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Abstract. A prime p is called elite, or anti-elite, when all but finitely many Fermat numbers
are quadratic nonresidues or residues, respectively, modulo p. It is known that if the multi-
plicative order of 2 modulo p is of the form 2s × 5, where s ≥ 2, then the prime p is either
elite or anti-elite. Modulo elite primes of this kind, we describe some criteria by which all
sufficiently large Fermat numbers be primitive roots, or all nonprimitive roots.
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Introduction

The primality of the Fermat number Fn = 22
n

+ 1 can be checked using the so-called

Pepin’s test: Fn is prime if and only if 3
Fn−1

2 ≡ −1 (modFn). The choice of p = 3 in this
test is not unique; it may be replaced by another prime number as long as Fn is a quadratic
nonresidue modulo p for each n, or at least for all sufficiently large values of n [2, Remark
5.10]. Aigner [1] called such a prime number p an elite prime.

To clarify, an integer a which is not a multiple of the prime p is a quadratic residue modulo
p if the congruence x2 ≡ a (mod p) has a solution; otherwise a is a quadratic nonresidue. The
integer a is a primitive root modulo p if |a|p = p − 1, where |a|p denotes the multiplicative
order of a modulo p. That a primitive root is necessarily a quadratic nonresidue is a known
elementary fact.

It is moreover known that modulo p > 2, there are precisely p−1
2

quadratic nonresidues,

φ(p − 1) of which are primitive roots. Now a prime Fermat number, p = 22
n

+ 1, has the
peculiar property where φ(p − 1) = p−1

2
, thus every quadratic nonresidue is also a primitive

root modulo p. This fact is interesting at least theoretically, for no one has seen a prime Fermat
number beyond F4.

This paper is a brief investigation into a subfamily of elite primes, wherein we consider
primes modulo which all Fermat numbers Fn, beyond a certain value of n, are primitive roots.
The first eight primes with this property are

3, 5, 7, 23041, 3208642561, 912680550401, 1825696645121, 3580135407617,

the last of which is the 29th elite prime.
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Furthermore, it seems natural that in studying such primes we will eventually cross path
with their counterpart, namely the elite primes modulo which all large enough Fn are non-
primitive roots (while they are quadratic nonresidues). Our initial results on these two classes
of elite primes, which we name ultra-elite primes, are limited to the specific case where |2|p is
5 times a power of 2. Under this assumption, we are able to test for ultra-eliteness involving
only modular exponentiations to the power p−1

5
.

1 Elite and Anti-Elite Primes

Let p denote an odd prime number of the form p = 2r × h + 1, for some odd number h.
Aigner [1] and Müller [5, 6] have established the following results.

The Fermat numbers Fn, for all n ≥ 0, satisfy the recurrence relation

Fn+1 = (Fn − 1)2 + 1. (1)

Therefore, the sequence Fn mod p is eventually periodic. The length of this periodicity is given
by L = |2|t, where t is the divisor of h which appears in the relation |2|p = 2s × t, for some
integer s ≤ r.

The L distinct terms of Fn mod p, forming one complete cycle, are called the Fermat
remainders of the prime p, or modulo p. We call the prime p elite (anti-elite) when all of these
L Fermat remainders are quadratic nonresidues (residues) modulo p.

We also know that the repeated terms in the sequence Fn mod p begin at n = s. As r ≥ s,
the L Fermat remainders may always be represented by the numbers

Fr, Fr+1, Fr+2, . . . , Fr+L−1 mod p .

Moreover, a necessary condition for the prime p to be elite is that L be an even number in the
range 4 ≤ L < p−1

4
, with the following exceptions.

(1) The primes 3 and 5 are elite with L = 1.

(2) The prime 7 is elite with L = 2.

For the anti-elite case, L is allowed to be odd and, in particular, p is anti-elite with L = 1 if
and only if p is a divisor of some Fermat number larger than 5 [6, Theorem 2.1].

Müller [5, Conjecture 5.4] conjectured that the number of elite primes is infinite, with an
estimate for their counting function, possibly, as little as O(log x). Meanwhile, Kř́ıžek et al.
[3] had earlier shown that the number of elite primes up to x is O(x/(log x)2). Additionally,
Müller, who first introduced the concept of anti-elite primes, also proved [6, Consequence 2.5]
that there are infinitely many anti-elite primes with L = 2.

A more recent work [7] applies to the specific case where t = 5: If |2|p = 2s × 5, with
s ≥ 2, then p is either elite or anti-elite with L = 4. In particular, if Φm(X) is the mth
cyclotomic polynomial, then the sequence Φ2n×5(2), for n > 2, contains only products of elite
and anti-elite primes of this type.

2 Ultra-Elite Primes

The first 29 elite primes are listed in Sloane’s Online Encyclopedia of Integer Sequences,
http://www.research.att.com/~njas/sequences/b102742.txt. For each prime p = 2r ×h+
1, we provide in Table 1 below the factorization of h and the period length L, as well as M ,
which is the number of primitive roots among the Fermat remainders modulo p.
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To determine whether or not a Fermat remainder x is a primitive root, we compute the

modular exponentiation x
p−1
q mod p, for each prime q that divides h. If none of these residues

is equal to one, then and only then x is a primitive root.

p r h L M

1 3 1 1 1 1
2 5 2 1 1 1
3 7 1 3 2 2
4 41 3 5 4 3
5 15361 10 3× 5 4 3
6 23041 9 32 × 5 4 4
7 26881 8 3× 5× 7 4 2
8 61441 12 3× 5 4 3
9 87041 10 5× 17 8 5
10 163841 15 5 4 3
11 544001 8 53 × 17 8 6
12 604801 7 33 × 52 × 7 6 5
13 6684673 17 3× 17 8 5
14 14172161 14 5× 173 4 3
15 159318017 16 11× 13× 17 8 6
16 446960641 10 3× 5× 7× 4157 4 0
17 1151139841 16 3× 5× 1171 4 2
18 3208642561 22 32 × 5× 17 4 4
19 38126223361 23 32 × 5× 101 4 1
20 108905103361 22 32 × 5× 577 4 1
21 171727482881 12 5× 17× 493243 8 5
22 318093312001 14 3× 53 × 23× 2251 4 2
23 443069456129 8 13× 17× 7831403 8 5
24 912680550401 31 52 × 17 4 4
25 1295536619521 26 33 × 5× 11× 13 4 2
26 1825696645121 26 5× 5441 4 4
27 2061584302081 37 3× 5 4 3
28 2769999339521 13 5× 7× 47× 205553 4 3
29 3580135407617 16 17× 53× 60631 8 8

Table 1. The first 29 elite primes p = 2r×h+1, modulo each of which M stands
for the number of primitive roots among the L Fermat remainders.

Table 1 reveals that there are eight elite primes p with the property that all Fermat
remainders are primitive roots, i.e., M = L. Additionally, there is a single occurrence of
M = 0, with p = 446960641, where no Fermat remainder is a primitive root. These are the
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two classes of elite primes we wish to consider, and we give them the name ultra-elite primes,
for convenience as well as for their seeming rarity as a subfamily of elite primes.

Definition 1. An elite prime p is called ultra-elite if all its Fermat remainders are ei-
ther primitive roots, or all nonprimitive roots, modulo p. When distinction between the two
classes is needed, we shall call p a primitive ultra-elite prime, or nonprimitive ultra-elite prime,
respectively.

Note that when a prime p is known to be ultra-elite, it is left to find the order modulo
p of any one Fermat remainder x. If x is a primitive root, then p is primitive ultra-elite, else
nonprimitive ultra-elite.

Of the first few elite primes arising from the sequence Φ2n×5(2), we also find two non-
primitive ultra-elite primes, one of which also appears in Table 1, i.e.,

446960641 and 7771646317471635593256655841281,

as well as two primitive ultra-elite primes, i.e.,

46454107161999112389551048616961 and 3587745015951361.

These four ultra-elite primes are divisors of Φ2n×5(2) with n = 7, 8, 9, 10, respectively, and
they belong to a special subclass of elite primes to which we shall now limit our main discussion,
i.e., the elite primes p for which |2|p = 2s × 5.

To avoid repetition, some notation will henceforth be fixed, unless otherwise stated.

Definition 2. Let the prime p = 2r × h+ 1, where h is odd, be an elite prime for which
|2|p = 2s×5. Hence, it is necessary that s ≤ r and h be a multiple of 5. Moreover, the sequence

Fn modulo p will have period length L = |2|5 = 4. Let ω = 22
k

for any chosen value of k ≥ s,
e.g., k = r, so that by Eqn. (1), we may denote the four Fermat remainders modulo p by a, b,
c, d mod p, where

a = 1 + ω, b = 1 + ω2, c = 1 + ω4, d = 1 + ω8.

Part of the following lemma was established in our recent work [7, Proof of Theorem 3.1],
but we reproduce the results here for their subsequent usefulness.

Lemma 1. The numbers a, b, c, d, and ω are ruled by the following congruences modulo
p:

ab ≡ −ω4 (mod p), (2)

bc ≡ −ω3 (mod p), (3)

cd ≡ −ω (mod p), (4)

da ≡ −ω2 (mod p). (5)

Proof. It is clear that ω5 ≡ 1 (mod p), and hence ω8 ≡ ω3 (mod p). Moreover,

1 + ω + ω2 + ω3 + ω4 ≡ 0 (mod p),

because this sum is ω5−1
ω−1

and p does not divide ω − 1. The four congruences that we claim
follow directly from this one. QED

Definition 3. Refering to Definition 2 for our notation, we now assign four integers A,
B, C, and D, to be the least positive residues modulo p, as follows.

A = a
p−1
5 mod p , B = b

p−1
5 mod p , C = c

p−1
5 mod p , D = d

p−1
5 mod p .
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Theorem 1. If none of the four numbers A, B, C, D is equal to one, then the elite prime
p is ultra-elite.

Proof. The Fermat remainder a is a primitive root if and only if a
p−1
q 6≡ 1 (mod p) for every

odd prime q which is a factor of p− 1. (The case q = 2 is already included in the condition for
being elite.) We assume that this incongruence holds with q = 5, and similarly for b, c, and d
as well. Now for any odd prime q 6= 5 which divides p− 1, we may write following (2),

a
p−1
q × b

p−1
q ≡ (−ω4)

p−1
q ≡ 1 (mod p), (6)

because p−1
q

is an even multiple of 5. It follows that a
p−1
q ≡ 1 (mod p) if and only if b

p−1
q ≡

1 (mod p). Therefore, a is a primitive root modulo p if and only if b is. Quite similarly, by
(3) and (4), we establish the equivalence relation between b and c, and that between c and d,
respectively. This proves that p is ultra-elite. QED

Note 1. In particular, in the above proof we see that if there is an odd prime factor q 6= 5

for which a
p−1
q ≡ 1 (mod p), or similarly with b, c, or d, then p is a nonprimitive ultra-elite

prime.

Note also that (6) is still valid for q = 5, provided that p−1
5

is a multiple of 5. In this
special case, either A, B, C,D are all equal to one—which of course, would make p nonprimitive
ultra-elite—or none is. Both possibilities anyhow lead to an ultra-elite prime. This is a corollary
which we state in a more elegant fashion, as follows.

Theorem 2. Let p be a prime number such that |2|p = 2s × 5, with s ≥ 2. If p − 1 is
divisible by 25, then p is either anti-elite or ultra-elite.

Proof. Such a prime p is always elite or anti-elite [7, Theorem 3.1]. And when elite, p is
necessarily ultra-elite, since p−1

5
is divisible by 5. QED

Next, we wish to slightly improve our ultra-eliteness criteria, eventually showing that only
three, sometimes less, of the numbers A, B, C, D are really needed.

Lemma 2. Any one of the following three relations implies the other two.

(1) A = C.

(2) B = D.

(3) p ≡ 1 (mod 25).

Proof. By their definitions, we easily see that aω4 ≡ c (mod p) and bω3 ≡ d (mod p). If A = C,

then (ω4)
p−1
5 ≡ 1 (mod p). Since |ω|p = 5, this last congruence is possible only when p−1

5
is

divisible by 5. This same conclusion also holds when B = D. Conversely, if p ≡ 1 (mod 25),

then ω
p−1
5 ≡ 1 (mod p), which implies both A = C and B = D. QED

Theorem 3. The elite prime p is ultra-elite if A = C or B = D.

Proof. By Lemma 2, each one of the two conditions is equivalent to having p ≡ 1 (mod 25).
The claim is then a consequence of Theorem 2. QED

Lemma 3. We have the following four equivalence relations.

(1) A = 1 if and only if B = C,

(2) B = 1 if and only if C = D,
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(3) C = 1 if and only if D = A,

(4) D = 1 if and only if A = B.

Proof. By squaring both sides of each one of the congruences given in (2) to (5), followed by
a substitution, we obtain another four:

a2b ≡ −c (mod p), (7)

b2c ≡ −d (mod p), (8)

c2d ≡ −a (mod p), (9)

d2a ≡ −b (mod p). (10)

The relation (7) gives A2B ≡ C (mod p). If A = 1, then B = C since both B and C are
least positive residues. Conversely, if B = C (and not a multiple of p, lest p divides a Fermat
remainder) then A2 ≡ 1 (mod p). We cannot have A ≡ −1 (mod p) since we know that A5 ≡
1 (mod p). Hence, A = 1. This proves the first equivalence, while the remaining three follow in
quite a symmetrical manner. QED

Theorem 4. The elite prime p is ultra-elite if any three of the four numbers A, B, C, D
are distinct and not equal one.

Proof. By Lemma 3, if one number equals one, two others are identical. Hence, the stated
condition forces all four not equal one, where p is ultra-elite by Theorem 1. QED

Another consequence of Lemma 3 is that if any two of the numbers A, B, C, D are equal
to one, then all four of them are. More precisely,

Theorem 5. Let M denote the number of primitive roots among the four Fermat remain-
ders modulo the elite prime p. If p is not ultra-elite, then M = 3. In particular, if at least two
of the numbers A, B, C, D are equal to one, then p is nonprimitive ultra-elite.

Proof. Assume that p is not ultra-elite. Then at least one of A, B, C, D is equal to one, while
M counts how many of them are not. Suppose first that A = 1, as the other three cases will
follow by symmetry. Using entirely Lemma 3, we observe that if B = 1, or C = 1, or D = 1,
then all A, B, C, D would equal one, andM = 0, which is not true. Therefore,M = 3. QED

3 Numerical Examples

We list a few numerical results which serve to illustrate the applicability of the theorems
given in the preceding section. In what follows, the notation pn refers to the nth elite prime
given in Table 1.

(1) Of the 29 elite primes in Table 1, ten of them have the property that |2|pn = 2s × 5. Of
these ten, only three are primitive ultra-elite, i.e., n = 18, 24, 26, in which cases none
of A, B, C, D is one. And of these three, only p24 ≡ 1 (mod 25), in which case A = C
and B = D.

(2) Although all A, B, C, D are distinct and none equals one, p16 is nonprimitive ultra-elite.

In this case, x
p−1
3 ≡ 1 (mod p16) for each Fermat remainder x = a, b, c, d.

(3) Six elite primes have M = 3, hence exactly one of A, B, C, D equals one. These
correspond to n = 4 and n = 10 (D = 1), n = 8 (C = 1), n = 14 (B = 1), n = 27 and
n = 28 (A = 1).
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(4) Even though exactly one of A, B, C, D equals one, the prime p = 2352 × 165+1, found
by Müller [5], is nonprimitive ultra-elite, i.e., M = 0.

(5) Another elite prime found by Müller [5], p = 2145 × 9575 + 1 is nonprimitive ultra-elite
with A = B = C = D = 1, hence p ≡ 1 (mod 25).

We conclude this section by providing a pseudo-code for a suggested algorithm which can
be used to test for ultra-eliteness, if factoring p− 1 is not desired.

Theorem 6. Let p be an elite prime such that |2|p = 2s × 5, together with the quantities
A, B, C, D, and M as before. The following pseudo-code returns three possible outcomes,
represented by X, enumerated below.

(1) If X = 0, then p is nonprimitive ultra-elite, i.e., M = 0.

(2) If X = 1, then p is not primitive ultra-elite, i.e., M = 0 or 3.

(3) If X = 2, then p is ultra-elite, i.e., M = 0 or 4.

01. Set X:=1;

02. Compute A;

03. If A=1 then

04. If p%25=1 then X:=0;

05. EXIT;

06. Else compute B;

07. If B=1 or B=A then EXIT;

08. Else compute C;

09. If C>1 then X:=2;

10. EXIT;

Proof. By default (line 01), M = 0 or 3. This remains valid if A = 1 (lines 03 through 05),
but if also p ≡ 1 (mod 25) (line 04), then A = C by Lemma 2 and M = 0 by Theorem 5.

Starting from line 06, we have A 6= 1. If B = 1, or if D = 1 (the check B = A of line 07),
the default is unchanged. At line 08, A 6= B 6= 1. Suppose that C 6= 1 (line 09), for otherwise
the default will remain. Since C 6= B by Lemma 3, either C = A or C 6= A, so p is ultra-elite
by Theorem 3 or by Theorem 4, respectively. QED

The algorithm given in Theorem 6 is a nondeterministic test for ultra-eliteness, particularly
when X = 1 or X = 2, since it does not tell whether p is primitive or nonprimitive, or simply
not ultra-elite. In those cases, we are forced to find the complete factorization of p−1, in order
to compute the order modulo p of one of the four Fermat remainders.

4 Open Discussion

We close with some remarks concerning ultra-elite primes in general. But first, the following
theorem is of some theoretical worth as a criterion for an arbitrary odd integer to be a primitive
ultra-elite prime.

Theorem 7. Let N be an odd positive integer. Then N is a primitive ultra-elite prime if
and only if every Fermat remainder x modulo N satisfies the following two conditions.

(1) x
N−1

2 ≡ −1 (mod N) and

(2) x
N−1

q 6≡ 1 (mod N), for every odd prime q that divides N − 1.
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Proof. If N is an elite prime, x must meet the Euler’s criterion (the first condition) for being
a quadratic nonresidue. The second condition is furthermore required for it to be a primitive
root modulo N . Conversely, the two conditions imply, respectively, that |x|N divides N − 1
but not N−1

q
, for every prime q which divides N − 1. Hence |x|N = N − 1, which is possible

only when N is a prime, and x a primitive root. QED

Note 2. Theorem 7 is essentially the familiar primality-proving partial converse of Fer-
mat’s little theorem, due to Lehmer [4]—it differs only in the added condition that the base
number x be applied to all Fermat remainders, in order to ensure primitive ultra-eliteness.

Assuming that the list of elite primes is indeed infinite, it seems plausible to expect that
infinitely many elite primes will be ultra-elite. It would be interesting as well to know the
distribution of ultra-elite primes among the elite primes.

Is there a known bound on the number of consecutive primitive roots, or nonprimitive
roots, modulo a given prime p? Would this knowledge have a significant effect on the bound
of the period length L for ultra-elite primes?

We predict that the occurrence of an ultra-elite prime, given that p is elite, is largely
influenced by the prime divisors of p− 1, but not so much by the period length L. Generally
speaking, the larger the number of dictinct prime divisors p − 1 has, the smaller the number
of primitive roots—thus the less primitive ultra-elite primes and the more nonprimitive ones.

As we have stated, modulo a prime Fermat number p, quadratic nonresidues and primitive
roots are one and the same. For such, p is elite if and only if primitive ultra-elite. Unfortunately
though, other than 3 and 5, every prime divisor of a Fermat number is anti-elite!

If we now consider a Sophie Germain prime q, then the prime p = 2q+1 has only one less
primitive roots than it does quadratic nonresidues. In that case we have a good probability of
1 − L/q that a given elite prime p is also primitive ultra-elite. But again, no one has seen an
elite prime of this kind.
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