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Abstract. A Walker 4-manifold is a semi-Riemannian manifold (M4, g) of neutral signature,
which admits a field of parallel null 2-plane. The main purpose of the present paper is to study
almost Norden structures on 4-dimensional Walker manifolds with respect to a proper and
opposite almost complex structures. We discuss sequently the problem of integrability, Kähler
(holomorphic), isotropic Kähler and quasi-Kähler conditions for these structures. The curva-
ture properties for Norden-Walker metrics is also investigated. Also, we give counterexamples
to Goldberg’s conjecture in the case of neutral signature.
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1 Introduction

Let M2n be a Riemannian manifold with neutral metric, i.e., with pseudo-Riemannian
metric g of signature (n, n). We denote by ℑp

q(M2n) the set of all tensor fields of type (p, q)
on M2n. Manifolds, tensor fields and connections are always assumed to be differentiable and
of class C∞.

Let (M2n, ϕ) be an almost complex manifold with almost complex structure ϕ. Such a
structure is said to be integrable if the matrix ϕ = (ϕi

j) is reduced to constant form in a
certain holonomic natural frame in a neighborhood Ux of every point x ∈ M2n. In order that
an almost complex structure ϕ be integrable, it is necessary and sufficient that there exists
a torsion-free affine connection ∇ with respect to which the structure tensor ϕ is covariantly
constant, i.e.,∇ϕ = 0. It is also know that the integrability of ϕ is equivalent to the vanishing
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of the Nijenhuis tensor Nϕ ∈ ℑ1
2(M2n). If ϕ is integrable, then ϕ is a complex structure and,

moreover,M2n is a C-holomorphic manifoldXn(C) whose transition functions are holomorphic
mappings.

1.1 Norden metrics

A metric g is a Norden metric [18] if

g(ϕX,ϕY ) = −g(X,Y )

or equivalently
g(ϕX, Y ) = g(X,ϕY )

for any X,Y ∈ ℑ1
0(M2n). Metrics of this type have also been studied under the other names:

pure metrics, anti-Hermitian metrics and B-metrics (see [5], [6], [10], [17], [19], [23], [25]). If
(M2n, ϕ) is an almost complex manifold with Norden metric g, we say that (M2n, ϕ, g) is an
almost Norden manifold. If ϕ is integrable, we say that (M2n, ϕ, g) is a Norden manifold.

1.2 Holomorphic (almost holomorphic) tensor fields

Let
∗
t be a complex tensor field on a C-holomorphic manifold Xn(C). The real model of

such a tensor field is a tensor field on M2n of the same order irrespective of whether its vector
or covector arguments is subject to the action of the affinor structure ϕ. Such tensor fields are
said to be pure with respect to ϕ. They were studied by many authors (see, e.g., [10], [20],
[21], [23], [24], [25], [27]). In particular, for a (0, q)-tensor field ω, the purity means that for
any X1, ..., Xq ∈ ℑ1

0(M2n), the following conditions should hold:

ω(ϕX1, X2, ..., Xq) = ω(X1, ϕX2, ..., Xq) = ... = ω(X1, X2, ..., ϕXq).

We define an operator
Φϕ : ℑ0

q(M2n) → ℑ0
q+1(M2n)

applied to a pure tensor field ω by (see [27])

(Φϕω)(X,Y1, Y2, ..., Yq) = (ϕX)(ω(Y1, Y2, ..., Yq))−X(ω(ϕY1, Y2, ..., Yq))

+ω((LY1ϕ)X,Y2, ..., Yq) + ...+ ω(Y1, Y2, ..., (LYqϕ)X),

where LY denotes the Lie differentiation with respect to Y .
When ϕ is a complex structure on M2n and the tensor field Φϕω vanishes, the complex

tensor field
∗
ω on Xn(C) is said to be holomorphic (see [10], [23], [27]). Thus, a holomorphic

tensor field
∗
ω on Xn(C) is realized on M2n in the form of a pure tensor field ω, such that

(Φϕω)(X,Y1, Y2, ..., Yq) = 0

for any X,Y1, ..., Yq ∈ ℑ1
0(M2n). Such a tensor field ω on M2n is also called holomorphic tensor

field. When ϕ is an almost complex structure on M2n, a tensor field ω satisfying Φϕω = 0 is
said to be almost holomorphic.

1.3 Holomorphic Norden (Kähler-Norden or anti-Kähler) met-
rics

On a Norden manifold, a Norden metric g is called a holomorphic if

(Φϕg)(X,Y, Z) = −g((∇Xϕ)Y, Z) + g((∇Y ϕ)Z,X) + g((∇Zϕ)X,Y ) = 0 (1)
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for any X,Y, Z ∈ ℑ1
0(M2n).

By setting X = ∂k, Y = ∂i, Z = ∂j in equation (1), we see that the components (Φϕg)kij
of Φϕg with respect to a local coordinate system x1, ..., xn can be expressed as follows:

(Φϕg)kij = ϕm
k ∂mgij − ϕm

i ∂kgmj + gmj(∂iϕ
m
k − ∂kϕ

m
i ) + gim∂jϕ

m
k .

If (M2n, ϕ, g) is a Norden manifold with holomorphic Norden metric, we say that (M2n, ϕ, g)
is a holomorphic Norden manifold.

In some aspects, holomorphic Norden manifolds are similar to Kähler manifolds. The
following theorem is an analogue to the next known result: an almost Hermitian manifold is
Kähler if and only if the almost complex structure is parallel with respect to the Levi-Civita
connection.

Theorem 1. [8] (For a paracomplex version see [22]) For an almost complex manifold
with Norden metric g , the condition Φφg = 0 is equivalent to ∇ϕ = 0, where ∇ is the Levi-
Civita connection of g.

A Kähler-Norden manifold can be defined as a triple (M2n, ϕ, g) which consists of a man-
ifold M2n endowed with an almost complex structure ϕ and a pseudo-Riemannian metric g
such that ∇ϕ = 0, where ∇ is the Levi-Civita connection of g and the metric g is assumed to
be a Norden one. Therefore, there exists a one-to-one correspondence between Kähler-Norden
manifolds and Norden manifolds with holomorphic metric. Recall that the Riemannian cur-
vature tensor of such a manifold is pure and holomorphic, and the scalar curvature is locally
holomorphic function (see [8], [19]).

Remark 1. We know that the integrability of an almost complex structure ϕ is equivalent
to the existence of a torsion-free affine connection with respect to which the equation ∇ϕ = 0
holds. Since the Levi-Civita connection ∇ of g is a torsion-free affine connection, we have: if
Φϕg = 0, then ϕ is integrable. Thus, almost Norden manifold with conditions Φϕg = 0 and
Nϕ 6= 0, i.e., almost holomorphic Norden manifolds (analogues of almost Kähler manifolds
with closed Kähler form) do not exist.

1.4 Quasi-Kähler manifolds

The basis class of non-integrable almost complex manifolds with Norden metric is the
class of the quasi-Kähler manifolds. An almost Norden manifold (M2n, ϕ, g) is called a quasi-
Kähler [17], if

σ
X,Y,Z

g((∇Xϕ)Y, Z) = 0,

where σ is the cyclic sum by three arguments.
From (1) and the last equation we have

(Φϕg)(X,Y, Z) + 2g((∇Xϕ)Y, Z) = σ
X,Y,Z

g((∇Xϕ)Y, Z) = 0,

which is satisfied by the Norden metric in the quasi-Kähler manifold.

1.5 Twin Norden metrics

Let (M2n, ϕ, g) be an almost Norden manifold. The associated Norden metric of almost
Norden manifold is defined by

G(X,Y ) = (g ◦ ϕ)(X,Y )

for all vector fields X and Y on M2n. One can easily prove that G is a new Norden metric,
which is also called the twin(or dual) Norden metric of g.
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We denote by ∇g the covariant differentiation of the Levi-Civita connection of Norden
metric g. Then, we have

∇gG = (∇gg) ◦ ϕ+ g ◦ (∇gϕ) = g ◦ (∇gϕ),

which implies ∇gG = 0 by virtue of Theorem 1. Therefore we have: the Levi-Civita connection
of Kähler-Norden metric g coincides with the Levi-Civita connection of twin metric G ( i.e.
nonuniqueness of the metric for the Levi-Civita connection in Kähler-Norden manifolds).

2 Norden-Walker metrics

In the present paper, we shall focus our attention to Norden manifolds of dimension four.
Using a Walker metric we construct new Norden-Walker metrics together with a proper and
opposite almost complex structures.

2.1 Walker metric g

A neutral metric g on a 4-manifold M4 is said to be a Walker metric if there exists a
2-dimensional null distribution D on M4, which is parallel with respect to g. From Walker’s
theorem [26], there is a system of coordinates (x, y, z, t) with respect to which g takes the
following local canonical form

g = (gij) =





0 0 1 0
0 0 0 1
1 0 a c
0 1 c b



 , (2)

where a, b, c are smooth functions of the coordinates (x, y, z, t). The paralel null 2-plane D is
spanned locally by {∂x, ∂y}, where ∂x = ∂

∂x
, ∂y = ∂

∂y
.

2.2 Almost Norden-Walker manifolds

Let F be an almost complex structure on a Walker manifold M4, which satisfies

i) F 2 = −I,

ii) g(FX, Y ) = g(X,FY ) (Nordenian property),

iii) F∂x = ∂y, F∂y = −∂x (F induces a positive π
2
−rotation on D).

We easily see that these three properties define F non-uniquely, i.e.,






F∂x = ∂y,
F∂y = −∂x,
F∂z = α∂x + 1

2
(a+ b)∂y − ∂t,

F∂t = − 1
2
(a+ b)∂x + α∂y + ∂z

and F has the local components

F = (F i
j ) =





0 −1 α − 1
2
(a+ b)

1 0 1
2
(a+ b) α

0 0 0 1
0 0 −1 0




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with respect to the natural frame {∂x, ∂y, ∂z, ∂t}, where α = α(x, y, z, t) is an arbitrary func-
tion.

Therefore, we now put α = c. Then g defines a unique almost complex structure

ϕ = (ϕi
j) =





0 −1 c − 1
2
(a+ b)

1 0 1
2
(a+ b) c

0 0 0 1
0 0 −1 0



 . (3)

The triple (M4, ϕ, g) is called almost Norden-Walker manifold. In conformity with the termi-
nology of [3], [4], [14], [15] we call ϕ the proper almost complex structure.

We note that the typical examples of Norden-Walker metrics with proper almost complex
structure

J = (J i
j) =





0 −1 −c 1
2
(a− b)

1 0 1
2
(a− b) c

0 0 0 −1
0 0 1 0





are studied in [2].

2.3 Isotropic Kähler-Norden-Walker structures

A proper almost complex structure ϕ on Norden-Walker manifold (M4, ϕ, g) is said to be
isotropic Kähler if ‖∇ϕ‖2 = 0, but ∇ϕ 6= 0. Examples of isotropic Kähler structures were
given first in [7] in dimension 4, subsequently in [1] in dimension 6 and in [3] in dimension
4. Our purpose in this section is to show that a proper almost complex structure on almost
Norden-Walker manifold (M4, ϕ, g) is isotropic Kähler as we will see Theorem 2.

The inverse of the metric tensor (2), g−1 = (gij), given by

g−1 =





−a −c 1 0
−c −b 0 1
1 0 0 0
0 1 0 0



 . (4)

For the covariant derivative ∇ϕ of the almost complex structure put (∇ϕ)kij = ∇iϕ
k
j .

Then, after some calculations we obtain

∇xϕ
x
z = ∇xϕ

y
t = cx,∇yϕ

x
z = ∇yϕ

y
t = cy, (5)

∇zϕ
x
x = −∇zϕ

y
y = ∇zϕ

z
z = −∇zϕ

t
t =

1

2
ay +

1

2
cx,

∇zϕ
y
x = ∇zϕ

x
y = ∇zϕ

t
z = ∇zϕ

z
t = −

1

2
ax +

1

2
cy,

∇zϕ
x
z = 2cz + cax − at −

1

2
ccy −

1

2
acx +

1

2
bay,

∇zϕ
y
z = az +

1

4
acy −

1

4
bcy + cay +

3

4
aax +

1

4
bax,

∇zϕ
x
t =

1

4
aax −

1

4
bax + cay +

3

4
bcy + ccx +

1

4
acy,

∇zϕ
y
z = az +

1

4
acy −

1

4
bcy + cay +

3

4
aax +

1

4
bax,

∇zϕ
x
t =

1

4
aax −

1

4
bax + cay +

3

4
bcy + ccx +

1

4
acy,
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∇zϕ
y
t = 2cz +

1

2
ccy − at +

1

2
bay +

1

2
cax −

1

2
acx,

∇tϕ
x
x = −∇tϕ

y
y = ∇tϕ

z
z = −∇tϕ

t
t =

1

2
cy +

1

2
bx,

∇tϕ
y
x = ∇tϕ

x
y = ∇tϕ

t
z = ∇tϕ

z
t = −

1

2
cx +

1

2
by,

∇tϕ
x
z =

3

2
ccx + bz −

1

2
cby −

1

2
abx +

1

2
bcy,

∇tϕ
y
z =

1

4
aby −

1

4
bby −

1

4
acx +

1

4
bcx,

∇tϕ
x
t =

1

4
acx −

1

4
bcx + ccy +

1

4
bby + cbx −

1

4
aby

∇tϕ
y
t =

1

2
cby + bz +

1

2
bcy +

1

2
ccx −

1

2
abx.

Now a long but straightforward calculation shows that

‖∇ϕ‖2 = gijgklgms(∇ϕ)
m
ik(∇ϕ)

s
jl = 0.

Theorem 2. A proper almost complex structure on almost Norden-Walker manifold (M4,
ϕ, g) is isotropic Kähler.

2.4 Integrability of ϕ

We consider the general case.

The almost complex structure ϕ of an almost Norden-Walker manifold is integrable if and
only if

(Nϕ)
i
jk = ϕm

j ∂mϕ
i
k − ϕm

k ∂mϕ
i
j − ϕi

m∂jϕ
m
k + ϕi

m∂kϕ
m
j = 0. (6)

From (3) and (6) find the following integrability condition.

Theorem 3. The proper almost complex structure ϕ of an almost Norden-Walker mani-
fold is integrable if and only if the following PDEs hold:

{
ax + bx + 2cy = 0,
ay + by − 2cx = 0.

(7)

From this theorem, we see that, in the case a = −b and c = 0, ϕ is integrable.

Let (M4, ϕ, g) be a Norden-Walker manifolds (Nϕ = 0) and a = b. Then the equation (7)
reduces to {

ax = −cy,
ay = cx,

(8)

from which follows
axx + ayy = 0,
cxx + cyy = 0,

(9)

e.g., the functions a and c are harmonic with respect to the arguments x and y.

Thus we have

Theorem 4. If the triple (M4, ϕ, g) is Norden-Walker and a = b, then a and c are all
harmonic with respect to the arguments x, y.
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2.5 Example of Norden-Walker metric

We now apply the Theorem 4 to establish the existence of special types of Norden-Walker
metrics. In our arguments, the harmonic function plays an important part.

Let a = b and h(x, y) be a harmonic function of variables x and y, for example h(x, y) =
ex cos y. We put

a = a(x, y, z, t) = h(x, y) + α(z, t) = ex cos y + α(z, t)

where α is an arbitrary smooth function of z and t. Then, a is also hormonic with respect to
x and y. We have

ax = ex cos y,
ay = −ex sin y.

From (8), we have PDE’s for c to satisfy as

cx = ay = −ex sinx,
cy = −ax = −ex cos y.

For these PDE’s, we have solutions

c = −ex sin y + β(z, t),

where β is arbitrary smooth function of z and t. Thus the Norden-Walker metric has compo-
nents of the form

g = (gij) =





0 0 1 0
0 0 0 1
1 0 ex cos y + α(z, t) −ex sin y + β(z, t)
0 1 −ex sin y + β(z, t) ex cos y + α(z, t)



 .

3 Holomorphic Norden-Walker(Kähler-Norden-
Walker) and quasi-Kähler-Norden-Walker metrics
on (M4, ϕ, g)

Let (M4, ϕ, g) be an almost Norden-Walker manifold. If

(Φφg)kij = φm
k ∂mgij − φm

i ∂kgmj + gmj(∂iφ
m
k − ∂kφ

m
i ) + gim∂jφ

m
k = 0, (10)

then, by virtue of Theorem 1, ϕ is integrable and the triple (M4, ϕ, g) is called a holomorphic
Norden-Walker or a Kähler-Norden-Walker manifold. Taking into account Remark 1, we see
that an almost Kähler-Norden-Walker manifold with conditions Φϕg = 0 and Nϕ 6= 0 does
not exist.

Substitute (2) and (3) into (10), we see that the non-vanishing components of (Φϕg)kij
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are

(Φϕg)xzz = ay, (Φϕg)xzt = (Φϕg)xtz =
1

2
(bx − ax) + cy, (11)

(Φϕg)xtt = by − 2cx, (Φϕg)yzz = −ax,

(Φϕg)yzt = (Φϕg)ytz =
1

2
(by − ay)− cx, (Φϕg)ytt = −bx − 2cy,

(Φϕg)zxz = (Φϕg)zzx = (Φϕg)txt = (Φϕg)ttx = cx,

(Φϕg)zxt = (Φϕg)ztx = − (Φϕg)txz = − (Φϕg)tzx =
1

2
(ax + bx),

(Φϕg)zyz = (Φϕg)zzy = (Φϕg)tyt = (Φϕg)tty = cy,

(Φϕg)zyt = (Φϕg)zty = − (Φϕg)tyz = − (Φϕg)tzy =
1

2
(ay + by),

(Φϕg)zzz = cax − at + 2cz +
1

2
(a+ b)ay,

(Φϕg)zzt = (Φϕg)ztz = ccx + bz +
1

2
(a+ b)cy,

(Φϕg)ztt = cbx + at − 2cz +
1

2
(a+ b)by, (Φϕg)tzz = cay − bz −

1

2
(a+ b)ax,

(Φϕg)tzt = (Φϕg)ttz = ccy − at + 2cz −
1

2
(a+ b)cx,

(Φϕg)ttt = cby + bz −
1

2
(a+ b)bx.

From the above equations, we have

Theorem 5. A triple (M4, ϕ, g) is a Kähler-Norden-Walker manifold if and only if the
following PDEs hold:

ax = ay = bx = by = bz = cx = cy = 0, at − 2cz = 0. (12)

A Norden-Walker manifold (M4, ϕ, g) satisfying the condition Φkgij + 2∇kGij to be zero
is called a quasi-Kähler manifold, where G is defined by Gij = ϕm

i gmj .

Remark 2. From (2) and (3) we easily see that, the twin Norden metric G is non-Walker.

For the covariant derivative ∇G of the associated metric G put (∇G)ijk = ∇iGjk. The
non-vanishing components of ∇iGjk are

∇xGzz = ∇xGtt = cx, ∇yGzz = ∇yGtt = cy, (13)

∇zGxz = ∇zGzx = −∇zGyt = −∇zGty =
1

2
(ay + cx),

∇zGxt = ∇zGtx = ∇zGyz = ∇zGzy =
1

2
(cy − ax),

∇zGzz = 2cz − at +
1

2
ay(a+ b) + cax,

∇zGzt = ∇zGtz =
1

2
(cay + ccx)−

1

4
((a+ b)(ax−cy)),

∇zGtt = 2cz − at −
1

2
cx(a+ b) + ccy,

∇tGxz = ∇tGzx = −∇tGyt = −∇tGty =
1

2
(bx + cy),

∇tGxt = ∇tGtx = ∇tGyz = ∇tGzy =
1

2
(by − cx),
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∇tGzz = bz + ccx +
1

2
cy(a+ b),

∇tGzt = ∇tGtz =
1

2
c(bx + cy)−

1

4
((cx − by)(a+ b)),

∇tGtt = bz + cby −
1

2
bx(a+ b).

From (11) and (13) we have

Theorem 6. A triple (M4, ϕ, g) is a quasi-Kähler Norden-Walker manifold if and only if
the following PDEs hold:

bx = by = bz = 0, ay − 2cx = 0, ax − 2cy = 0, cax − at + 2cz − (a+ b)cx = 0.

4 Curvature properties of Norden-Walker manifolds

If R and r are respectively the curvature and the scalar curvature of the Walker metric,
then the components of R and r have, respectively, expressions (see [15], Appendix A and C)

Rxzxz = − 1
2
axx, Rxzxt = − 1

2
cxx, Rxzyz = − 1

2
axy, Rxzyt = − 1

2
cxy, (14)

Rxzzt = 1
2
axt −

1
2
cxz −

1
4
aybx + 1

4
cxcy, Rxtxt = − 1

2
bxx, Rxtyz = − 1

2
cxy,

Rxtyt = − 1
2
bxy, Rxtzt =

1
2
cxt −

1
2
bxz −

1
4
(cx)

2 + 1
4
axbx − 1

4
bxcy + 1

4
bycx,

Ryzyz = − 1
2
ayy, Ryzyt = − 1

2
cyy,

Ryzzt = 1
2
ayt −

1
2
cyz − 1

4
axcy + 1

4
aycx − 1

4
ayby + 1

4
(cy)

2, Rytyt = − 1
2
byy,

Rytzt = 1
2
cyt −

1
2
byz −

1
4
cxcy + 1

4
aybx,

Rztzt = czt −
1
2
att −

1
2
bzz −

1
4
a(cx)

2 + 1
4
aaxbx + 1

4
caxby − 1

2
ccxcy − 1

2
atcx

+ 1
2
axct −

1
4
axbz +

1
4
caybx + 1

4
bayby − 1

4
b(cy)

2 − 1
2
bzcy

+ 1
4
aybt +

1
4
azbx + 1

2
bycz −

1
4
atby.

and

r = axx + 2cxy + byy. (15)

Suppose that the triple (M4, ϕ, g) is Kähler-Norden-Walker. Then from the last equation
in (12) and (14), we see that

Rztzt = czt −
1

2
att = −

1

2
(at − 2cz)t = 0.

From (12) we easily we see that the another components of R in (14) directly all vanish. Thus
we have

Theorem 7. If a Norden-Walker manifold (M4, ϕ, g) is Kähler-Norden-Walker, then M4

is flat.

Remark 3. We note that a Kähler-Norden manifold is non-flat, in such manifold curva-
ture tensor pure and holomorphic [8].

Let (M4, ϕ, g) be a Norden-Walker manifold with the integrable proper structure ϕ, i.e.,
Nϕ = 0. If a = b, then from proof of the Theorem 4 we see that the equation (8) hold. If
c = c(y, z, t) and c = c(x, z, t), then cxy = (cx)y = (cy)x = 0. In these cases, by virtue of (8)
we find a = a(x, z, t) and a = (y, z, t) respectively. Using of cxy = 0 and axx + byy = 0 (see
(9)), we from (15) obtain r = 0. Thus we have
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Theorem 8. If (M4, ϕ, g) is a Norden-Walker non-Kähler manifold with metrics

g =





0 0 1 0
0 0 0 1
1 0 a(x, z, t) c(y, z, t)
0 1 c(y, z, t) a(x, z, t)



 , g̃ =





0 0 1 0
0 0 0 1
1 0 a(y, z, t) c(x, z, t)
0 1 c(x, z, t) a(y, z, t)



 ,

then M4 is scalar flat.

5 On the Goldberg conjecture

Let (M2n, J, g) be an almost Hermitian manifold. Then, Goldberg’s conjecture states that
an almost Hermitian manifold must be Kähler if the following three conditions are imposed:
(G1) the manifold M2n is compact; (G2) the Riemannian metric g is Einstein; (G3) the fun-
damental 2-form Ω defined by Ω(X,Y ) = g(JX, Y ) is closed (dΩ = 0).

It should be noted that no progress has been made on the Goldberg conjecture, and the
orginal conjecture is stil an open problem.

Let (M2n, ϕ, g) be an almost Norden manifold. Given an almost complex structure ϕ on
M2n, take any Riemannian metric g̃, which exists provided M2n is compact (paracompact) [9,
p. 60]. We obtain a Hermitian metric h by setting

h(X,Y ) = g̃(X,Y ) + g̃(ϕX,ϕY )

for any X,Y ∈ ℑ1
0(M2n). The pair (ϕ, g̃) defines a fundamental 2-form Ωϕ by

Ωϕ(X,Y ) = h(ϕX, Y ).

We call it a ϕ-compatible 2-form.
Let (M2n, ϕ, g) be an almost Norden manifold, and choose a ϕ-compatible 2-form Ωϕ on

M2n. Then we can propose an almost Norden version of Goldberg conjecture as follows [16]:
if (G1) M2n is compact, (G2) g is Einstein, and if (G′

3) a ϕ-compatible 2-form Ωϕ is closed,
then ϕ must be integrable.

Let now (M4, ϕ, g) be an almost Norden-Walker 4-manifold. The pair (ϕ, g) defines as
usual, a rank two tensor G(X,Y ) = g(ϕX, Y ), but G is symmetric (in fact another neutral
metric) and pure, rather than a 2-form. We call it a twin Norden metric, which plays a role
similar to the fundamental 2-form Ω in Hermitian geometry. If we define an operator Φϕ

applied to a pure twin metric G, then we have

(ΦϕG)(X,Y, Z) = (Φϕg)(ϕX, Y, Z) + g(Nϕ(X,Y ), Z).

IfG ∈ KerΦϕ, then by virtue of Theorem 1, we have∇Gϕ = 0, where∇G is the Levi-Civita
connection of the twin Norden metric G, which coincides with the Levi-Civita connection of
the orginal Norden metric g in Kähler-Norden-Walker manifolds. Since ∇G is a torsion-free
connection, then ϕ must be integrable. Thus, we can propose a result concerning the Norden
version of Goldberg conjecture as follows: (NG) if G ∈ KerΦϕ, then ϕ must be integrable.

6 Opposite almost complex structure ϕ′

It is known that an oriented 4-manifold with a field of 2-planes, or equivalently endowed
with a neutral indefinite metric, admits a pair of almost comlex structure ϕ and an opposite
almost complex structure ϕ′, which satisfy the following properties ([11]-[13], [15]):
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i) ϕ2 = ϕ′2 = −1,

ii) g(ϕX,ϕY ) = g(ϕ′X,ϕ′Y ) = g(X,Y ),

iii) ϕϕ′ = ϕ′ϕ,

iv) the preferred orientation of ϕ coincides with that of M4,

v) the preferred orientation of ϕ′ is opposite to that of M4.

Let (M4, ϕ, g) be an almost Norden-Walker manifolds. For a Walker manifold M4, with
the proper almost complex structure ϕ, the g-orthogonal opposite almost complex structure
ϕ′ takes the form

ϕ′∂1 = −(θ1c+
θ2
2
a)∂1 −

θ1
2
b∂2 + θ2∂3 + θ1∂4,

ϕ′∂2 = (− θ1
2
a+ θ2c)∂1 +

θ2
2
b∂2 + θ1∂3 − θ2∂4,

ϕ′∂3 = −( θ1
2
ac+ θ2

4
a2 + θ2

θ21+θ22
)∂1 − ( θ1

4
ab+ θ1

θ21+θ22
)∂2 +

θ2
2
a∂3 +

θ1
2
a∂4,

ϕ′∂4 = −(θ1c
2 + θ1

4
ab+ θ1

θ21+θ22
+ θ2

2
(ac− bc))∂1 + (− θ1

2
bc+ θ2

4
b2 + θ2

θ21+θ22
)∂2

+ ( θ1
2
b+ θ2c)∂3 + (θ1c−

θ2
2
b)∂4,

where θ1 and θ2 are two parameters.
In the present paper, we shall focus our attention to one of explicit forms of ϕ′, obtained

by fixing two parameters as θ1 = 1 and θ2 = 0 (only for simplicity), as follows:

ϕ′∂1 = −c∂1 −
1
2
b∂2 + ∂4, ϕ′∂2 = − 1

2
a∂1 + ∂3,

ϕ′∂3 = − 1
2
ac∂1 − ( 1

4
ab+ 1)∂2 +

1
2
a∂4,

ϕ′∂4 = −(c2 + 1
4
ab+ 1)∂1 −

1
2
bc∂2 +

1
2
b∂3 + c∂4,

(16)

and ϕ′ has the local components

ϕ′ = (ϕ′
j
i) =





−c − 1
2
a − 1

2
ac −(c2 + 1

4
ab+ 1)

− 1
2
b 0 −( 1

4
ab+ 1) − 1

2
bc

0 1 0 1
2
b

1 0 1
2
a c



 . (17)

For the covariant derivative ∇ϕ′ of the opposite almost complex structure ϕ′, the non-
vanishing components of which are

∇xϕ
′
x
x = −∇xϕ

′
y
y = ∇xϕ

′
z
z = −∇xϕ

′
t
t =

1

2
∇zϕ

′
x
z = −

1

2
cx, (18)

∇yϕ
′
x
x = −∇yϕ

′
y
y = ∇yϕ

′
z
z = −∇yϕ

′
t
t =

1

2
∇tϕ

′
y
t = −

1

2
cy,

∇xϕ
′
t
x = −ccx,∇yϕ

′
t
x = −ccy, ∇zϕ

′
x
x = −cz −

1

4
bay +

1

2
at +

1

2
ccy +

3

4
acx,

∇zϕ
′
x
y =

1

4
bcy +

1

4
bax, ∇zϕ

′
x
t = ∇zϕ

′
y
z = −

1

2
cy −

1

2
ax,

∇zϕ
′
y
x =

1

4
aax + cay +

1

4
acy, ∇zϕ

′
y
y = cz −

1

4
acx −

1

2
at +

1

2
cax +

3

4
bay,

∇zϕ
′
y
t = −ay, ∇zϕ

′
z
x =

1

4
acax − ay +

1

4
accy +

1

4
a2cx,

∇zϕ
′
z
y =

1

8
abcy +

1

8
abax −

1

2
cy −

1

2
ax,

∇zϕ
′
z
z = −cz −

1

4
acx +

1

2
at −

1

2
cax −

1

4
bay, ∇zϕ

′
z
t = −

1

4
acy −

1

4
aax,

∇zϕ
′
t
x = −2ccz + (

1

8
ab−

1

2
c2 + ac−

1

2
)ax + cat + (

1

8
ab+

1

2
c2 −

1

2
)cy,
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∇zϕ
′
t
y = −cx +

1

4
b2ay +

1

4
bccy +

1

4
bcax, ∇zϕ

′
t
z = −ccx −

1

4
bax −

1

4
bcy,

∇zϕ
′
t
t = cz −

1

4
bay −

1

2
at −

1

2
ccy −

1

4
acx, ∇tϕ

′
x
x = −

1

2
bz −

1

4
bcy +

1

2
cby +

3

4
abx,

∇tϕ
′
x
y =

1

4
bby +

1

4
bcx, ∇tϕ

′
x
z = −bx, ∇tϕ

′
x
t = ∇tϕ

′
y
z = −

1

2
by −

1

2
cx,

∇tϕ
′
y
x =

1

4
acx + ccy +

1

4
aby, ∇tϕ

′
y
y = −

1

4
abx +

1

2
bz +

1

2
ccx +

3

4
bcy,

∇tϕ
′
z
x =

1

4
acby − cy +

1

4
accx +

1

4
a2bx, ∇tϕ

′
z
y =

1

8
abby +

1

8
abcx −

1

2
by −

1

2
cx,

∇tϕ
′
z
z = −

1

4
abx −

1

2
bz −

1

4
bcy −

1

2
ccx, ∇tϕ

′
z
t = −

1

4
aby −

1

4
acx,

∇tϕ
′
t
x = −cbz + (

1

8
ab−

1

2
c2 −

1

2
)cx + acbx + (

1

8
ab+

1

2
c2 −

1

2
)by,

∇tϕ
′
t
y = −bx +

1

4
b2cy +

1

4
bccx +

1

4
bcby, ∇zϕ

′
t
z = −cbx −

1

4
bcx −

1

4
bby,

∇tϕ
′
t
t = −

1

4
bcy −

1

2
cby +

1

2
bz −

1

4
abx.

From (2), (4) and (18) we have

Theorem 9. The opposite almost complex structure of an almost Norden-Walker manifold
(M4, ϕ

′, g) is isotropic Kähler if and only if the following PDEs hold:

cx(2bay − 2acx + 4cz − 2at + 2cax) + cy(2bz − 2abx) = 0. (19)

From (19) we have

Corollary 1. The triple (M4, ϕ
′, g) with metric

g = (gij) =





0 0 1 0
0 0 0 1
1 0 a (x, y, z, t) c (z, t)
0 1 c (z, t) b (x, y, z, t)





is always isotropic Kähler.

6.1 Integrability of ϕ′

The opposite almost complex structure ϕ′ is integrable if the analogue of the PDE’s (6)
for ϕ′

j
i in (17) vanish. From some calculation, we have explicitly the following theorem.

Theorem 10. The opposite almost complex structure ϕ′ of an almost Norden-Walker
manifold is integrable if and only if the following PDEs hold:

by = 0, ax − 2cy = 0, abx − 2bz = 0,
bay − 2at − 2acx + 4ccy + 4cz = 0.

(20)

Let (M4, ϕ
′, g) be a Norden-Walker manifold with the integrable almost complex structure

ϕ′, i.e. Nϕ′ = 0. If a = 0, then from (20) by = bz = cy = cz = 0.
Thus we have

Theorem 11. Let a = 0. The triple (M4, ϕ
′, g) with metric

g = (gij) =





0 0 1 0
0 0 0 1
1 0 0 c(x, t)
0 1 c(x, t) b(x, t)




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is always Norden-Walker.

7 Norden-Walker-Einstein metrics

We now turn our attention to the Einstein conditions for the Norden-Walker metric g in
(2).

Let Rij and S denote the Ricci curvature and the scalar curvature of the metric g in (2).
The Einstein tensor is defined by Gij = Rij −

1
4
Sgij and has non zero components as follows

(see [15], Appendix D):

Gxz = 1
4
axx − 1

4
byy, Gxt =

1
2
cxx + 1

2
bxy,

Gyz = 1
2
axy + 1

2
cyy, Gyt =

1
4
byy − 1

4
axx,

Gzz = 1
4
aaxx + caxy + 1

2
bayy − ayt + cyz − 1

2
aycx + 1

2
axcy

+ 1
2
ayby − 1

2
(cy)

2 − 1
2
acxy − 1

4
abyy,

Gzt =
1
2
acxx + 1

2
ccxy + 1

2
axt −

1
2
cxz −

1
2
aybx + 1

2
cxcy + 1

2
bcyy

− 1
2
cyt +

1
2
byz −

1
4
caxx − 1

4
cbyy,

Gtt =
1
2
abxx + cbxy + cxt − bxz −

1
2
(cx)

2 + 1
2
axbx − 1

2
bxcy + 1

2
bycx

+ 1
4
bbyy − 1

4
baxx − 1

2
bcxy.

(21)

The metric g in (2) is almost Norden-Walker-Einstein if all the above components Gij

vanish (Gij = 0).

Theorem 12. Let (M4, ϕ
′, g) be a Norden-Walker manifold. If

ax = bx = cx = cz = 0 (or ax = ay = cx = cz = 0), (22)

then g is a Norden-Walker-Einstein.

Proof. Suppose that the triple (M4, ϕ
′, g) be a Norden-Walker manifold. Then from (20) and

(22), we see that the assertion is clear, i.e., Gij = 0. QED

Corollary 2. The triple (M4, ϕ
′, g) with metric

g = (gij) =





0 0 1 0
0 0 0 1
1 0 a(y, z, t) c(t)
0 1 c(t) b(t)





is always Norden-Walker-Einstein.

8 Counterexamples to Goldberg’s conjecture

1. Let (M4, ϕ, g) be an almost Norden-Walker manifold.

Consider the metric

g = (gij) =





0 0 1 0
0 0 0 1
1 0 a(x, y, z, t) 0
0 1 0 a(x, y, z, t)



 .
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That is the metric is defined by putting a = b, c = 0 in the generic canonical form (2). In
this case, we see from (21) that the Einstein condition consist of the following PDE’s:

axx − ayy = 0, axy = 0, aaxx − 2ayt + (ay)
2 = 0,

axt − axay + ayz = 0, aaxx − 2axz + (ax)
2 = 0.

If a is independent of y and t, and if a contains x only linearly, the first four PDE’s hold
trivially, and the last one reduces to: 2axz − (ax)

2 = 0. We see that a = − 2x
z

is a solution to
the PDE, and therefore the metric

g = (gij) =





0 0 1 0
0 0 0 1
1 0 − 2x

z
0

0 1 0 − 2x
z



 (23)

is Einstein on the coordinate patch z > 0 (or z < 0). Thus, the second condition (G2) of
Goldberg conjecture holds. We know that this metric admits a proper almost complex structure
as follows:

ϕ∂x = ∂y, ϕ∂y = −∂x, ϕ∂z = a∂y − ∂t, ϕ∂t = −a∂x + ∂z. (24)

For the Einstein metric (23), the proper almost complex structure ϕ in (24) becomes

ϕ∂x = ∂y, ϕ∂y = −∂x, ϕ∂z = −
2x

z
∂y − ∂t, ϕ∂t =

2x

z
∂x + ∂z.

Then, the integrability of ϕ, given in Theorem 3, becomes

ax + bx + 2cy = 2ax = −
4

z
6= 0, ay + by − 2cx = 2ay = 0.

Thus, ϕ cannot be integrable.
Similarly, the opposite almost complex structure ϕ′ in (16) has the form

ϕ′∂x = −x
z
∂y + ∂t, ϕ′∂y = x

z
∂x + ∂z,

ϕ′∂z = −((x
z
)2 + 1)∂y − x

z
∂t, ϕ′∂t = −((x

z
)2 + 1)∂x − x

z
∂z.

The ϕ′- integrability condition (20) in Theorem 10 becomes

by = 0, ax − 2cy = ax = − 2
z
6= 0, abx − 2bz = aax = 4x

z2
6= 0,

bay − 2at − 2acx + 4ccy + 4cz = 0.

Thus, ϕ′ is not integrable.
2. Let (M4, ϕ

′, g) be an almost Norden-Walker manifold. We assume that a, b, c does
not depend on x and y, i.e., a = a(z, t), b = b(z, t), c = c(z, t). Therefore, the metric g in (2)
becomes

g = (gij) =





0 0 1 0
0 0 0 1
1 0 a(z, t) c(z, t)
0 1 c(z, t) b(z, t)



 .

In this case, we see from (21) that the metric g is Norden-Walker-Einstein, i.e., Gij = 0. Thus,
the second condition (G2) holds.

If a, b and c are independent of x and y, the ϕ′- integrability condition (20) in Theorem
10 becomes

bz = 0, at − 2cz = 0.

On the other hand, since b = b(z, t), we have bz 6= 0. Thus, ϕ′ is not integrable.
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9 Holomorphic Norden-Walker (Kähler-Norden-
Walker) metrics on (M4, ϕ

′, g)

Let (M4, ϕ
′, g)be an almost Norden-Walker manifold. Substituting (2) and (17) in (10),

we find the following Kähler-Norden-Walker condition of (M4, ϕ
′, g).

(Φϕ′g)xxz = (Φϕ′g)xzx = −cx, (Φϕ′g)xxt = (Φϕ′g)xtx = −(Φϕ′g)txx = −bx, (25)

(Φϕ′g)xyz = (Φϕ′g)xzy = −cy −
1

2
ax, (Φϕ′g)xzz = −cax − 2cz −

1

2
bay + at,

(Φϕ′g)xyt = (Φϕ′g)xty = −(Φϕ′g)txy = −(Φϕ′g)tyx = −cx −
1

2
by,

(Φϕ′g)xzt = (Φϕ′g)xtz = −ccx −
1

2
bcy −

1

2
bz −

1

4
abx −

1

4
bax,

(Φϕ′g)xtt = −2cbx − bcx −
1

2
bby, (Φϕ′g)yxt = (Φϕ′g)ytx = −

1

2
by,

(Φϕ′g)yxz = (Φϕ′g)yzx = −(Φϕ′g)zxy = −(Φϕ′g)zyx = −
1

2
ax,

(Φϕ′g)yyz = (Φϕ′g)yzy = −(Φϕ′g)zyy = −ay,

(Φϕ′g)yyt = (Φϕ′g)yty = −
1

2
(Φϕ′g)tyy = −cy, (Φϕ′g)yzz = −

1

2
aax,

(Φϕ′g)yzt = (Φϕ′g)ytz = −
1

2
acx −

1

2
at −

1

4
aby −

1

4
bay + cz,

(Φϕ′g)ytt = −
1

2
abx + bz − cby − bcy, (Φϕ′g)zxz = (Φϕ′g)zzx = −

1

2
acx,

(Φϕ′g)zxt = (Φϕ′g)ztx =
1

4
bax −

1

4
abx −

1

2
bz,

(Φϕ′g)zyz = (Φϕ′g)zzy = −
1

2
acy,

(Φϕ′g)zyt = (Φϕ′g)zty =
1

4
bay −

1

4
aby − cz +

1

2
at,

(Φϕ′g)zzz = −
1

2
acax − acz −

1

4
abay − ay +

1

2
aat,

(Φϕ′g)zzt = (Φϕ′g)ztz = −
1

2
accx −

1

4
abcy − cy −

1

2
abz,

(Φϕ′g)ztt = −
1

2
acbx −

1

4
abby − by − cbz +

1

2
bat − bcz,

(Φϕ′g)txz = (Φϕ′g)tzx = −ccx +
1

4
abx −

1

4
bax +

1

2
bz,

(Φϕ′g)txt = (Φϕ′g)ttx = −
1

2
bcx, (Φϕ′g)tyt = (Φϕ′g)tty =

1

2
bcy,

(Φϕ′g)tyz = (Φϕ′g)tzy = −ccy +
1

4
aby −

1

4
bay −

1

2
at + cz,

(Φϕ′g)tzz = −c2ax −
1

4
abax − ax − 2ccz −

1

2
bcay +

1

2
abz + cat,

(Φϕ′g)tzt = (Φϕ′g)ttz = −c2cx −
1

4
abcx − cx + bcz −

1

2
bccy −

1

2
bat,

(Φϕ′g)ttt = −c2bx −
1

4
abbx − bx −

1

2
bcby +

1

2
bbz.

The following theorem is same to the Theorem 5.
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Theorem 13. A triple (M4, ϕ
′, g) is a Kähler-Norden-Walker manifold if and only if the

following PDEs hold:

ax = ay = bx = by = bz = cx = cy = 0, at − 2cz = 0.

Corollary 3. The triple (M4, ϕ
′, g) with metric

g = (gij) =





0 0 1 0
0 0 0 1
1 0 a(z) 0
0 1 0 b(t)





is always Kähler-Norden-Walker.

Let (M4, ϕ
′, g) be an almost Norden-Walker manifold. For the covariant derivative ∇G′ of

the twin metric G′ put (∇G′)ijk = ∇iG
′
jk, where G

′ is deffined by G′
ij = ϕ′

i
mgmj . Then, after

some calculations we obtain

∇xG
′
xz = ∇xG

′
zx = −∇xG

′
yt = −∇xG

′
ty =

1

2
∇zG

′
xx = −

1

2
cx, (26)

∇xG
′
zz = −

1

2
acx,∇xG

′
zt = ∇xG

′
tz = −

1

2
ccx,∇xG

′
tt = ∇yG

′
tt =

1

2
bcx,

∇yG
′
xz = ∇yG

′
zx = −∇yG

′
yt = −∇yG

′
ty =

1

2
∇tG

′
yy = −

1

2
cy,

∇yG
′
zz = −

1

2
acy,∇yG

′
zt = ∇yG

′
tz = −

1

2
ccy,

∇zG
′
xy = ∇zG

′
yx = −

1

2
ax −

1

2
cy,∇zG

′
xt = ∇zG

′
tx = −

1

4
bcy − ccx −

1

4
bax,

∇zG
′
xz = ∇zG

′
zx = −

1

4
acx −

1

2
cax − cz +

1

2
at −

1

4
bay,

∇zG
′
yy = −ay,∇zG

′
yz = ∇zG

′
zy = −

1

4
aax −

1

4
acy,

∇zG
′
yt = ∇zG

′
ty = cz −

1

2
at −

1

4
acx −

1

2
ccy −

1

4
bay,

∇zG
′
zz = −acz +

1

2
aat −

1

4
abay −

1

2
acax − ay,

∇zG
′
zt = ∇zG

′
tz = −ccz −

1

4
bcay +

1

2
cat − (

1

2
c2 +

1

8
ab+

1

2
)ax

−
1

4
accx − (

1

4
ab−

1

8
ab+

1

2
)cy,

∇zG
′
tt = bcz −

1

2
bat −

1

2
bccy − (c2 +

1

4
ab+ 1)cx,

∇tG
′
xx = −bx,∇tG

′
xy = ∇tG

′
yx = −

1

2
cx −

1

2
by,

∇tG
′
xz = ∇tG

′
zx = −

1

4
abx −

1

2
bz −

1

4
bcy −

1

2
ccx,

∇tG
′
xt = ∇tG

′
tx = −

1

4
bby − cbx −

1

4
bcx, ∇tG

′
yz = ∇tG

′
zy = −

1

4
aby −

1

4
acx,

∇tG
′
yt = ∇tG

′
ty =

1

2
bz −

1

4
abx −

1

4
bcy −

1

2
cby,

∇tG
′
zz = −

1

2
abz −

1

4
abcy −

1

2
accx − cy,

∇tG
′
zt = ∇tG

′
tz = −(

1

8
ab+

1

2
)by −

1

4
acbx −

1

4
bccy
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−
1

2
cbz − (

1

8
ab+

1

2
c2 +

1

2
)cx,

∇tG
′
tt =

1

2
bbz −

1

2
bcby −

1

4
abbx − c2bx − bx.

From (25) and (26) we have

Theorem 14. A triple (M4, ϕ
′, g) is a quasi-Kähler Norden-Walker manifold if and only

if the following PDE’s hold:

ax = ay = bx = by = bz = cx = cy = 0, at − 2cz = 0.

Acknowledgements. We are grateful to Professor Yasuo Matsushita for valuable
comments and useful discussions.
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