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Abstract. This paper deals with results concerning the relative nullity foliation of the screen
distribution of a lightlike Einstein hypersurface M in the Lorentzian space R

n+2
1 and gives a

characterization theorem for the relative nullity spaces. Many differences from the Riemannian
case are due to the fact that the metric in consideration is degenerate.
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1 Introduction and result

We investigate in this paper the relative nullity foliation of the screen dis-
tribution of a lightlike Einstein hypersurface M in Rn+2

1 . Our result stands as
follows

1 Theorem. Let M be the Lorentzian space Rn+2
1 (n ≥ 3) and (M,g, S(TM))

a lightlike-Einstein hypersurface in M . Then:

(1) The relative nullity space distribution T ∗0 of the screen distribution is
smooth and involutive on any subset with constant index of relative nullity.
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(2) The set G of points in M where ν(x) = ν0 is open in M .

(3) The foliation T ∗0 of the screen distribution is totally geodesic in M and
Rn+2

1

(4) If M is not Ricci flat,

a. T ∗0 is an isotropic distribution along M .

b. and if the shape operators A∗
ξ and AN are simultaneously diagonaliz-

able on M , then T ∗0 = TM⊥.

This main result is similar to that of the indefinite isometric immersion
case. However, there are non trivial differences arising in the last part of our
theorem. In the next two paragraphs, we summarize basic formulae concerning
geometric objects on lightlike submanifolds and lightlike Einstein hypersurfaces,
using notations of [3], and basic properties of the relative nullity space of a
lightlike Einstein hypersurface. The last part of the paper is the proof of the
main theorem.

2 Preliminaries and basic facts

The fundamental difference between the theory of lightlike (or degener-
ate) submanifolds (Mn, g), and the classical theory of submanifolds of a semi-
Riemannian manifold (M̄n+p, ḡ) comes from the fact that in the first case, the
normal vector bundle TM⊥ intersects with the tangent bundle TM in a non
zero subbundle, denoted Rad(TM), so that

Rad(TM) = TM ∩ TM⊥ 6= { 0 } (1)

Given an integer r > 0, the submanifold M is said to be r-lightlike (or
r-degenerate) if the rank of Rad(TM) is equal to r everywhere.

In particular, lightlike hypersurfaces of Lorentzian spaces, have their degen-
erate metric of signature (0,+ . . . ,+). Then the induced metric on their screen
distribution S(TM) is non degenerate and positive definite metric (see [3]). In
this case, relation (1) becomes Rad(TM) = TM⊥ and we have the following
splitting in an orthogonal direct sum

TM = S(TM) ⊥ Rad(TM). (2)

Throughout the paper, we will consider integrable screen distributions
S(TM), that is at each point p ∈ M , there is a submanifold (a leaf) S ⊂ M
such that TpS = S(TpM) and for a vector bundle E, Γ(E) will denoted the
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space of smooth sections over E, and we also use F(M ) to denote the space of
smooth functions on M .

We have the following normalization result.

2 Theorem (Duggal-Bejancu [3], p. 79). Let (M,g, S(TM)) be a lightlike
hypersurface of a semi-Riemannian manifold (M,g). Then there exists a unique
vector bundle tr(TM) of rank 1 over M , such that for any non-zero section ξ
of TM⊥ on a coordinate neighbourhood U ⊂ M , there exists a unique section
N of tr(TM) on U satisfying

g(ξ,N) = 1, g(N,N) = g(N,W ) = 0, ∀W ∈ Γ(S(TM |U )). (3)

Consider ∇ the Levi-Civita connection of (M,g) and ∇ the induced con-
nection on the lightlike hypersurface (M,g). The connection ∇ on (M,g) is not
unique in general. It depends on both g and S(TM), and is associate to the
triplet (M,g, S(TM)). One can show that it is independent of S(TM) if and
only if the second fundamental form h of M (defined in (5) below) vanishes
identically (see [3, Theorem 2.1, p. 87]).

With the decompositions in orthogonal direct sums (2) and

TM |M = S(TM) ⊥ (TM⊥ ⊕ tr(TM)) = TM ⊕ tr(TM), (4)

Gauss and Weingarten formulae can been written

∇XY = ∇XY + h(X,Y ), ∀X,Y ∈ Γ(TM), (5)

∇VX = −AVX + ∇t
X , ∀X ∈ Γ(TM) ∀V ∈ Γ(tr(TM)), (6)

where ∇XY and AVX belong to Γ(TM), while h is a Γ(tr(TM))−valued sym-
metric F(M)-bilinear form on Γ(TM), AV is an F(M)-linear operator on Γ(TM)
and ∇t is a linear connection on the lightlike transversal vector bundle tr(TM).

Define a symmetric F (U)-bilinear form B and a 1-form τ on the coordinate
neighbourhood U by

B(X,Y ) = ḡ (h(X,Y ), ξ) , ∀X,Y ∈ Γ (TM |U ) , (7)

τ(X) = ḡ
(
∇t

XN, ξ
)
, ∀X ∈ Γ (TM |U ) . (8)

The 1-form τ depends on the vector field ξ and it’s easy to see that if ξ̄ = αξ
with α a positive smooth function on M , the associated 1-form τ̄ is related to
τ by

τ(X) = τ̄(X) +X (Logα) , ∀X ∈ Γ (TM |U ) . (9)

The induced connection ∇ on a lightlike hypersurface M is not metric in
general and the Ricci tensor associated is not symmetric, contrary to the case
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of semi-Riemannian manifolds. However, for lightlike Einstein hypersurfaces,
due to the symmetry of the induced degenerate metric g, the Ricci tensor is
symmetric, and the notion of Einstein manifold doesn’t depend on the choice
of the screen distribution ST (M). Consequently

3 Proposition. On a lightlike-Einstein hypersurface the 1−form τ in (8)
is closed.

Proof. Define Ricc as

Ricc(X,Y ) = trace(Z −→ R(Z,X)Y ), ∀X,Y ∈ Γ(TM),

where R denotes the Riemann tensor of the induced connection ∇ on M .
Consider a local quasi-orthonormal frame-field {X0,N,Xi}i=1,...,n on M

where {X0,Xi} is a local frame-field on M with respect to the decomposi-
tion (4) with N , the unique section of transversal bundle tr(TM) satisfying
(3), and ξ = X0. Put Rls := Ricc(Xs,Xl) and R0k := Ricc(Xk,X0). A direct
computation using the frame-field {X0,N,Xi} gives locally

Rls −Rsl = 2dτ(Xl,Xs),

R0k −Rk0 = 2dτ(X0,Xk).

Consequently, because The Ricci tensor is symmetric on M which is Einstein,
we have dτ = 0. QED

We also have

4 Proposition. If (M,g, S(TM)) is a lightlike-Einstein hypersurface, there
exists, on all coordinate neighbourhood U , a pair {ξ,N} such that the 1−form
τ in (8) vanishes identically.

Proof. From proposition 3 τ is closed. Poincare lemma implies locally on
U , τ = dζ for some function ζ ∈ F(U) that is

τ(X) = X · (ζ).

Using relation (9), for α = exp(ζ) yields

τ(X) = τ̄(X) +X · ζ = τ̄ (X) + τ(X),

so τ̄(X) = 0 for all X ∈ Γ(TM |U ). Then, taking ξ̄ = exp(ζ)ξ, one obtains τ̄ ≡ 0
on U . The corresponding N̄ is N = (1/exp(ζ))N . QED

For the sake of simplicity we also denote this pair by {ξ,N}. Then, relation
(6) may be written as

∇̄XN = −ANX, ∀X ∈ Γ(TM |U ). (10)

For the sake of future use, we also have
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5 Proposition. Let (M,g, S(TM)) be a lightlike hypersurface of the Lorentz
space Rn+2

1 (n ≥ 3). Then

Ricc(X,Y ) = g(A∗
ξX,Y )trAN − g(ANX,A

∗
ξY ), ∀X,Y ∈ Γ(TM |U ).

Proof. We have

Ricc(X,Y ) = trace (Z 7→ R(Z,X)Y )

=
∑

g (R(Wi,X)Y,Wi) + ḡ (R(ξ,X)Y,N) .

The Riemann tensor R̄ of Rn+1
1 is zero and from Gauss and Codazzi equation,

we obtain

g (R(Wi,X)Y,Wi) = B(X,Y )C(W,Wi) −B(W,Y )C(X,Wi).

In other side, from the equality

ḡ
(
R̄(X,Y )Z,N

)
= ḡ (R(X,Y )Z,N) , ∀X,Y ∈ Γ(TM),

we obtain for R̄ = 0, ḡ (R(ξ,X)Y,N) = 0 and

Ricc(X,Y ) = B(X,Y )

(
n∑

i=1

C(Wi,Wi)

)
−
(

n∑

i=1

B(Wi, Y )C(X,Wi)

)
.

But C(Wi,Wi) = g(ANWi,Wi) and ḡ (ANξ,N) = 0, hence

n∑

i=1

C(Wi,Wi) = traceAN .

And the result holds using relations

B(Wi, Y ) = g(AξY,Wi) and C(X,Wi) = g(ANX,Wi).

QED

3 The relative nullity distribution of the screen dis-

tribution

Let M be a lightlike hypersurface in the Lorentzian space Rn+2
1 . The relative

nullity space at a point x is defined by:

T ∗0(x) = {X ∈ TxM/A∗
ξX = 0, ∀ ξ ∈ TxM

⊥ }
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where A∗
ξ is the shape operator of M . This distribution characterize somehow

the totally geodesic property of M ; indeed T ∗0(x) = Tx(M) is equivalent to M
is totally geodesic.
The dimension ν(x) of T ∗0(x) is called the index of relative nullity at x. The
value ν0 = min

x∈M
ν(x) is called the index of minimum relative nullity.

Nullity spaces in Riemannian geometry have been studied by many authors
( [4, p. 68], [5] and references therein). Abe and Magid (see [1]) have extended the
study of the relative nullity foliation to isometric immersion between manifolds
with indefinite metrics. In the case of lightlike isotropic submanifolds M of
semi-Riemannian manifolds, the first transverse space at a point x define by

T1(x) = span{hs(X,Y ), X, Y ∈ Γ(TxM) }

where hs is defined from Gauss formula (5), has been used by C. Atindogbe
and al in [2] to the reduction of the codimension of an isotropic immersion. It
is worth noticing here that as for the relative nullity space, T1(x) = { 0 } for all
x ∈ M is equivalent to M is totally geodesic in the semi-Riemannian manifold
M

n+p
.

For the proof of the main theorem of this paper, we need the following
characterization of the relative nullity space. We have

6 Proposition.

T ∗0(x) = {X ∈ TxM, h(X,PY ) = 0, ∀Y ∈ TxM }

where P is the projection morphism of Γ (TM) on Γ (ST (M))

Proof. We have

X ∈ T ∗0(x) ⇐⇒ A∗
ξX = 0, ∀ ξ ∈ TxM

⊥

⇐⇒ g(A∗
ξX,PY ) = 0, ∀Y ∈ TxM, ∀ξ ∈ TxM

⊥

⇐⇒ h(X,PY ) = 0, ∀Y ∈ TxM, ∀ξ ∈ TxM
⊥.

QED

7 Remark. Due to the fact that A∗
ξξ = 0 one has

dimT ∗0(x) ≥ 1, ∀x ∈M

Moreover

T ∗0(x) ⊃ TxM
⊥ (11)

Therefore, T ∗0 is a degenerate distribution along M .
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4 Proof of the main theorem

(i) Let Ω be an open subset of M on which the relative nullity index is a
constant ν, and x0 ∈ Ω. From (11), we have

T ∗0(x0) = P (T ∗0(x0)) ⊥ Tx0M
⊥

We claim that

T ∗0⊥(x0) = span{A∗
ξY, Y ∈ Tx0M, ξ ∈ Tx0M

⊥ } ⊥ Tx0M
⊥.

Let ⊥S denote the orthogonality symbol in S(TM). For Y ∈ Tx0M, ξ ∈
Tx0M

⊥ and X ∈ P (T ∗0(x0)), we have

g(A∗
ξY,X) = g(Y,A∗

ξX) = 0,

and
span{A∗

ξY } ⊂ P (T ∗0(x0))
⊥S .

Let Z ∈ span{A∗
ξY }⊥S and Y ∈ Tx0M , we have

0 = g(Z,A∗
ξY ) = g(A∗

ξZ, Y ), ∀Y ∈ Tx0M.

Then
A∗

ξZ ∈ S(Tx0M) ∩ Tx0M
⊥0 = { 0 }.

That is A∗
ξZ = 0 and Z ∈ P (T ∗0(x0)). Hence

span{A∗
ξY }⊥S ∈ P (T ∗0(x0)) and P (T ∗0(x0))

⊥S ⊂ span{A∗
ξY }.

We conclude that

P (T ∗0(x0))
⊥S = span{A∗

ξY } and T ∗0⊥(x0) = span{A∗
ξY } ⊥ Tx0M

⊥.

There exist vector fields Y1, . . . , Yn−ν+1 ∈ Tx0M such that

{ ξ(x0), A
∗
ξ(x0)Y1, . . . , A

∗
ξ(x0)Yn−ν+1 }

represent a basis of T ∗0(x0)
⊥. Take smooth local extensions of ξ(x0) and

Y1, . . . , Yn−ν+1 ∈ Tx0M in TM⊥ and TM respectively. By continuity, the vector
fields { ξ(x0), Y1, . . . , Yn−ν+1 } remain linearly independent in a neighbourhood
W ⊂ Ω of x0, and then T ∗0⊥ is a smooth distribution. Consequently, T ∗0 is a
smooth distribution.

(ii) From the arguments developed in (i) it is obvious that G is open.
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(iii) From Gauss-Codazzi equations, for all U ∈ TM⊥ and X,Y,Z ∈ Γ(TM),
we have

g(R̄(X,Y )Z,U) = g((∇Xh)(Y,Z) − (∇Y h)(X,Z), U).

Assume X ∈ Γ(TM) and Y,Z ∈ T ∗0(x). Then,

(∇Xh)(Y,Z) = ∇t
Xh(Y,Z) − h(∇XY,Z) − h(Y,∇XZ),

and

(∇Xh)(Y,Z) − (∇Y h)(X,Z) = ∇t
Xh(Y,Z) −∇t

Y h(X,Z) + h(∇YX,Z)

+ h(X,∇Y Z) − h(∇XY,Z) − h(Y,∇XZ).

But
g(h(X,PY ), ξ) = g(A∗

ξX,PY ),

and
τ(X) = g(∇t

XN, ξ) = 0.

So
g(∇t

Xh(Y,Z), ξ) = g(∇t
XB(Y,Z)N, ξ) = X ·B(Y,Z).

Therefore

X ·B(Y,Z) − Y · B(X,Z) + g(h(∇Y X,Z)

+ h(X,∇Y Z) − h(∇XY,Z) − h(Y,∇XZ), ξ) = 0.

We have
X = PX + g(X,N)ξ

Y = PY + g(Y,N)ξ.

Then, from (7), using the fact that B(X, ξ) = 0, ∀X ∈ Γ (TM |U ) and Proposi-
tion 6 we have

B(Y,Z) = g(h(Z,PY ), ξ) + g(Y,N)B(ξ, Z) = 0.

Similarly
B(X,Z) = 0.

On the other side, we have

h(∇YX,Z) = h(∇Y PX + g(X,N)ξ, Z)

= h(∇∗
Y PX + h∗(Y, PX) + g(X,N)ξ, Z)

= h(∇∗
Y PX,Z) = 0, (for Z ∈ T ∗0(x) and ∇∗

Y PX ∈ S(TM)).
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Also

h(∇XY,Z) = 0.

Then

g(h(X,∇Y Z) − h(Y,∇XZ), ξ) = 0.

But

h(Y,∇XZ) = h(Y,∇X(PZ + g(Z,N)ξ))

= h(Y,∇XPZ) + g(Z,N)h(Y,∇X ξ)

= h(Y,∇∗
XPZ + h∗(X,PZ)) + g(Z,N)h(Y,−A∗

ξX − τ(X)ξ)

= 0.

So h(Y,∇XZ) = 0. Hence

g(h(X,∇Y Z), ξ) = 0, ∀X ∈ Γ(TM),

that is

h(∇Y Z,PX) = 0, ∀X ∈ Γ(TM).

From Proposition 6 we deduce that ∇Y Z ∈ T ∗0(x).
We conclude that T ∗0 is totally geodesic in TM and Rn+2

1 and (iii) is proved.

(iv) We assume now that M is not Ricci flat.

(a) From Proposition 5 we have

g(A∗
ξX,Y )trAN − g(ANX,A

∗
ξY ) − ρg(X,Y ) = 0, ∀X,Y ∈ Γ(TM |U )

But

X,Y ∈ T ∗0(x) =⇒ A∗
ξX = A∗

ξY = 0,

and the hypothesis implies ρ 6= 0. So

g(X,Y ) = 0, ∀X,Y ∈ T ∗0(x)

that is the distribution T ∗0 is isotropic along M . We infer that T ∗ is of rank
one, for there is no isotropic distribution in Rn+1

1 of which the rank is larger
than one.

(b) Now, take X ∈ T ∗0(x) and Y ∈ TxM

g(A∗
ξX,Y )trAN − g(ANX,A

∗
ξY ) − ρg(X,Y ) = 0,

so

g(A∗
ξX,Y )trAN − g(A∗

ξANX,Y ) − ρg(X,Y ) = 0.
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If the shape operators A∗
ξ and A∗

N are simultaneously diagonalizable at x ∈
M , then they commute A∗

ξAN = ANA
∗
ξ .

Consequently

g(A∗
ξX,Y )trAN − g(ANA

∗
ξX,Y ) − ρg(X,Y ) = 0

that is
g(X,Y ) = 0, for A∗

ξX = 0 and ρ 6= 0.

So
X ∈ T ∗0(x) implies g(X,Y ) = 0, ∀Y ∈ TxM.

Then X ∈ TxM
⊥ and we deduce that T ∗0(x) ⊂ TxM

⊥.
From (11) we conclude that

T ∗0(x) ≡ TxM
⊥.

QED
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