t2
) max

k0<j≤t
a

1

2j

j . (14)

(By the way the factor (1+ 1
t2

) can be substitute by (1+ 1
tγ ) where 1 < γ.) Such

a number t must exist with t < k, otherwise from (12), (6) and (13) we obtain
that

1 < c < L
1

2k
s (ak) < a

1

2k

k ≤

(1 +
1

(k − 1)2
) max

k0<j≤k−1
a

1

2j

j ≤ · · · ≤
k∏

j=k0

(1 +
1

j2
)a

1

2k0

k0
= D(k). (15)

From (12) and the definition of the number k0 we obtain that a
1

2k0

k0
→ 1 as

k0 →∞ with k. This and the fact that the product
∏∞

j=1(1 + 1
j2 ) is convergent

imply D(k)→ 1 as k0 →∞ with k, a contradiction with (15).
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It follows that for every r = k0, k0 + 1, . . . , t− 1

a
1

2r+1

r+1 ≤ (1 +
1

r2
) max

k0<j≤r
a

1

2j

j ≤

r∏

j=k0

(1 +
1

j2
)a

1

2k0

k0
≤

k∏

j=k0

(1 +
1

j2
)a

1

2k0

k0
= D(k).

Thus
ar+1 < (D(k))2

r+1
= 2log2(D(k))2r+1

. (16)

The fact that the sequence {an}∞n=1 is nondecreasing and the definition of the
number k0 imply that for every j = 1, 2, . . . , k0

aj ≤ ak0 < 2k0 .

Hence
k0∏

j=1

aj < 2k2
0 . (17)

From this and (16) we obtain that

t∏

j=1

aj =

k0∏

j=1

aj

t∏

j=k0+1

aj ≤ 2k2
0

t∏

j=k0+1

(D(k))2
j

=

2k2
0(D(k))

Pt
j=k0+1 2j

≤ 2k2
02log2(D(k))2t+1

. (18)

On the other hand (14) implies

at+1 > (1 +
1

t2
)2

t+1
( max
k0<j≤t

a
1

2j

j )2
t+1

>

(1 +
1

t2
)2

t+1
( max
k0<j≤t

a
1

2j

j )2
t+2t−1+···+1 > (1 +

1

t2
)2

t+1
t∏

j=k0+1

( max
k0<j≤t

a
1

2j

j )2
j

.

From this and (17) we obtain that

at+1 > (1 +
1

t2
)2

t+1
t∏

j=k0+1

( max
k0<j≤t

a
1

2j

j )2
j

> (1 +
1

t2
)2

t+1
(

t∏

j=1

aj)(

k0∏

j=1

aj)
−1 >

(1 +
1

t2
)2

t+1
(

t∏

j=1

aj)2
−k2

0 . (19)
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We have
∞∑

j=1

bt+j

at+j
=

k−1∑

j=t+1

bj

aj
+

∑

k≤j≤a
1
2
k

bj

aj
+
∑

a
1
2
k

<j

bj

aj
. (20)

We now estimate the summands on the right hand side of equation (20).
For the first summand. The facts that ak > 2k and k0 is the largest positive

integer less than to k and satisfying (12) imply that for every j = k0 + 1, . . . , k

aj ≥ 2j .

From this and (11) we obtain

k−1∑

j=t+1

bj

aj
≤ logα+2

2 at+1

at+1
. (21)

For the second summand. Inequality (3) and the fact that the function
g(x) = Lα

s (x)x−1 is decreasing for sufficiently large x imply that for every k
large enough ∑

k≤j≤a
1
2
k

bj

aj
≤ a

1
2
k

Lα
s (ak)

ak
< a

− 1
4

k . (22)

For the third summand. From (2) we obtain that for k large enough

∑

a
1
2
k

<n

bn

an
≤
∑

a
1
2
k

<n

Lα
s (an)

an
≤
∑

a
1
2
k

<j

Lα
s (
∏s

j=0 Lj(n))Lε
s(n))

(
∏s

j=0 Lj(n))Lε
s(n)

<

2

∫ ∞

a
1
2
k
−1

dx

(
∏s

j=0 Lj(x))Lε−α
s (x)

=
2

(ε− α)Lε−α
s (a

1
2
k − 1)

<
1

L
ε−α

3
s (ak)

(23)

and so (13), (20), (21), (22) and (23) imply that

∞∑

j=1

bt+j

at+j
≤ log2

2 at+1

at+1
+ a

− 1
4

k + L
− ε−α

3
s (ak) ≤

log2
2 at+1

at+1
+

1

L
ε−α

4
s (ak)

≤

log2
2 at+1

at+1
+

1

2
ε−α

4
(log2 c)2k

. (24)

Now we consider two cases.
2a. Let us assume

at+1 < 22t+1
. (25)
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From (24) we obtain

(
t∏

j=1

aj)
∞∑

j=1

bj

aj
≤

(
∏t

j=1 aj)(log
2
2 at+1)

at+1
+

∏t
j=1 aj

2
ε−α

4
(log2 c)2k

. (26)

We will estimate these summands on the right hand side of inequality (26).
For the first summand. Inequality (19) implies

(
∏t

j=1 aj) log2
2 at+1

at+1
≤ log2

2 at+1

(1 + 1
t2

)2t+12−k2
0

.

From this and (25) we obtain

(
∏t

j=1 aj) log2
2 at+1

at+1
≤ log2

2 at+1

(1 + 1
t2

)2t+12−k2
0

<
log2

2 22t+1

(1 + 1
t2

)2t+12−k2
0

=

=
22(t+1)

(1 + 1
t2

)2t+12−k2
0

= 22(t+1)+k2
0−log2(1+ 1

t2
)2t+1 ≤ 22(t+1)+t2− 1

t3
2t+1

.

This and the fact that

lim
x→∞

(2(x + 1) + x2 − 1

x3
2x+1) = −∞

imply that
(
∏t

j=1 aj) log2
2 at+1

at+1
<

δ

2
. (27)

For the second summand. From (18) and the fact that t ≤ k we obtain that

∏t
j=1 aj

2
ε−α

4
(log2 c)2k

≤ 2k2
02log2(D(k))2t+1

2
ε−α

4
(log2 c)2k

≤ 2k2
0+log2(D(k))2k+1

2
ε−α

4
(log2 c)2k

=

2k2
0−( ε−α

4
log2 c−2 log2(D(k)))2k ≤ 2k2−( ε−α

4
log2 c−2 log2(D(k)))2k

. (28)

If k tends to infinity then D(k) tends to 1. Hence

lim
x→∞

(x2 − (
ε− α

4
log2 c− log2(D(x)))2x) = −∞.

From this and (28) we obtain that

∏t
j=1 aj

2
ε−α

4
(log2 c)2k

<
δ

2
. (29)
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Inequalities (26), (27) and (29) imply (4).
2b. Let us assume

at+1 ≥ 22t+1
. (30)

From (24) we obtain

(
t∏

j=1

aj)
∞∑

j=1

bj

aj
≤

(
∏t

j=1 aj) log2
2 at+1

at+1
+

∏t
j=1 aj

2
ε−α

4
(log2 c)2k

. (31)

Now we will estimate these summands on the right hand side of inequality (31).

For the first summand. Inequality (18) and the fact that log2
2 x < x

1
2 for

every sufficiently large x imply

(
∏t

j=1 aj) log2
2 at+1

at+1
≤
∏t

j=1 aj

a
1
2
t+1

≤ 2k2
02log2(D(k))2t+1

a
1
2
t+1

.

From this and (30) we obtain that

(
∏t

j=1 aj) log2
2 at+1

at+1
≤ 2k2

02log2(D(k))2t+1

a
1
2
t+1

≤ 2k2
02(log2(D(k)))2t+1

22t =

2k2
0+(2 log2(D(k))−1)2t ≤ 2t2−(1−2 log2(D(k)))2t

(32)

If k tends to infinity then t tends to infinity and D(k) tends to 1. Hence

lim
k→∞

(t2 − (1− 2(log2(D(k)))2t) = −∞.

From this and (32) we obtain that

(
∏t

j=1 aj) log2
2 at+1

at+1
<

δ

2
. (33)

For the second summand. Inequality (18) and the fact that k0 ≤ t ≤ k imply

∏t
j=1 aj

2
ε−α

4
(log2 c)2k

≤ 2k2
02(log2(D(k)))2t+1

2
ε−α

4
(log2 c)2k

≤ 2k2
2(log2(D(k)))2k+1

2
ε−α

4
(log2 c)2k

=

2k2+(2 log2(D(k))− ε−α
4

log2 c)2k

. (34)

If k tends to infinity then D(k) tends to 1. Hence

lim
x→∞

(x2 + (2 log2(D(x))− ε− α

4
(log2 c))2x) = −∞.
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From this and (34) we obtain that

∏t
j=1 aj

2
ε−α

4
(log2 c)2k

<
δ

2
. (35)

Inequalities (31), (33) and (35) imply (4). This completes the proof of Theo-
rem 4. QED
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