Note di Matematica **24**, n. 2, 2005, 1–7.

Canonical coordinate systems and exponential maps of *n*-loop

Henrietta Tomán

Faculty of Informatics, University of Debrecen Egyetem tér 1. H-4032 Debrecen, Hungary toman@inf.unideb.hu

Received: 02/09/2004; accepted: 27/10/2004.

Abstract. This paper is devoted to the study of canonical coordinate systems and the corresponding exponential maps of *n*-ary differentiable loops and to the discussion of their differentiability properties. Canonical coordinate systems can be determined by the canonical normal form of the power series expansion of the *n*-th power map $x \to x \circ x \circ \cdots \circ x \circ x$.

Keywords: loops, *n*-ary systems, local Lie groups

MSC 2000 classification: 20N05, 20N15, 22E05

1 Introduction

The canonical coordinate systems of Lie groups are important tools for the investigation of local properties of group manifolds. They can be generalized for non-associative differentiable loops. The first study of the expansion of analytical loop multiplication in a canonical coordinate system using formal power series was given in the paper [1] by M. A. Akivis in 1969, (cf. [6, Chapter 2]). The convergence conditions of power series expansions of loop multiplications were investigated later in [2] (1986). E. N. Kuzmin in [9] (1971) treated the local Lie theory of analytic Moufang loops using power series expansion in canonical coordinate systems and gave a generalization of the classical Campbell-Hausdorff formula. V. V. Goldberg introduced canonical coordinates using power series expansions in local analytic n-ary loops, (cf. [6, Chapter 3]).

As it is well-known differentiable groups are automatically (analytic) Lie groups. But in the case of non-associative loop theory the class of C^k -differentiable loops contains the class of C^l -differentiable loops for any $k < l; k, l = 0, 1, \ldots, \infty$, as a proper subclass (cf. P. T. Nagy – K. Strambach [10] (2002)).

The theory of normal forms of C^{∞} -differentiable *n*-ary loop multiplications has been investigated in the paper of J-P. Dufour and P. Jean [4], (1985) by the application of S. Sternberg's linearization theorem to the coordinate representation of n + 1-webs, which are the differential geometric structures determined by the level manifolds of *n*-ary loop multiplications and its inverse operations. J. Kozma in [8] (1987) defined the canonical coordinates of binary \mathcal{C}^{∞} -loops by the linearizing coordinate systems of the square map $x \to x \circ x$. For Lie groups these canonical coordinate systems coincide with the classical systems defined with help of one-parameter subgroups.

Now, we consider a natural generalization of Kozma's construction to *n*-ary \mathcal{C}^k -differentiable loops. According to Sternberg's linearization theorem the linearizing coordinate system of the *n*-th power map $x \to x \circ x \circ \cdots \circ x \circ x$ has the same differentiability property as the *n*-ary loop multiplication map if $k \geq 2$. Hence in the following we will assume that the differentiability class \mathcal{C}^k of the investigated *n*-ary loops satisfies $k \geq 2$. Similar construction for canonical coordinate systems was introduced by V. V. Goldberg in [6, Chapter 3], in the case of analytic *n*-loop multiplications using formal power series expansions.

The author expresses her sincere thanks to Professor Péter T. Nagy for his valuable suggestion and help.

2 Canonical coordinate systems of *n*-loops

1 Definition. Let H be a differentiable manifold of class \mathcal{C}^k , let $e \in H$ be a given element and let $m: H^n \to H$, $\delta_i: H^n \to H$ be differentiable maps of class \mathcal{C}^k , where $i = 1, \ldots, n$. Then $\mathcal{H} = (H, e, m, \delta_1, \ldots, \delta_n)$ is called a \mathcal{C}^k -differentiable *n*-ary loop (or shortly *n*-loop) with unit element e if the multiplication m and the *i*-th divisions δ_i , $i = 1, \ldots, n$, satisfy the following identities:

- (1) $m(\stackrel{(1)}{e}, \dots, \stackrel{(i-1)}{e}, \stackrel{(i)}{a}, \stackrel{(i+1)}{e}, \dots, \stackrel{(n)}{e}) = a$, for all $a \in H$, $(1 \le i \le n)$, where $\stackrel{(i)}{x}$ means that the *i*-th argument has the value x,
- (2) $m(a_1, a_2, \dots, a_{i-1}, \delta_i(b, a_1, a_2, \dots, a_{i-1}, a_{i+1}, \dots, a_n), a_{i+1}, \dots, a_n) = b$ for all $a_i \in H$, $(1 \le i \le n), b \in H$,
- (3) $\delta_i(m(a_1, a_2, \dots, a_n), a_1, a_2, \dots, a_{i-1}, a_{i+1}, \dots, a_n) = a_i$ for all $a_i \in H$, $(1 \le i \le n), b \in H$.

2 Definition. If H is a differentiable manifold of class \mathcal{C}^k , $e \in H$ is a given element and $m: H^n \to H$, $\delta_i: H^n \to H$ are differentiable maps of class \mathcal{C}^k , $i = 1, \ldots n$, which are defined in a neighbourhood of $e \in H$, then $\mathcal{H} = (H, e, m, \delta_1, \ldots, \delta_n)$ is called a \mathcal{C}^k -differentiable local n-loop with unit element e, provided that the multiplication m and the *i*-th divisions δ_i , $i = 1, \ldots n$ satisfy the following identities:

(1) $m(\stackrel{(1)}{e},\ldots,\stackrel{(i-1)}{e},\stackrel{(i)}{a},\stackrel{(i+1)}{e},\ldots,\stackrel{(n)}{e}) = a$, for all $a \in H$, $(1 \le i \le n)$, where $\stackrel{(i)}{x}$ means that the *i*-th argument has the value x,

Canonical coordinate systems and exponential maps of n-loop

- (2) $m(a_1, a_2, \dots, a_{i-1}, \delta_i(b, a_1, a_2, \dots, a_{i-1}, a_{i+1}, \dots, a_n), a_{i+1}, \dots, a_n) = b$ for all $a_i \in H$, $(1 \le i \le n), b \in H$,
- (3) $\delta_i(m(a_1, a_2, \dots, a_n), a_1, a_2, \dots, a_{i-1}, a_{i+1}, \dots, a_n) = a_i$ for all $a_i \in H$, $(1 \le i \le n), b \in H$

in a neighbourhood of $e \in H$.

3 Definition. Let $\mathcal{H} = (H, e, m, \delta_1, \dots, \delta_n)$ be a \mathcal{C}^k -differentiable local *n*loop. A coordinate map $\varphi \colon U \to \mathbb{R}^q$ of class \mathcal{C}^k of the open neighbourhood $U \subset H$ of $e \in H$ into the coordinate space \mathbb{R}^q is called a *canonical coordinate* system of \mathcal{H} if $\varphi(e) = 0$ and the coordinate function

$$M = \varphi \circ m \circ (\varphi^{-1} \times \cdots \times \varphi^{-1}) \colon \varphi(U) \times \cdots \times \varphi(U) \to \mathbb{R}^q$$

of the multiplication map $m \colon H^n \to H$ satisfies

$$M(x, x, \dots, x) = n x$$

for all $x \in \varphi(U)$.

We will need the following assertions in the investigation of canonical coordinate systems:

4 Lemma. Let be $k \geq 2$ and ϕ a local \mathcal{C}^k -diffeomorphism of \mathbb{R}^q keeping $0 \in \mathbb{R}^q$ fixed which is defined in some neighbourhood of $0 \in \mathbb{R}^q$ and let $\phi_*|_{(0)}$ denote the tangent map of ϕ at $0 \in \mathbb{R}^q$. We assume that ϕ satisfies $\phi_*|_{(0)} = \lambda \operatorname{id}_{\mathbb{R}^q}$ with $\lambda \neq 0, 1, -1$. Then there exists a unique local \mathcal{C}^k -diffeomorphism ρ of \mathbb{R}^q keeping $0 \in \mathbb{R}^q$ fixed such that $\rho \cdot \phi \cdot \rho^{-1} = \phi_*|_{(0)}$ and $\rho_*|_{(0)} = \operatorname{id}_{\mathbb{R}^q}$.

PROOF. The existence of a local \mathcal{C}^k -diffeomorphism ρ of \mathbb{R}^q satisfying the conditions of the assertion follows from Sternberg's Linearization Theorem for local contractions (cf. [11]) since either the map ϕ or its inverse ϕ^{-1} is a local contraction, the minimum and maximum of eigenvalues of its tangent map coincide, $k \geq 2$ and it satisfies the so called resonance condition $\lambda \neq \lambda^m$ for any m > 1. The unicity of the map ρ follows from the ideas of the proof of Sternberg's Theorem, since the difference of two solutions must be a fixed point of a contractive operator on a linear space of differentiable maps. Hence the difference of these solution is 0.

5 Lemma. Let κ be a differentiable map of a star shaped neighbourhood $W \subset \mathbb{R}^p$ into \mathbb{R}^q with $\kappa(0) = 0$. If there exists a real number 0 < r < 1 such that $\kappa(rx) = r \kappa(x)$ holds for all $x \in W$ then κ is the restriction of a linear map.

PROOF. Since the map $\kappa \colon W \to \mathbb{R}^p$ is differentiable one can define the continuous map $\omega \colon W \to \mathbb{R}^p$ satisfying

$$\kappa(x) = \kappa_*|_{(0)}(x) + ||x||\omega(x), \quad \omega(0) = 0.$$

H.Tomán

Hence

$$\kappa(r\,x) = r\,(\kappa_*|_{(0)}(x) + \|x\|\omega(r\,x)) = r\,\kappa(x) = r\,(\kappa_*|_{(0)}(x) + \|x\|\omega(x)).$$

It follows $\omega(x) = \omega(r^m x)$ for any natural number $m \in \mathbb{N}$ and hence

$$\omega(x) = \lim_{m \to \infty} \omega(r^m) = \omega(0) = 0$$

for all $x \in W$.

6 Theorem. For any C^k -differentiable local n-loop $\mathcal{H} = (H, e, m, \delta_1, \dots, \delta_n)$ with $k \geq 2$ there exists a canonical coordinate system.

If (U, φ) is a canonical coordinate system of \mathcal{H} then for any linear map $\lambda : \mathbb{R}^q \to \mathbb{R}^q$ the pair $(U, \lambda \circ \varphi)$ is a canonical coordinate system of \mathcal{H} , too.

If $\varphi \colon U \to \mathbb{R}^q$ and $\psi \colon U \to \mathbb{R}^q$ are the coordinate maps of canonical coordinate systems of \mathcal{H} defined on the same neighbourhood U then $\varphi \circ \psi^{-1}$ is the restriction of a linear map $\mathbb{R}^q \to \mathbb{R}^q$.

PROOF. Let $(\bar{U}, \bar{\varphi})$ be a coordinate system of \mathcal{H} , let \bar{M} be the coordinate function of the local *n*-loop multiplication m with respect to $(\bar{U}, \bar{\varphi})$. Now, we introduce the map $\bar{G} : \bar{\varphi}(\bar{U}) \to \mathbb{R}^q$ defined by $\bar{G}(x) = \bar{M}(x, x, \dots, x)$. Clearly one has $\bar{G}(0) = 0$. Since $\bar{M}(0, \dots, 0, x, 0, \dots, 0) = x$ the tangent map $\bar{G}_*|_0 \colon \mathbb{R}^q \to \mathbb{R}^q$ of \bar{G} at the point 0 satisfies $\bar{G}_*|_0 = n \operatorname{id}_{\mathbb{R}^q}$. The map \bar{G} is of class C^k in a neighborhood of 0 and hence it has an inverse map in a neighborhood of 0 of the same class \mathcal{C}^k . We can apply Lemma 4 for \bar{G}^{-1} . It follows that there exists a local \mathcal{C}^k -diffeomorphism ρ keeping $0 \in \mathbb{R}^q$ fixed such that $(\rho \circ \bar{G} \circ \rho^{-1})_*|_0 =$ $\rho \circ \bar{G} \circ \rho^{-1}$. We consider the composed map $\varphi = \rho \circ \bar{\varphi}$ as the coordinate map of a new coordinate system (U, φ) with a suitable neighborhood U. The coordinate function of the multiplication map $m \colon H^n \to H$ satisfies $M = \rho \circ \bar{M} \circ \rho^{-1}$. Let Q be the following function

$$Q \colon x \mapsto Q(x) = (x, x, \dots, x) \colon \mathbb{R}^q \to \mathbb{R}^q \times \mathbb{R}^q \times \dots \times \mathbb{R}^q.$$

Then we have the equation

$$G = M \circ Q = (\rho \circ \overline{M} \circ \rho^{-1})(\rho \circ Q \circ \rho^{-1}) = \rho \circ \overline{G} \circ \rho^{-1} = (\rho \circ \overline{G} \circ \rho^{-1})_*|_0 = n \operatorname{id}_{\mathbb{R}^q}.$$

Hence (U, φ) is a canonical coordinate system of \mathcal{H} .

For a canonical coordinate system (U, φ) of the local *n*-loop \mathcal{H} the coordinate function

$$M = \varphi \circ m \circ (\varphi^{-1} \times \cdots \times \varphi^{-1}) \colon \varphi(U) \times \cdots \times \varphi(U) \to \mathbb{R}^{q}$$

of the multiplication map $m: H^n \to H$ satisfies $M(x, x, \ldots, x) = n x$ for all $x \in \varphi(U)$. Hence for arbitrary linear map $\lambda: \mathbb{R}^n \to \mathbb{R}^n$ one has

$$\lambda \circ M(\lambda^{-1}y, \dots, \lambda^{-1}y) = \lambda(n\,\lambda^{-1}y) = n\,y, \quad y \in \lambda \circ \varphi(U).$$

4

QED

It follows that $(U, \psi = \lambda \circ \varphi)$ is also a canonical coordinate system of \mathcal{H} .

Let (U, φ) and (U, ψ) be canonical coordinate systems of \mathcal{H} given on the same neighbourhood U and let M_{φ} and M_{ψ} be the coordinate functions of the multiplication map $m: H^n \to H$. We denote $\kappa = \varphi \circ \psi^{-1}: \psi(U) \to \varphi(U)$. For all $x \in \varphi(U)$ and $y \in \psi(U)$ we have

$$M_{\varphi}(x, x, \dots, x) = n x$$
 and $M_{\psi}(y, y, \dots, y) = n y.$

Since

$$M_{\varphi}(\kappa(y),\kappa(y),\ldots,\kappa(y)) = \kappa(M_{\psi}(y,y,\ldots,y))$$

we obtain $n \kappa(y) = \kappa(n y)$. Putting z = n y we get $\kappa(r z) = r \kappa(z)$ for all $z \in \psi(U)$, where $r = \frac{1}{n}$. It follows by Lemma 5 that the map $\kappa = \psi \circ \varphi^{-1}$ is the restriction of a linear map.

7 Example. The local non-associative loop-multiplication $f(x, y) = x + y + x^2y(x - y)$ is defined in a canonical coordinate system.

3 Exponential map

There are different natural possibilities for the definition of the exponential map $W \to H$ with $0 \in W \subset T_e H$ of \mathcal{C}^k -differentiable local *n*-loops. One of them is analogous to the usual construction in Lie group theory, namely the map exp could be determined by the integral curves of vector fields defined by the *i*-th translations of tangent vectors at the unit element of the *n*-loop. In binary Lie groups these curves are 1-parameter subgroups, but for smooth loops it is not always the case (cf. J. Kozma [8]). An other disadvantage of such construction is that one can expect only \mathcal{C}^{k-1} -differentiability of the the map $W \to H$ with $0 \in W \subset T_e H$ which is determined by integral curves of \mathcal{C}^{k-1} -differentiable vector fields defined by the *i*-th translations of tangent vectors.

An alternative natural possibility for the definition of the exponential map is given by using the construction of canonical coordinate systems studied in the previous section.

8 Theorem. Let $\mathcal{H} = (H, e, m, \delta_1, \dots, \delta_n)$ be a \mathcal{C}^k -differentiable local n-loop with $k \geq 2$. There exists a unique local \mathcal{C}^k -diffeomorphism exp: $W \to H$, where W is a neighbourhood of $0 \in T_eH$, such that the following conditions hold:

(i) $\exp(0) = e$ and $\exp(nx) = m(\exp(x), \dots, \exp(x)),$

(*ii*) $\exp_*|_0 = \operatorname{id}_{T_eH}$.

PROOF. Let $\varphi \colon U \to \mathbb{R}^q$ be the coordinate map of a canonical coordinate system (U, φ) of the local *n*-loop \mathcal{H} . According to Theorem 6 $(U, \varphi_*|_0^{-1} \circ \varphi)$ is also

a canonical coordinate system of \mathcal{H} where the vector space T_eH is the coordinate space and $\varphi_*|_0^{-1} \circ \varphi \colon U \to T_eH$ is the coordinate map. Let $W \subset \varphi_*|_0^{-1} \circ \varphi(U)$ be a neighbourhood of $0 \in T_eH$. Then the coordinate function

$$M = \varphi_*|_0^{-1} \circ \varphi \circ m \circ \left(\left(\varphi_*|_0^{-1} \circ \varphi\right)^{-1} \times \cdots \times \left(\varphi_*|_0^{-1} \circ \varphi\right)^{-1}\right) \colon W \times \cdots \times W \to T_e H$$

of the multiplication map $m \colon H^n \to H$ satisfies $M(x, \ldots, x) = n x$, or equivalently

$$m(\varphi^{-1} \circ \varphi_*|_0(x), \dots, \varphi^{-1} \circ \varphi_*|_0(x)) = \varphi^{-1} \circ \varphi_*|_0(nx)$$

for any $x \in W$. Moreover one has $(\varphi^{-1} \circ \varphi_*|_0)_*|_0 = \mathrm{id}_{T_eH}$. Hence we can define $\exp = \varphi^{-1} \circ \varphi_*|_0$ and this map satisfies the conditions given in the assertion.

Let us assume that the map $\widetilde{\exp}: W \to H$ fulfills the conditions (i) and (ii). Then $(\widetilde{\exp}(W), \widetilde{\exp}^{-1})$ is a canonical coordinate system of the *n*-loop \mathcal{H} and according to the previous theorem the map $\widetilde{\exp}^{-1} \circ \exp: W \to T_e H$ is the restriction of a linear map $\alpha: T_e H \to T_e H$. Since both of the maps $\widetilde{\exp}$ and \exp satisfy the condition (ii) the linear map $\alpha: T_e H \to T_e H$ must be the identity map. Hence $\widetilde{\exp} = \exp: W \to H$ which proves that the map $\exp: W \to H$ is determined uniquely. QED

9 Theorem. Let $\mathcal{H} = (H, e, m, \delta_1, \ldots, \delta_n)$ and $\mathcal{H}' = (H', e', m', \delta'_1, \ldots, \delta'_n)$ be \mathcal{C}^k -differentiable local n-loops and let exp: $W \to H$, exp': $W' \to H'$ be the corresponding exponential maps, where $W \subset T_e H$ and $W' \subset T_{e'} H'$.

If $\alpha: \mathcal{H} \to \mathcal{H}'$ is a continuous local homomorphism then the composed map $\exp^{\prime -1} \circ \alpha \circ \exp: W \to T_{e'}H'$ is locally linear.

PROOF. Let us consider the \mathcal{C}^k -differentiable binary local loops $\widetilde{\mathcal{H}}$ and $\widetilde{\mathcal{H}'}$ which are determined by the multiplication and division maps of \mathcal{H} and $\mathcal{H'}$ in such a way that in the multiplication and division functions the *j*-th variable $(j \geq 3)$ is replaced by the identity element $e \in H$ and $e' \in H'$ respectively. The map $\alpha \colon H \to H'$ is clearly a continuous local loop homomorphism. According to the result of R. Bödi and L. Kramer [3] the map $\alpha \colon H \to H'$ is \mathcal{C}^k -differentiable. Hence according to Lemma 5 the identity

$$\exp^{\prime -1} \circ \alpha \circ \exp(nx) = n \exp^{\prime -1} \circ \alpha \circ \exp(x)$$

or equivalently

$$\exp^{\prime -1} \circ \alpha \circ \exp(ry) = r \exp^{\prime -1} \circ \alpha \circ \exp(y)$$

with y = nx and $r = \frac{1}{n}$, implies the assertion.

QED

References

- M. A. AKIVIS: The canonical expansions of the equations of a local analytic quasigroup, (Russian), Dokl. Akad. Nauk SSSR 188 (1969), 967–970.
- [2] M. A. AKIVIS A. M. SHELEKOV: On the canonical coordinates in a local analytic loop, (Russian), Webs and Quasigroups, Gos. Univ. Kalinin 130 (1986), 120–124.
- R. BÖDI L. KRAMER: Differentiability of continuous homomorphisms between smooth loops, Result. Math. 25 (1994), 13–19.
- [4] J-P. DUFOUR P. JEAN: Rigidity of webs and family of hypersurfaces, Singularites Dynamical Systems, S.N. Pnevmatikos (editor), Elsevier Science Publisher B.V., North-Holland (1985), 271–283.
- [5] J-P. DUFOUR: *Rigidity of webs*, Web Theory and Related Topics, edited by J.Grifone and E.Salem, World Scientific (2001), 106–113.
- [6] V. V. GOLDBERG: Theory of Multidimensional (n+1)-Webs, Kluwer Academic Publishers, (1988).
- J. KOZMA: On the differentiability of loopmultiplication in canonical coordinate system, Publ. Math. Debrecen 37 (1990), 313–325.
- [8] J. KOZMA: Loops with and without subloops, Acta Sci. Math. (Szeged) 55 (1991), 21-31.
- [9] E. N. KUZMIN: The connection between Malcev algebras and analytic Moufang loops, (Russian), Algebra i Logika 10 (1971), 3–22.
- [10] P. T. NAGY K. STRAMBACH: Loops in Group Theory and Lie Theory, Expositions in Mathematics, Vol. 35. De Gruyter, (2002).
- [11] S. STERNBERG: Local contractions and a Theorem of Poincaré, Am. J. Math. 79 (1957), 809–824.