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Abstract. The authors have classified all translation planes of order 81 that admit SL(2, 5),
where the 3-elements are elations, with the use of the computer. In this article, it is shown
that the spreads in PG(3, 9) may be obtained directly from the group SL(2, 5). In the process,
there is a construction of a replaceable 12-nest of reguli of a Desarguesian plane.
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1 Introduction

Recently, the authors [8] have determined the translation planes of order 81
admitting SL(2, 5), generated by elations, using the computer. In particular,
there are five mutually non-isomorphic non-Desarguesian planes with spreads
in PG(3, 9), of which only the Prohaska plane was previously known. The ques-
tion is how much of the computer use is actually required for the construction
of these spreads. Of particular interest is that one of the new planes may be
constructed from a Desarguesian plane by replacement of a 12-nest, a set of 12
reguli that overlap such that each component lies on two reguli. In this setting,
the replacement consists of 5, i. e. ‘half’, of the lines of each opposite regulus.
This is a very rare situation. In this article, we show that all of the planes
can be constructed without the use of the computer and classified as to their
isomorphism type. Furthermore, with the assumption that when SL(2, 5) acts

iThe ideas for this article were developed when the first author was visiting Caledonian
University and Heriot-Watt University in May of 2004. The authors are grateful to the Uni-
versities and to the London Mathematical Society for support on this research and the visit
to Scotland.
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as above there are exactly six orbits of components of length 12, then we may
determine all planes with spreads in PG(3, 9), admitting SL(2, 5), using only
the group SL(2, 5).

2 The constructions

Let Σ denote an affine Desarguesian plane of order 81 coordinatized by K
isomorphic to GF (81). Let b in F ⊆ K, F isomorphic to GF (9), such that
b2 = −1. Then we note the following:

1 Lemma.

(1)
〈[

1 b
0 1

]
,

[
1 0
1 1

]〉
� SL(2, 5). The group induces A5 on the parallel

classes, the central involution of SL(2, 5) is the kernel involution of Σ.

(2) The 10 Sylow 3-subgroups of SL(2, 5) are elations in Σ and the set of
elation axes defines a regulus net R of Σ, all of whose Baer subplanes
incident with the zero vector are fixed by SL(2, 5).

(3) The six Sylow 5-subgroups each fix exactly two components of Σ−R. Hence,
there is an orbit Γ12 of length 12 under SL(2, 5), as the normalizer of a
Sylow 5-subgroup S5 of order 20 interchanges the two fixed components of
S5.

(4) There is a component orbit Γ60 of length 60 and Σ = R ∪ Γ12 ∪ Γ60.

(5) Γ12 does not contain a regulus net.

(6) Γ60 contains a unique regulus invariant by the normalizer of a given Sylow
5-subgroup. There are six such reguli whose union is Γ60.

Proof. Most of this is established in Prohaska [9]. QED

2 Lemma. Let τ be an element of order 5 in SL(2, 5), as above. There
is a unique Desarguesian spread Σ〈τ〉 consisting of 〈τ〉-invariant 2-dimensional
F -subspaces.

In particular, Σ〈τ〉 contains the opposite regulus ROpp and the two 〈τ〉-
invariant components of Σ.

Σ〈τ〉 admits as a collineation group, the normalizer of 〈τ〉 in SL(2, 5)×Z80.

Proof. Note that 5 is a 3-primitive divisor of 81 and SL(2, 5) fixes all Baer
subplanes of R, incident with the zero vector. Then, by Johnson [7], there is a
unique Desarguesian spread Σ〈τ〉, of τ -invariant linesize subspaces. QED
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3 Lemma. Let Hτ denote the linear set of q − 1 mutually disjoint reguli
union the two 〈τ〉-invariant components L and M of Σ, whose union is Σ〈τ〉;
i. e. the carrying lines of the hyperbolic fibration are L and M . Then there are
exactly two reguli of Hτ that are invariant under an element of order 4 whose
square is the kernel involution of Σ, that interchanges L and M .

Proof. Choose a representation for Στ such that L and M are x = 0,
y = 0. Then we have that the reguli are the standard André reguli Aδ = {y =
xm ; mq+1 = δ}, for δ ∈ F − {0}. The opposite lines have the form y = xqn;
nq+1 = δ. The involution interchanging x = 0 and y = 0 is (x, y) �−→ (−y, x)
and maps Aδ onto Aδ−1 , and hence fixes exactly two; where δ = ±1. QED

4 Lemma. Let P τ denote the unique regulus of Γ60 that is left invariant
under NSL(2,5)(〈τ〉). Then P τOpp is a regulus of Στ .

Proof. Let πo be any component of P τOpp and assume that πo is not a
component of Στ . Then πo is a Baer subplane and defines a regulus P1 of Στ .
Let Z80 denote the kernel homology group of Σ that now acts on Στ as a
collineation group having orbits of length 10 on Στ − Σ. It follows easily that
P τOpp = πoZ80, so the subplanes lie across P1 = P τOpp.

Now we have that Στ contains ROpp, P1, union L and M . There is a unique
linear hyperbolic fibration generated by ROpp, P1 with carrying lines L and M ,
since L and M are inverted by the normalizer of 〈τ〉 in SL(2, 5). Replace all of
the q− 1 reguli of this linear hyperbolic fibration, obtaining R, POpp1 , L and M
are components. However, there is a unique Desarguesian spread containing R
and L. Hence, it follows that R, L, M and P τOpp are in Σ (define components
of Σ), a contradiction. Hence, P τOpp is in Στ . QED

5 Lemma. Let the q− 1 = 8 reguli of the plane Σ multiply-derived from Στ

be denoted by R, P τ , R3, R4, R5, R6, R7, R8, where we may assume that R5,
R6, R7, R8 are subnets of Γ60. Moreover, we may assume that R5 and R6, and
R7 and R8 are interchanged by the normalizer of 〈τ〉.

Proof. Let N be any component other than L,M of Γ12. Then there exists
a unique regulus of the linear set, say R3 that contains N . Since all of these
nets are τ -invariant, this says that R3 shares at least 5 components with Γ12.
However, by a lemma above, Γ12 does not contain a regulus. Hence, the other five
components of Γ12 − {L,M} are contained in another unique regulus from the
linear set, say R4. Note that R3 and R4 are then interchanged by the normalizer
of 〈τ〉, since we know that this normalizer fixes exactly two reguli of the linear
set, namely R and P τ . QED

6 Lemma. Γ60 has exactly two orbits ∆i, i = 1, 2, of 1-dimensional F -
subspaces of lengths 60 · 5 under SL(2, 5) × Z5.
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Proof. The order of SL(2, 5) × Z5 is 120 · 5 and the kernel involution
of SL(2, 5) fixes every 1-dimensional F -subspace. If Xo is a 1-dimensional F -
subspace in Γ60, it lies on a unique component of Γ60, which is in an orbit
of length 60. But Z5 is a kernel homology subgroup and cannot fix any 1-
dimensional subspace, but fixes each component. Hence, the orbit lengths are
as maintained. QED

7 Lemma. Consider any of the τ -invariant reguli R5, R6, R7, R8 that lie
in Γ60, and let πo be a subplane of any of these reguli and note that any subplane
of Ri, i = 5, 6, 7, 8, is τ -invariant, since these arise from Στ , where τ acts as a
kernel homology group.

Let πo = C1 ∪ C2, where C1 and C2 are orbits of 1-spaces of πo under 〈τ〉.
Then C1 and C2 are in distinct SL(2, 5) × Z5 orbits.
This is also true of any τ -invariant subplane of P τ .
Proof. This may be easily determined by use of the computer, as we have

done previously. We sketch how this would be proven without the computer.
Map x = 0, y = 0, y = x of R in Σ to the André net A1 = {y = xm ; mq+1 = 1}
by mapping y = 0 to y = −x, y = x to y = xz−1

0 and x = 0 to y = xz0 such
that zq+1

o = 1, zo not ±1. This may be accomplished by the collineation:[
zo − 1 1− zo

1 zo

]
= j.

If one works out the two unique components y = xMi, i = 1, 2, fixed by

τ =
[
1 b
0 1

] [
1 0
1 1

]
(which actually has order 10), we see that these components are uniquely de-
termined by the following quadratic equation:

M2
i +Mib− b = 0.

Now choose w so that w2 = b− 1 and let z = w + (1− b).
Then it may be verified that (w + (1− b))q+1 = 1.
Then it also may be verified that y = xMi map to x = 0, y = 0. What this

means is that we may assume that there is an element j so that

j−1

〈[
1 b
0 1

]
,

[
1 0
1 1

]〉
j × Z5

acts so that j−1τj fixes x = 0 and y = 0, R becomes A1 and P τ becomes A−1. In
this setting, we may easily calculate the new orbit j−1Γ12j. Note that now the
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j−1τj-invariant Baer subplanes of j−1Rij for i = 5, 6, 7, 8 have the nicer form
y = xqt, for t in K − {0}. In this form, we see that j−1τj : (x, y) �−→ (xa, yaq);
a has order 5. Furthermore, the normalizer element of order 4 has the form: Let
ω have order 4 in K, then (x, y) �−→ (−yω−i, xωi). Note that A1 and A−1 are
the only André nets invariant under this element.

Choose any y = xqt in j−1Rij, for j = 5, 6, 7, 8, and letting C1 ∪ C2 =
(y = xqt), by a calculation it may be shown that C1 and C2 are in distinct
j−1SL(2, 5)j × Z5 orbits.

To see that this is also valid for the τ -invariant subplanes of the regulus P τ ,
we note that if πo is in P τ , then the normalizer of 〈τ〉 in SL(2, 5) leaves P τ

invariant and maps πo to another subplane of P τ . It follows that in SL(2, 5) ×
Z5, there are 10 subplanes of P τ ; all of the subplanes incident with the zero
vector. The assertion regarding the orbit structure of the subplanes is then
clear. QED

8 Lemma. ∆1 = (SL(2, 5)×Z5)C1, ∆2 = (SL(2, 5)×Z5)C2. If πo = C1∪C2

is a τ -invariant Baer subplane of Ri, for i = 5, 6, 7, 8, then Γ60 has a replacement
of (SL(2, 5) × Z5)πo.

Proof. Suppose that C1g∩C1 in a 1-space Xo. Then there exists a 1-space
Yo in C1 such that Xoτ

j = Yo. Thus, Yog = Xo, implying that τ jg fixes Yo.
Hence, τ jg is either trivial or the kernel involution i2. In any case, g is in 〈τ, i2〉.
But this group leaves C1 invariant. Hence, C1g∩C1 is either C1 or is the empty
set (on 1-subspaces).

This then also means that C2g = C2 or is disjoint from C2. Now consider πo
and πog = (C1 ∪ C2)g = (C1g ∪ C2g) and assume that πo ∩ πog non-trivially in
a 1-subspace Xo, where g is in SL(2, 5) × Z5. Since C1 and C2 are in distinct
SL(2, 5)×Z5-orbits, it follows that C1∩C2g is necessarily trivial as is C2∩C1g.
Therefore, if there is an intersection, it can only be between C1 and C1g or
between C2 and C2g, which we have seen above implies that C1g = C1, or
C2 = C2g. Assume the former. Then the regulus Ri containing πo and the
regulus Rig now share at least five components and hence are equal. But now
πo and πog are in the same regulus net and share C1 so are equal: πo = πog.
But note this also says that g is in 〈τ, i2〉, since the normalizer 4-element does
not fix Ri. This says that there are exactly 60 disjoint images of πo under the
group SL(2, 5) × Z5, so we obtain a replacement. QED

9 Theorem. There is a unique translation plane of order 81 admitting
SL(2, 5) × Z5 that may be obtained from a Desarguesian affine plane of order
81 by 12-nest replacement.

Proof. In the previous lemma, we have, if we choose any subplane πo of Ri,
for i = 5, 6, 7, 8, a replacement for Γ60 consisting of images of πo under the group
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SL(2, 5) × Z5. Note that there are 40 possible subplanes. In each replacement
net, there are five images of πo under Z5 that lie in the same original regulus
net Ri. Since Ri and Rj , for i = j, are interchanged by the normalizer of 〈τ〉, it
follows that there are five subplanes of a second regulus Rj, any of which will
produce the same replacement set.

If we take the kernel homology group Z80, this sets up an isomorphism
between the replacement using πo or any subplane of πoZ5 with the subplanes
of Ri in the second Z5-orbit of subplanes of Ri. This means that if we take any
of 20 different subplanes of Ri and Rj we obtain an isomorphic replacement set.

Now consider the original group representation and the collineation θ:

(x, y) �−→ (x3, y3).

Note that:

θ−1

[
1 b
0 1

]
θ =

[
1 b3

0 1

]
and since b2 = −1, b3 = −b, so that θ normalizes

[
1 b
0 1

]
and similarly nor-

malizes
[
1 0
1 1

]
. Hence, θ will normalize SL(2, 5) × Z5 in the original repre-

sentation. But this means that there is a subgroup of order 80 that normalizes
〈τ〉 and normalizes SL(2, 5) × Z5. Thus, this group acts on Γ60 and permutes
five τ -invariant reguli and must fix one, namely P τ (it is easy to verify that
1-subspaces of each Baer subplane of P τ are in the same SL(2, 5)×Z5 orbit, so
this group must fix P τ ). Hence, we have a group of order 80 that permutes four
reguli. We claim that this group is transitive. In order to see this, we change
representations again and look at the André linear set with carrying lines x = 0,
y = 0.

Consider the André linear hyperbolic fibration with carrying lines x = 0,
y = 0. Here, we have the group (x, y) �−→ (x3, y3) mapping Aδ onto Aδ3 and
the mapping (x, y) �−→ (−yωi, xω−i), such that ω4 = 1 taking Aδ onto Aδ−1 .
Since it follows that δ−1 = δ3, for δ in GF (9), if and only if δ4 = 1, we see
that we have two orbits of length 2 and one orbit of length 4 of the 8 reguli.
Note that this group has order 24. Note that we can similarly show that any
group of order 24 that has two orbits of length 2 on reguli will have an orbit
of length 4. Since this general situation will be similarly represented under our
representation, we see that we have that {R5, R6, R7, R8} is an orbit under a
group that normalizes SL(2, 5)×Z5. Hence, it follows that any subplane of one
of these regulus nets will produce an isomorphic replacement set.

It remains to show that we have a 12-nest replacement. Given a subplane
πo, say of R5, we obtain using Z5 that each component N of R5 is contained
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in exactly two reguli. Since R5 is inverted with R6 using the normalizer of 〈τ〉,
it follows that we have used exactly 12 reguli to cover Γ60 and each component
lies in exactly two reguli and we have used (q + 1)/2, i. e. half of the lines of
each opposite regulus in the replacement procedure. QED

10 Theorem. There are exactly four translation planes of order 81 and
kernel GF (9) that admit SL(2, 5) × Z5:

(1) the Prohaska, and

(2) 12-nest plane, where SL(2, 5) is generated by elations, and

(3) the derived Prohaska, and

(4) the derived 12-nest plane, where SL(2, 5) is generated by Baer 3-elements.

Proof. When the kernel is GF (9) and the 3-elements are Baer, Jha and
Johnson [6] have shown that the Baer axes line up into a derivable net and
hence a regulus net. Hence we may assume that the 3-elements are elations.
Furthermore, Jha and Johnson [6] have shown that the 3-elements are always
Baer or elations. And when the 3-elements are Baer, Jha and Johnson [6] have
shown that the Baer subplanes pointwise fixed by the 3-elements are disjoint as
subspaces.

In any case, Z5 must fix at least 10 linesize GF (9)-subspaces. So, by John-
son [7], there is a unique Desarguesian plane Σ containing the Z5-fixed subspaces
and the normalizer of Z5 acts as a collineation group of Σ. Hence, SL(2, 5)×Z5

acts on Σ, a Desarguesian plane of order 81. Consider the plane π and note
that any component of π that is not in Σ becomes a Baer subplane of Σ. We
know that SL(2, 5) is generated by elations acting on Σ and there are orbits of
components of lengths 10, 12, 60 in Σ. Let L be a component of π that is a Baer
subplane of Σ. We know that the orbit Γ10 of Σ is also an orbit of π, the set of
10 elation axes. Furthermore, since SL(2, 5) × Z5 acts on π, we know that Z5

permutes the set of 72 components external to the net Γ10 of 10 elation axes.
Thus, Z5 fixes at least two components of π − Γ10. Thus, π shares components
with Σ in an orbit of length 12 or of length 60. Assume the latter. So, we have
π a plane with spread in PG(3, 9) that shares 72 components with Σ, so that
either π = Σ or Γ12 is a replaceable net that does not contain a regulus. This is
a contradiction to Bruen [3]. Hence, π shares Γ12 with Σ. If L is a component of
π that is a Baer subplane of Σ, we know that the components that L lies over
in Σ form a regulus RL. Now RL is a regulus embedded in Γ60 of Σ. So, the
union of the SL(2, 5)-orbits of π−Γ10∪Γ12 form a replacement for the net Γ60.
There are exactly 10 SL(2, 5)-orbits on 1-dimensional GF (9)-subspaces, each of
length 60. Since we have Z5 acting as a kernel homology group of Σ, the net RL
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has five Baer subplanes which are lines of π. We consider the orbit of RL under
SL(2, 5). Suppose it has length > 12. Then the 5 subplanes per image would
force a larger than 60 partial spread. Hence, the orbit of RL is of length ≤ 12.
If the orbit has length 12, we have a 12-nest and if the orbit has length 6, we
obtain a Prohaska spread. Since we have SL(2, 5) acting and note that the orbit
length is divisible by 3, we may have only these two possibilities. It now remains
to show that any translation plane admitting SL(2, 5) × Z5 has six component
orbits of length 12. Clearly, we have an orbit of length 10 and at least one of
length 12. Whenever we have a component L as above, we construct a regulus
RL of Γ60 of Σ. In this case, since Z5 acts as a kernel homology of Σ, it follows
that we have five Baer subplanes of RL that are components of π. Clearly, the
orbit of RL then has length 6 or 12 and we then see that Z5 permutes one of
the orbits of length 12; that is, we must have an additional orbit of length 12
and hence five more. QED

11 Corollary. Let Σ be a Desarguesian plane of order 81 that admits
SL(2, 5) as a collineation group. Let πo be any subplane of a τ -invariant regulus
net that sits in Γ60 then SL(2, 5)πo is a partial spread of cardinality 12 that
contains exactly two τ -invariant components (πo and πoNSL(2,5)(〈τ〉)).

Proof. Since SL(2, 5)×Z5πo is a partial spread of cardinality 60, we have
the proof of first part of the corollary, using the proof of the previous theorem.

QED

3 The orbit constructions

By the previous section, we know that there are two orbits O1 and O2 in
Γ60 of SL(2, 5) × Z5. Hence, Oi has five SL(2, 5) orbits Oji , for j = 1, 2, 3, 4, 5
and i = 1, 2, that are permuted cyclically by Z5.

Moreover, for any τ -invariant subplane πo, there are exactly two τ -invariant
subplanes in SL(2, 5)πo, and each is a partial spread of cardinality 12. However,
we shall be interested in the ‘τ -5-orbits’ or ‘τ -5’s’, the images of 1-dimensional
subspaces of Γ60 under 〈τ〉.

12 Lemma. There are exactly 12 τ -5’s in each orbit Oji , j = 1, 2, 3, 4, 5,
i = 1, 2, of which there are two each in P τ, R5, R6, R7, R8 and one each in R3,
R4.

Proof. Simply note that there are 60 · 10/5 = 12 · 10 〈τ〉-orbits of length 5
and these must be partitioned equally into the 10 orbits of SL(2, 5). QED

13 Lemma. For a given Osi , consider the 10 τ -5’s that are in {P τ , R5, R6,
R7, R8}.
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Given any τ -5 A in Osi , there is a second τ -5 B in Osi such that there are
unique corresponding τ -5’s C and D in certain Okj ’s such that A∪C and B∪D
are τ -invariant subplanes such that SL(2, 5)(A ∪C) = SL(2, 5)(B ∪D).

Proof. We know that the τ -invariant subplanes πo split into two τ -5’s in
different SL(2, 5) × Z5-orbits. And, we know that SL(2, 5)πo contains exactly
two τ -invariant subplanes πo and π′

o such that SL(2, 5)πo = SL(2, 5)π′
o. QED

14 Notation. In Oj1, label the τ -5’s in pairs {Cj1,k, Ĉj1,k ; k = 1, 2, 3, 4, 5}
that have corresponding τ -5’s in various Ow2 s such that these pairs of pairs
generate the same SL(2, 5)πk,j . Also note that SL(2, 5)πk,j is a union of two
SL(2, 5) orbits, one is Oj1 and one is Ow2 , for some w.

15 Lemma. Choose two τ -5’s in Oj1, Cj1,k and Cj1,r. Then the uniquely
defined τ -5’s in O2, say Bk2,j and Br2,j , cannot lie in the same Ow2 . This implies
that the 5 τ -5’s in Oj1, C

j
1,k, for k = 1, 2, 3, 4, 5, have corresponding τ -5’s, one

each in the orbits Ow2 , for w = 1, 2, 3, 4, 5.
Hence, we choose the notation so that the corresponding τ -5 of Cj1,k is de-

noted by Bk2,j in Ok2 , for k = 1, 2, 3, 4, 5.

Proof. Suppose so; then SL(2, 5)
(
Cj1,k ∪Bk2,j

)
= SL(2, 5)

(
Cj1,r ∪Br2,j

)
.

However, this says that there is a partial spread of cardinality 12 that has a
proper replacement. By Bruen [2], this says that there must be a derivable net
within SL(2, 5), a contradiction, or the smallest replaceable net has cardinality
2(q − 1) = 2(8) = 16, also a contradiction. QED

16 Notation. We emphasize the following notation: For each j = 1, 2, 3, 4,
5, in Oj1 there are five τ -5’s C

j
1,k, for k = 1, 2,3, 4, 5. The corresponding τ -5, Bk2,j,

is in Ok2 . Hence Ok2 contains Bk2,j such that j = 1, 2, 3, 4, 5 is the corresponding
τ -5 of Cj1,k in Oj1.

3.1 The orbit replacement theorem

17 Theorem.

(1) For O1
1, choose any of the five C1

1,k1
and locate the corresponding Bk12,1 so

that
SL(2, 5)

(
C1

1,k1 ∪Bk12,1

)
is a partial spread of degree 12, which is the union of two SL(2, 5) orbits
O1

1 and Ok12 .
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(2) Then for O2
1, choose any of the five C2

1,k2
whose corresponding Bk22,2 is not

in Ok12 ; there are four possible choices. Then

SL(2, 5)
(
C2

1,k2 ∪Bk22,2

)
is a partial spread of degree 12 and

SL(2, 5)
(
C1

1,k1 ∪Bk12,1

)
∪ SL(2, 5)

(
C2

1,k2 ∪Bk22,2

)
is a partial spread of degree 24.

(3) For O3
1, choose any of the five C3

1,k3
whose corresponding Bk32,3 are not in

Ok12 or Ok22 ; there are three possible choices. Then:

SL(2, 5)
(
C1

1,k1 ∪Bk12,1

)
∪SL(2, 5)

(
C2

1,k2 ∪Bk22,2

)
∪SL(2, 5)

(
C3

1,k3 ∪Bk32,3

)
is a partial spread of degree 36.

(4) Similarly for O4
1, choose any of the two C4

1,k4
whose corresponding Bk42,4

are not in Oks
2 , for s = 1, 2, 3, and finally for O5

1, choose the remaining
C5

1,k5
, whose corresponding Bk52,5 is not in Oks

2 , for s = 1, 2, 3, 4.

Then
5⋃
j=1

5⋃
s=1

SL(2, 5)
(
Cj1,ks

∪Bks
2,j

)
is a partial spread of degree 60 that replaces Γ60.

(5) For any permutation σ of {1, 2, 3, 4, 5}, there is a translation plane πσ
of order 81 with spread in PG(3, 9) that admits SL(2, 5), where the 3-
elements are elations. πσ has spread:

Γ10 ∪ Γ12 ∪
5⋃
j=1

5⋃
s=1

SL(2, 5)
(
Cj1,ks

∪Bks
2,j

)
where σ(s) = ks.

Hence, there are 5 ! possible spreads.

Proof. We note that in each SL(2, 5)
(
Cj1,ks

∪Bks
2,j

)
, we have a union of

two distinct SL(2, 5) 1-space orbits. Since when we vary across Oj1, we choose
the Cj1,ks

so that the corresponding Bks
2,j lies in an orbit Oks

2 , not previously
selected, we are simply taking the union of the SL(2, 5) orbits, pairs at a time.
Since these are disjoint, any union of these forms a partial spread of degree 12,
24, 36, 48, or 60. QED
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18 Corollary. Let πo be any τ -invariant 2-dimensional GF (9)-subspace.
Then SL(2, 5)πo is a partial spread of degree 12.

Proof. Since this is true for the τ -invariant subplanes lying in Γ60, we may
consider the Desarguesian spreads containing Γ10 and realize that this result is
more generally true in the vector space. QED

19 Theorem. There are exactly 6 ! non-Desarguesian spreads in PG(3, 9)
admitting SL(2, 5), where the 3-elements are elations, constructed by the replace-
ment of six SL(2, 5)πi, i = 1, 2, 3, 4, 5, 6, where πi is a τ -invariant 2-dimensional
GF (9)-subspace.

Proof. If we consider the group SL(2, 5) acting on the 4-dimensional vector
space V4, where the SL(2, 5) acts so that the 3-elements are elations, then
there are 12 SL(2, 5)-orbits on V4−Γ10, O1

1, . . . , O
6
1 and O1

2 , . . . , O
6
2 , where each

τ -invariant 2-dimensional GF (9)-subspace is a union of two τ -5’s in different
SL(2, 5) × Z5 orbits. What this means is that each SL(2, 5)-orbit contains 12
τ -5’s and each τ -5 in Oi1 corresponds to a τ -5 in one of the Oj2’s. However,
no two of the 12 τ -5’s in Oi1 have a corresponding τ -5 in the same Oj2. Hence,
we may repeat the proof of the Orbit Replacement Theorem and construct a
set of six SL(2, 5)πi’s. Note that there are two τ -invariant subspaces in each
SL(2, 5)πi, which means that the τ -5’s are paired just as before. Hence, for each
j = 1, 2, 3, 4, 5, 6, we take six Cj1,k τ -5’s in Oj1 with corresponding τ -5’s Bk2,j
in Ok2 , for k = 1, 2, 3, 4, 5, 6; then, using the avoidance principle established in
the previous theorem, we have six possible choices for C1

1,k1
, then five choices

for C2
1,k2

, etc., producing a set of exactly 6 ! partial spreads of degree 72 which
when unioned with Γ10 are spreads admitting SL(2, 5). This completes the proof.

QED

Note we now know how to choose the Prohaska plane. In particular, we need
to choose the unique τ -5 in P τ , for each Oj1. Furthermore, there are four distinct
ways to choose a 12-nest spread, all of which are isomorphic. What this means
is that if Cj1,1, for j = 1, 2, 3, 4, 5, denotes the choice for the Prohaska spread P τ

(using the same notation for two different sets), and Cj1,k, for j = 1, 2, 3, 4, 5,
denotes the four 12-nest spreads Nk for k = 2, 3, 4, 5, we have an indexing
forming the following 5× 5 matrix:

C1
1,1 C1

1,2 C1
1,3 C1

1,4 C1
1,5

C2
1,5 C2

1,1 C2
1,2 C2

1,3 C2
1,4

C3
1,4 C3

1,5 C3
1,1 C3

1,2 C3
1,3

C4
1,3 C4

1,4 C4
1,5 C4

1,1 C4
1,2

C5
1,2 C5

1,3 C5
1,4 C5

1,5 C5
1,1
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In this matrix, the choice of any set consisting of five elements, one element
from each row and column, produces the 5 ! spreads. The notation is possible
due to the selection of corresponding τ -5’s. The selection from row 1 uses O1

1

and a corresponding Ok12 , the selection from row 2 cannot use this particular
Ok12 so one of the choices of τ -5’s of O2

1 is restricted. Thus, the choice that
must be avoided is the one that we place directly below our earlier choice. In
this matrix, there is a unique way to obtain the Prohaska P τ and four ways to
obtain a 12-nest; a unique way to obtain Nk, for k = 2, 3, 4, 5.

20 Corollary. There are exactly 36 Desarguesian spreads:

Σi, i = 1, 2, . . . , 36,

containing Γ10 and admitting SL(2, 5) as a collineation group, each of which
produces 5 ! non-Desarguesian spreads in PG(3, 9).

(1) These 36 Desarguesian spreads correspond to taking any of the 36
SL(2, 5)πi partial spreads and finding the unique Desarguesian spread con-
taining SL(2, 5)πi and Γ10. Hence, with multiplicity 6, there are 36 (5 !)
spreads.

(2) There are exactly 36 Prohaska spreads, a unique Prohaska spread defined
by each Desarguesian spread Σi.

(3) There are exactly 144 12-nest spreads, 4 defined by each Desarguesian
spread Σi.

If a translation plane of order 81 with spread in PG(3, 9) has six orbits of
length 12, the plane must be constructed as above.

Proof. In any translation plane of order 81 admitting SL(2, 5), where the
3-elements are elations, where the spread is in PG(3, 9), it is possible to show
that the component orbits have lengths 12, 30 or 60. Furthermore, there must
be a 12-orbit, Γ12, and the orbit Γ10 of elation axes into a unique Desarguesian
spread Σ. Recall that there is an orbit Γ60 of length 60 under SL(2, 5) in Σ.
The remaining part of the translation plane must lie over Γ60 so this partial
spread is a replacement net for Γ60. There is a unique τ -invariant Desarguesian
plane Στ containing the τ -invariant 2-dimensional GF (9)-subspaces. Since some
of the latter must lie in Γ60 as Baer subplanes, it follows that τ must fix a set
of five reguli that lie in Γ60.

However, we simply avoid this situation by assumption.
So, any plane has SL(2, 5) as a normal subgroup (unless SL(2, 9) is gen-

erated, implying that the plane is Desarguesian) and there are 6 SL(2, 5)πi’s
that are permuted by the full collineation group as these are component orbits
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of SL(2, 5). Suppose that g is a collineation of π that fixes each SL(2, 5)πi.
Then clearly g is a collineation of Σ and since we have g normalizing SL(2, 5),
g acts on 10, 12, 60 components of Σ. Furthermore, since Γ60 is an orbit, we
may assume that g fixes a component of Γ60. If the order of g is 3, we clearly
have a contradiction, as then g would be an elation of Σ. Hence, g fixes two
components of Γ60. Assume that g is in GL(2, 81) acting on Σ. Then either g
is a kernel homology group of Σ or g fixes exactly two components of Σ and
then the order of g divides (80, 58, 10, 12) = 2. So, we may assume that we
have an affine homology with axis and coaxis in Γ60. However, the normalizer of
SL(2, 5), modulo SL(2, 5), in GL(4, q), centralizes SL(2, 5), so that this cannot
occur. Hence, g is a kernel homology of Σ that leaves each SL(2, 5)πi invariant.
However, there are exactly two τ -invariant subplanes of Σ in each SL(2, 5)πi, so
that g has order dividing 16. Furthermore, unless the plane is Prohaska, the two
subplanes in SL(2, 5)πi, for some i, are in different τ -invariant reguli sitting in
Σ. This means that g is in the GF (9)-kernel homology group, when the spread
is not Prohaska. So, if the spread is not Prohaska, the kernel of the action in
GL(4, 9) is the GF (9)-kernel homology group.

The normalizer of SL(2, 5), modulo SL(2, 5), is 〈GL(2, 9), α〉, where α is
the collineation arising from the Frobenius automorphism of GF (9), of order 2
acting in ΓL(4, 9).

We have seen that there is a unique way to choose a Prohaska spread from
each Desarguesian spread containing Γ10 (where the SL(2, 5)πo that is in the
Desarguesian spread is left invariant under Z5). Hence, there are exactly 36
Prohaska spreads, all isomorphic since the 36 Desarguesian spreads form an
orbit under the normalizer of SL(2, 5). Similarly, there are exactly four ways to
choose a 12-nest spread in a Desarguesian plane, so that are exactly 36 ·4 = 144
12-nest spreads, all isomorphic. QED

We now consider the SL(2, 5)-spreads that are not Prohaska or 12-nest
spreads. Since there are 6 ! possible spreads, this leaves 720 − 36 − 144 = 540
spreads to consider. We know that a collineation group of any associated transla-
tion plane π normalizes SL(2, 5) and permutes a set of six SL(2, 5)πi’s. Suppose
that there is a collineation of order 5. Then this collineation centralizes SL(2, 5)
and we obtain a collineation group isomorphic to SL(2, 5) × Z5. However, this
means that the spread is Prohaska or a 12-nest spread. Therefore, the orbit of
isomorphic spreads must be divisible by 5 and, of course, by 9. We consider
the action of the collineation group on the six SL(2, 5)πi’s, as a subgroup of S6

that contains no elements of odd order. Hence, the group induced on the six
SL(2, 5)π’s is an even-order subgroup. Suppose that the order is at least 8. Then
there is a subgroup of order 4 that fixes two SL(2, 5)πi’s and hence may be con-
sidered a collineation g of some Desarguesian plane (actually two Desarguesian
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planes) containing Γ10. In this case, we have seen above that GL(2, 81) contains
only the GF (9)-kernel homology group. But then we can only have that g is
α of order 2 or in the GF (9)-kernel homology group. In the latter case, then g
is trivial acting on the six SL(2, 5)πi’s. Hence, the collineation group of π that
fixes some SL(2, 5)π1 has order at most 2 modulo the GF (9)-kernel homology
group. So, the collineation group of π has order at most 8, module SL(2, 5)×Z8.
Since the normalizer of SL(2, 5) modulo SL(2, 5) has order 9 ·80 ·8 ·2, it follows
that there are at least 9 ·80 ·8 ·2/(8 ·8) = 180 planes isomorphic to π. Since there
are 540 spreads remaining, we have at most 3 mutually non-isomorphic planes.
Furthermore, there are either 3 planes or 2 planes since the Sylow 3-subgroup of
GL(2, 9) has order 9. However, we may choose the set of six SL(2, 5)πi’s relative
to some Desarguesian plane in 120 − 5 ways to get one of these possibly three
spreads. We note that there is always an orbit of length less than or equal 2 of
SL(2, 5)πi’s. We then may choose the SL(2, 5)πi’s to have a group of order 8,
modulo the GF (9)-kernel homology group.

Hence, there are exactly three mutually non-isomorphic planes.

21 Corollary. There are exactly six mutually non-isomorphic spreads ad-
mitting SL(2, 5), where the 3-elements are elations, provided in the non-De-
sarguesian case that there are six component orbits of length 12:

(1) Desarguesian,

(2) Prohaska,

(3) the 12-nest spread, and

(4) three spreads arising from 24 reguli in a Desarguesian affine plane.

There are exactly six mutually non-isomorphic spreads π in PG(3, 9) that admit
SL(2, 5), generated by elations.

Proof. Let Γ10 denote the net defined by the ten axes of elations in SL(2, 5).
Then since SL(2, 5) is generated by central collineations, it follows that SL(2, 5)
leaves invariant each of the 10 Baer subplanes incident with the zero vector.
Hence, by Johnson [7], there is a unique Desarguesian affine plane Στ consisting
of τ -invariant linesized subspaces, where τ has order 10. The normalizer of 〈τ〉
in SL(2, 5) has order 20, and we may consider τ to be a kernel homology group
of Στ . It follows that the involution of SL(2, 5) is the kernel involution of π. We
note that τ2 must fix at least two components L and M of π − Γ10. Hence, L
and M are also components of Στ and the normalizer of order 20 acts on the
Desarguesian plane and is dihedral on the line at infinity. Hence, L and M are
inverted by a collineation in the normalizer of 〈τ〉. Let H denote the linear set of
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q − 1 reguli of Στ with carrying lines L and M . Hence, Γ∗
10 (derived) is in H. If

we multiply derive H, we obtain a unique Desarguesian plane Σ containing Γ10,
L and M and admitting SL(2, 5). It follows that the L and M are in the unique
orbit Γ12 of length 12 of SL(2, 5) acting on Σ. Hence, it follows that Γ12 is also
a subnet of π. Hence, π and Σ share Γ10, Γ12 and SL(2, 5) has an orbit Γ60 of
length 60 on Σ and has five more orbits of length 12 on π. Hence, five orbits
of length 12 of π lie across Γ60. Each orbit of length 12 in π can only contain
and must contain exactly two τ -invariant components. These are τ -invariant
subplanes of Γ60. However, we cannot be certain that we have constructed the
plane using Γ60. That is, there are exactly six orbits of length 12 for each plane.
If we choose any of these orbits of length 12, we may embed Γ10 and this orbit
in a unique Desarguesian spread containing Γ10. The normalizer of SL(2, 5),
modulo SL(2, 5), contains the group that centralizes SL(2, 5) and acts as an
elation group on the ΓOpp10 . That is, there is a subgroup isomorphic to SL(2, 9)
that does this. Furthermore, the group α : (x, y) �−→ (

x3, y3
)
of Σ normalizes

SL(2, 5). In any case, since we are stabilizing a regulus, the group is a central
product of ΓL(2, 9)GL(2, 9) by a group of order 8. The normalizer of SL(2, 5)
then is generated by GL(2, 9) and the Frobenius automorphism. We note that
we are interested in the normalizer of 〈τ〉, which has index 6 in 〈α,GL(2, 9)〉.

This shows that any isomorphism g between πσ and πρ may be considered a
Desarguesian collineation that fixes Γ10 and Γ12 and normalizes SL(2, 5). Since
we may assume that the SL(2, 5)πσ,i pieces are mapped by g onto the corre-
sponding SL(2, 5)πρ,k pieces, and these are orbits themselves, we may assume
that g maps some τ -invariant subplane of Σ in Γ60 to another τ -invariant sub-
plane. Consider Στg. Since g maps ΓOpp10 back into itself and maps one τ -invariant
subspace to another τ -invariant subspace, it follows that Στg = Στ . Hence, g
is a collineation of the two Desarguesian subspaces Σ and Στ and normalizes
SL(2, 5).

Since Z5 is also normalized by g (automatically), and modulo SL(2, 5), the
order of the group that leaves O1 and O2 invariant is exactly 20, it follows that
we have exactly five mutually non-isomorphic planes, all constructed from a
Desarguesian plane Σ by the method stated in the Orbit Replacement Theorem.
Hence, in total, counting the Desarguesian spread, there are exactly six spreads
admitting SL(2, 5), where the 3-elements are elations.

So, in general it would remain to show that any non-Desarguesian translation
plane admitting SL(2, 5) generated by elations has exactly six component orbits
of length 12. The above argument shows that there must be an orbit Γ10 of length
10, the elation axes, and at least one orbit Γ12 of length 12. Furthermore, it
follows from arguments in Jha and Johnson [6] that there cannot be an orbit of
length 6 or 15. Hence, all orbits are of length 12, 30 or 60. Furthermore, there
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is a unique Desarguesian spread Σ containing Γ10 and Γ12, and, assuming that
π is not Σ, all other orbits of components of π are orbits of Baer subplanes of
Γ60 in the Desarguesian plane Σ. Consider the orbit of RL, the regulus of Γ60

containing L. If RL is not a τ -invariant regulus, for some element τ of order 5,
then the orbit length is divisible by 3 and 5 and hence is either 15, 30, or 60. If
the orbit length of RL is 30, then the orbit length of L is either 30 or 60.

Again, we may take this as a hypothesis to simplify the argument. QED

4 The Baer case

Now assume that we have SL(2, 5) acting on a translation plane π of order
81. By Jha and Johnson [6], we note that the 3-elements are elations or Baer.
Furthermore, in the Baer case, we note the following:

22 Remark. If whenever there is an orbit of length 12, all orbits of com-
ponents have lengths 1, 12 or 60, then the Baer axes line up into a derivable
net.

It is known by computer that this is exactly the situation when there is an
orbit of length 12, however, we do not have a proof of this without the use of
the computer.

If we make this assumption in the dimension 2 case, we have a computer-free
construction of all translation planes of order 81 with spread in PG(3, 9) that
admit SL(2, 5) as a collineation group.

23 Theorem. Let π be a translation plane of order 81 with spread in
PG(3, 9) that admits SL(2, 5) as a collineation group. Acting on the vector space
V4, assume that when there is a partial spread orbit of length 12, Γ12, all partial
spread orbits disjoint from Γ12 have length 1, 12 or 60, and there is only an
orbit of length 60 in the Desarguesian case.

Then π is one of the following twelve planes:

I. The 3-elements are elations and π is one of the following six planes:

(1) Desarguesian,

(2) Prohaska

(3) a 12-nest plane,

(4) one of three planes obtained from a Desarguesian plane using 24
reguli;

II. The 3-elements are Baer and π is one of the following six planes:

(1) Hall,
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(2) derived Prohaska,

(3) derived 12-nest plane,

(4) the derived planes of the three planes of (I4) above.

24 Remark. The computer will tell us that, in fact, any non-Desarguesian
translation plane of order 81 and spread in PG(3, 9) admitting SL(2, 5) does
have the property that there are six orbits of components of length 12. It may be
possible to prove this fact without the use of the computer, thereby completely
determining the translation planes with spreads in PG(3, 9) in a completely
analytical manner.
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