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Abstract. A Walker 4-manifold is a semi-Riemannian manifold (M4, g) of neutral signature,
which admits a field of parallel null 2-plane. The main purpose of the present paper is to study
almost Norden structures on 4-dimensional Walker manifolds with respect to a proper and
opposite almost complex structures. We discuss sequently the problem of integrability, Kahler
(holomorphic), isotropic Kahler and quasi-Kéahler conditions for these structures. The curva-
ture properties for Norden-Walker metrics is also investigated. Also, we give counterexamples
to Goldberg’s conjecture in the case of neutral signature.
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1 Introduction

Let Mz, be a Riemannian manifold with neutral metric, i.e., with pseudo-Riemannian
metric g of signature (n,n). We denote by 3% (May,) the set of all tensor fields of type (p, q)
on Mas,. Manifolds, tensor fields and connections are always assumed to be differentiable and
of class C'™°.

Let (Man, ) be an almost complex manifold with almost complex structure ¢. Such a
structure is said to be integrable if the matrix ¢ = (¢}) is reduced to constant form in a
certain holonomic natural frame in a neighborhood U, of every point @ € Ma,,. In order that
an almost complex structure ¢ be integrable, it is necessary and sufficient that there exists
a torsion-free affine connection V with respect to which the structure tensor ¢ is covariantly
constant, i.e.,Vo = 0. It is also know that the integrability of ¢ is equivalent to the vanishing
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of the Nijenhuis tensor N, € 33(Ma,). If ¢ is integrable, then ¢ is a complex structure and,
moreover, Ma, is a C-holomorphic manifold X, (C') whose transition functions are holomorphic
mappings.

1.1 Norden metrics

A metric g is a Norden metric [18] if
9(pX, pY) = —g(X,Y)
or equivalently
9(@X,Y) = g(X, 9Y)
for any X,Y € S3(May). Metrics of this type have also been studied under the other names:
pure metrics, anti-Hermitian metrics and B-metrics (see [5], [6], [10], [17], [19], [23], [25]). If

(M2n, ) is an almost complex manifold with Norden metric g, we say that (Man, ¢, g) is an
almost Norden manifold. If ¢ is integrable, we say that (Man, ¢, g) is a Norden manifold.

1.2 Holomorphic (almost holomorphic) tensor fields

Let ¢ be a complex tensor field on a C-holomorphic manifold X, (C). The real model of
such a tensor field is a tensor field on Mas,, of the same order irrespective of whether its vector
or covector arguments is subject to the action of the affinor structure ¢. Such tensor fields are
said to be pure with respect to ¢. They were studied by many authors (see, e.g., [10], [20],
[21], [23], [24], [25], [27]). In particular, for a (0, ¢)-tensor field w, the purity means that for
any X1, ..., X, € 34(Mzy), the following conditions should hold:

w(ch17X27...7Xq) = w(Xl,asz, ...,Xq) = .= W(X17X27 ...7¢Xq).

We define an operator
Oy Sg(Man) = Sg41(Man)

applied to a pure tensor field w by (see [27])
(q><Pw)(X7)/i7Y27-~'7Yq) = (LPX)(W(YLYV%“qu))_X(w(wyl,y%nwifq))
Fw((Ly, )X, Yo, ..., Yy) + .+ w(Y1, Yz, ., (Ly, ) X),

where Ly denotes the Lie differentiation with respect to Y.
When ¢ is a complex structure on M2, and the tensor field ®,w vanishes, the complex

tensor field & on X, (C) is said to be holomorphic (see [10], [23], [27]). Thus, a holomorphic
tensor field w on X, (C) is realized on M, in the form of a pure tensor field w, such that

(qhﬂw)(XvY'hY?v '-'7Y¢Z) =0

for any X, Y1, ..., Y, € S4(Ma,). Such a tensor field w on Ma, is also called holomorphic tensor
field. When ¢ is an almost complex structure on Moy, a tensor field w satisfying ®,w = 0 is
said to be almost holomorphic.

1.3 Holomorphic Norden (Ké&hler-Norden or anti-K&hler) met-
rics
On a Norden manifold, a Norden metric g is called a holomorphic if

(2,9)(X,Y, Z2) = —g(Vx @)Y, Z) + g((Vy#) 2, X) + 9((Vz9) X, Y) = 0 (1)
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for any X,Y, Z € S4(May,).
By setting X = 0k, Y = 0;, Z = 0; in equation (1), we see that the components (®,g)xi;
of ®,g with respect to a local coordinate system z',...,z™ can be expressed as follows:

(P ki = Pk OmGij — @i Oxgmi + gmj (0i0k’ — Okpi") + gim sk

If (M2, ¢, g) is a Norden manifold with holomorphic Norden metric, we say that (Man, ¢, g)
is a holomorphic Norden manifold.

In some aspects, holomorphic Norden manifolds are similar to Kéahler manifolds. The
following theorem is an analogue to the next known result: an almost Hermitian manifold is
Kahler if and only if the almost complex structure is parallel with respect to the Levi-Civita
connection.

Theorem 1. [8] (For a paracomplex version see [22]) For an almost complex manifold
with Norden metric g , the condition @439 = 0 is equivalent to Vi = 0, where V is the Levi-
Civita connection of g.

A Kdhler-Norden manifold can be defined as a triple (M2n, ¢, g) which consists of a man-
ifold Ma2,, endowed with an almost complex structure ¢ and a pseudo-Riemannian metric g
such that Vo = 0, where V is the Levi-Civita connection of g and the metric g is assumed to
be a Norden one. Therefore, there exists a one-to-one correspondence between Kdahler-Norden
manifolds and Norden manifolds with holomorphic metric. Recall that the Riemannian cur-
vature tensor of such a manifold is pure and holomorphic, and the scalar curvature is locally
holomorphic function (see [8], [19]).

Remark 1. We know that the integrability of an almost complex structure ¢ is equivalent
to the existence of a torsion-free affine connection with respect to which the equation Vo =0
holds. Since the Levi-Civita connection V of g is a torsion-free affine connection, we have: if
®,g = 0, then ¢ is integrable. Thus, almost Norden manifold with conditions ®,g = 0 and
N, # 0, i.e., almost holomorphic Norden manifolds (analogues of almost Kdhler manifolds
with closed Kahler form) do not exist.

1.4 Quasi-Kahler manifolds

The basis class of non-integrable almost complex manifolds with Norden metric is the
class of the quasi-Kéhler manifolds. An almost Norden manifold (Ma,, ¢, g) is called a quasi-
Kabhler [17], if

o 9(Vxe)Y,Z) =0,

X,Y,Z
where ¢ is the cyclic sum by three arguments.
From (1) and the last equation we have

(P9)(X,Y, Z) +29(Vx9)Y, Z) = (Vxp)Y,Z) =0,

g g
X,Y,Z

which is satisfied by the Norden metric in the quasi-Kahler manifold.

1.5 Twin Norden metrics

Let (M2n,®,g) be an almost Norden manifold. The associated Norden metric of almost
Norden manifold is defined by

G(X,)Y) = (gop)(X,Y)

for all vector fields X and Y on Mas,. One can easily prove that G is a new Norden metric,
which is also called the twin(or dual) Norden metric of g.
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We denote by V, the covariant differentiation of the Levi-Civita connection of Norden
metric g. Then, we have

VG = (Vgg)op+go(Vep)=go(Vep),

which implies V4G = 0 by virtue of Theorem 1. Therefore we have: the Levi-Civita connection
of Kdhler-Norden metric g coincides with the Levi-Civita connection of twin metric G ( i.e.
nonuniqueness of the metric for the Levi-Civita connection in Kahler-Norden manifolds).

2 Norden-Walker metrics

In the present paper, we shall focus our attention to Norden manifolds of dimension four.
Using a Walker metric we construct new Norden-Walker metrics together with a proper and
opposite almost complex structures.

2.1 Walker metric g

A neutral metric g on a 4-manifold M, is said to be a Walker metric if there exists a
2-dimensional null distribution D on M4, which is parallel with respect to g. From Walker’s
theorem [26], there is a system of coordinates (z,y, z,t) with respect to which g takes the
following local canonical form

g=(9i5) = ; (2)

o= OO
— o O O
o Q O+
S0 = O

where a, b, ¢ are smooth functions of the coordinates (x,y, z,t). The paralel null 2-plane D is
spanned locally by {9z, 0y}, where 0, = 2, 0, = %.

2.2 Almost Norden-Walker manifolds

Let F' be an almost complex structure on a Walker manifold My, which satisfies
i) F? =1,

ii) g(FX,Y)=g(X, FY) (Nordenian property),

ili) FO = 0y, FO, = —0, (F induces a positive J—rotation on D).
We easily see that these three properties define F' non-uniquely, i.e.,

Fo, = 9y,

Fo, = —0,,

FO. = ad, + 3(a+ b)d, — 0,
FO, = —3(a+b)0s + ady + 0.

and F' has the local components

0 -1 a —1(a+b)
i 1 0 La+b a
F=FE)=1 ¢ 2(0 : 1
0 0 -1 0
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with respect to the natural frame {0, 9y, 0., 0 }, where o = a(z,y, z,t) is an arbitrary func-
tion.
Therefore, we now put a = ¢. Then g defines a unique almost complex structure

0 -1 c —1(a+0b)
i 1 0 L(a+b c
0 0 -1 0

The triple (Mu, ¢, g) is called almost Norden-Walker manifold. In conformity with the termi-
nology of [3], [4], [14], [15] we call ¢ the proper almost complex structure.

We note that the typical examples of Norden-Walker metrics with proper almost complex
structure
-1 —c La-1b)

1(a—0) c

-1
1 0

J=(J)) =

oo = O
o O O
o

are studied in [2].

2.3 Isotropic Kahler-Norden-Walker structures

A proper almost complex structure ¢ on Norden-Walker manifold (Mu, ¢, g) is said to be
isotropic Kdhler if ||V<,0H2 = 0, but V¢ # 0. Examples of isotropic Kahler structures were
given first in [7] in dimension 4, subsequently in [1] in dimension 6 and in [3] in dimension
4. Our purpose in this section is to show that a proper almost complex structure on almost
Norden-Walker manifold (My, ¢, g) is isotropic Kéhler as we will see Theorem 2.

The inverse of the metric tensor (2), g~ = (¢%), given by

—a —c 1 0
1 —c —-b 0 1
9711 o0 o0 o0 | )
0 1 0 0
For the covariant derivative V¢ of the almost complex structure put (V(p)fj = Viga?.
Then, after some calculations we obtain
Vagpz = Vapl =co, Vyps = Vyol = ¢y, (5)
1 1
Vz@i = _VZQOZ = Vzwﬁ = _vz%tt = §ay + §Cx7
Y x t z 1 1
Vipa = Vepy, =Veop, =Vop = _iaw + §Cy>
z 1 1 1
V.p, = 2c.+caz—as— 5CCy — 50Cz + ibay,
1 1 3 1
V.l = a.+ 196~ Zbcy +cay + Jaaz + Ebaz7
1 1 1
V.pi = 1% ~ Zbaz + cay + zbcy + o + acy,
1 1 3 1
Vapl = a.+ qac, — Jbey + cay + Jaae + Thas,

. 1 1 3 1
V. = 700 — Zbax + cay + Zbcy + ccp + 1%
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1 1 1 1
Vep! = 2+ 5CCy — Qe + 55% + 5Ca — 5aCx,
1 z 1 1
Vigl = Vil = Vil = Vil = soy + b,
z 2 1 1
Vigh = Vigh = Vgl = Vipi = ot 5by,
T 3 1 1 1
vt@z = iccz +b, — §be — iabz —+ §bcy,
1 1 1 1
vt@’g = Zaby - bey - zacz + ZbCz?
1 1 1 1
vt@f = Zacx - Zbcx + ccy + bey + cby — Zaby
1 1 1 1
Vip! = §be + b, + §bcy + 5 — §abz.

Now a long but straightforward calculation shows that
IVel® = 979" gms (Vo) ik (V)51 = 0.

Theorem 2. A proper almost complez structure on almost Norden- Walker manifold (Ma,
©,g) is isotropic Kdahler.

2.4 Integrability of ¢

We consider the general case.
The almost complex structure ¢ of an almost Norden-Walker manifold is integrable if and
only if
(Ne)jk = 5 Ompic — Pk'Ompj — ©m0i Pk + PmOkp]" = 0. (6)
From (3) and (6) find the following integrability condition.

Theorem 3. The proper almost complex structure ¢ of an almost Norden-Walker mani-
fold is integrable if and only if the following PDEs hold:

az+bz+2cy:0,
{ ay +by —2c, = 0. (7)

From this theorem, we see that, in the case a = —b and ¢ = 0, ¢ is integrable.
Let (Ma, ¢, g) be a Norden-Walker manifolds (N, = 0) and a = b. Then the equation (7)

reduces to
Az = _Cy7
8
{oz ®)

from which follows
Qza + Qyy = 0,
Cax + Cyy =0,

9)

e.g., the functions a and ¢ are harmonic with respect to the arguments x and y.
Thus we have

Theorem 4. If the triple (M, p,g) is Norden-Walker and a = b, then a and ¢ are all
harmonic with respect to the arguments x, y.
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2.5 Example of Norden-Walker metric

We now apply the Theorem 4 to establish the existence of special types of Norden-Walker
metrics. In our arguments, the harmonic function plays an important part.

Let a = b and h(z,y) be a harmonic function of variables z and y, for example h(z,y) =
e” cosy. We put

a=a(z,y,zt) = h(z,y) + a(z,t) = e cosy + a(z,t)

where « is an arbitrary smooth function of z and t. Then, a is also hormonic with respect to
x and y. We have

a, = e” cosvy,
ay = —€”siny.

From (8), we have PDE’s for ¢ to satisfy as

¢z = ay = —e”sinz,
Cy = —ay = —e” cosy.

For these PDE’s, we have solutions
c=—€"siny + B(z,t),

where [ is arbitrary smooth function of z and ¢. Thus the Norden-Walker metric has compo-
nents of the form

1 0

0 1
e®cosy + a(z,t) —e“siny+ B(z,1t)
—e®siny + B(z,t)  e®cosy+ a(z,t)

g=(9i5) =

o= OO
= O O O

3 Holomorphic Norden-Walker(Kéihler-Norden-
Walker) and quasi-Kéhler-Norden-Walker metrics

on <M47 ¥, g)

Let (M, ¢, g) be an almost Norden-Walker manifold. If
(Pog)kij = G1k'Omgis — & Okgmj + gmj (0idi’" — Okd") + gim0j bk =0, (10)

then, by virtue of Theorem 1, ¢ is integrable and the triple (M4, ¢, g) is called a holomorphic
Norden-Walker or a K&hler-Norden-Walker manifold. Taking into account Remark 1, we see
that an almost Kéhler-Norden-Walker manifold with conditions ®,g = 0 and N, # 0 does
not exist.

Substitute (2) and (3) into (10), we see that the non-vanishing components of (®,g)xi;
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are
(@) =y (09),00 = (Bpg),. = 5(be —a2) . ()
(®e9)pry = by — 2ca, (%g)yzz = —@q,
(209)yze = (Po9)y. = (b —ay) — ¢z, (Ppg)yy = —ba — 2cy,
(209).0. = (Pe9).., = ( D iar = (Po9)y1p = Ca,
(Pe9).ae = (P9t = = (Po9)ie. = = (P09).0 = %(ax +ba),
(®09).,. = (209),., = (Po9)y: = (Po9)sy, =
() = (®00).0y = — (@), = — (Dg),., = 3 (ay +by),
(®p9),., = caz—as+2c.+ %(a +b)ay,
(o) = (Ppg).re = oot bt 5(a+b)ey,
(®09),yy = Cbo+ar—2c.+ %(a +b)by, (P,9),,, =cay — b — %(a + b)ag,
(P09 = (Po9)s, :ccy—at+2cz—%(a+b)cgg,
(Pog)yy = cby+be— =(a+bbs.

2

From the above equations, we have

Theorem 5. A triple (Ma, ¢, g) is a Kdihler-Norden-Walker manifold if and only if the
following PDFEs hold:

az =ay =by=by=b.=c; =¢, =0, ar—2c.=0. (12)

A Norden-Walker manifold (Mu, ¢, g) satisfying the condition ®rg;; + 2V G;; to be zero
is called a quasi-K&hler manifold, where G is defined by Gi; = ©7" gm;-

Remark 2. From (2) and (3) we easily see that, the twin Norden metric G is non- Walker.

For the covariant derivative VG of the associated metric G put (VG@)ix = ViG k. The
non-vanishing components of V;G i, are

VoGer = VaGii = cay VyGaz = VyGur = ¢y, (13)
V.Gpo = V.Gap=—V.Gy = V.G = %(ay te),

ViGar = ViGua=V.Gye = VaGay = 5(ey —a),

V.G.: = 2c.—at+ %ay(a +b) + caq,

V.G = V.Gi = %(cay +cen) — i((ﬁb)(afcy)),

V.G = 2¢c.—a;— %cz(a +b) + ccy,

ViGo: = Vilaw= —ViGy = —ViGry = %(bx +ay),

1
ViGzt = ViGiz = VtGyz = thzy = §(by — Cx),
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1
ViG.. = bs+cer+ §cy(a+b),
1 1
ViG.e = ViGy = Ec(bz +cy) — 1((01 —by)(a+ b)),
VG = b, + be — %bz(a =+ b)

From (11) and (13) we have

Theorem 6. A triple (Ma, p,g) is a quasi-Kahler Norden- Walker manifold if and only if
the following PDEs hold:

by =by=b.=0, ay —2¢; =0, az —2¢y =0, cay —ar + 2¢; — (a + b)cy = 0.

4 Curvature properties of Norden-Walker manifolds

If R and r are respectively the curvature and the scalar curvature of the Walker metric,
then the components of R and r have, respectively, expressions (see [15], Appendix A and C)

Rzzzz = 7%(7/11, Rzzzt = 7%sz7 Rzzyz = 7%azy, Rzzyt = 7%01y7 (14)
Rece = 3au— bevs = Saybe + deuey, Roter = ~Sber, Botye = ~heuy,

Rotye = —%bxyy Rtz = %cm — %bxz — i(c$)2 + %aacbgc — ibey + ibycxa

Ryzy> = —320Qyy; Ryzyt = —32%w>

Ryszt = 3Gy — 3Cy: — 1@aCy + 1ayCa — gayby + i(cy)Q’ Rytye = =3y,

Rytze = 3Cyt — 3bys — jCaCy + jaybs,

Rzt = Cat — 3au — 3baz — Ja(ca)? + Jaasbs + jeashy — jecoey — Jarcs

+1asce — Yazb: + tcayb, + Tbayb, — ib(cy)2 —1b.¢,

2
1 1 1 1
+Zaybt + Zasz + §bycz - Zatby-

and
T = Qzz + 2Coy + byy. (15)

Suppose that the triple (M, ¢, g) is Kahler-Norden-Walker. Then from the last equation
in (12) and (14), we see that

1 1
Rzt = cot — iatt = *i(at - QCz)t =0.
From (12) we easily we see that the another components of R in (14) directly all vanish. Thus
we have

Theorem 7. If a Norden-Walker manifold (Mu, ¢, g) is Kdhler-Norden- Walker, then My
is flat.

Remark 3. We note that a Kéhler-Norden manifold is non-flat, in such manifold curva-
ture tensor pure and holomorphic [8].

Let (Mu, p,g) be a Norden-Walker manifold with the integrable proper structure ¢, i.e.,
N, = 0. If a = b, then from proof of the Theorem 4 we see that the equation (8) hold. If
¢ =c(y, z,t) and ¢ = ¢(z, 2,t), then coy = (cz)y = (¢y)z = 0. In these cases, by virtue of (8)
we find a = a(z, z,t) and a = (y, 2, t) respectively. Using of c¢zy = 0 and azs + byy = 0 (see
(9)), we from (15) obtain r = 0. Thus we have
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Theorem 8. If (M, ¢, g) is a Norden- Walker non-Kdhler manifold with metrics
0 0 1 0 0 1 0
1 00 0 1 -~ | 0 0 0 1
9711 0 a(z,z,t) c(y,z,t) |’ 9711 0 a(y,z,t) c(z,z,t) |’
0 1 c(y,z2t) a(z,zt) 0 1 c(z,21t) a(y,zt)

then My is scalar flat.

5 On the Goldberg conjecture

Let (M2y, J,g) be an almost Hermitian manifold. Then, Goldberg’s conjecture states that
an almost Hermitian manifold must be Ké&hler if the following three conditions are imposed:
(G1) the manifold Ma, is compact; (G2) the Riemannian metric ¢ is Einstein; (G3) the fun-
damental 2-form € defined by Q(X,Y) = g(JX,Y) is closed (d2 = 0).

It should be noted that no progress has been made on the Goldberg conjecture, and the
orginal conjecture is stil an open problem.

Let (Man, ¥, g) be an almost Norden manifold. Given an almost complex structure ¢ on
My, take any Riemannian metric g, which exists provided Mz, is compact (paracompact) [9,
p. 60]. We obtain a Hermitian metric h by setting

hX,Y) = §(X,Y) + g(eX,¢Y)
for any X,Y € S§(May,). The pair (¢, §) defines a fundamental 2-form Q, by
Qo (X,Y) =h(pX,Y).

We call it a p-compatible 2-form.

Let (Man, ¢, g) be an almost Norden manifold, and choose a p-compatible 2-form €, on
Ms,,. Then we can propose an almost Norden version of Goldberg conjecture as follows [16]:
if (G1) Moy, is compact, (G2) g is Einstein, and if (G%) a ¢-compatible 2-form €, is closed,
then ¢ must be integrable.

Let now (Ma,p,g) be an almost Norden-Walker 4-manifold. The pair (p, g) defines as
usual, a rank two tensor G(X,Y) = g(pX,Y), but G is symmetric (in fact another neutral
metric) and pure, rather than a 2-form. We call it a twin Norden metric, which plays a role
similar to the fundamental 2-form  in Hermitian geometry. If we define an operator ®,
applied to a pure twin metric G, then we have

(q)vG)(Xv Y, Z) = (Cbg,g)((pX,Y:Z) +9(N¢(X7 Y),Z).

If G € Ker®,, then by virtue of Theorem 1, we have Vgp = 0, where V¢ is the Levi-Civita
connection of the twin Norden metric G, which coincides with the Levi-Civita connection of
the orginal Norden metric g in K&hler-Norden-Walker manifolds. Since V¢ is a torsion-free
connection, then ¢ must be integrable. Thus, we can propose a result concerning the Norden
version of Goldberg conjecture as follows: (NG) if G € Ker®,, then ¢ must be integrable.

6 Opposite almost complex structure ¢’
It is known that an oriented 4-manifold with a field of 2-planes, or equivalently endowed

with a neutral indefinite metric, admits a pair of almost comlex structure ¢ and an opposite
almost complex structure ¢’, which satisfy the following properties ([11]-[13], [15]):
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¢ =% =1,
90X, 0Y) = g(¢'X,0'Y) = g(X,Y),

i)
)

ii) o' = ¢,
)
)

ii

e

iv) the preferred orientation of ¢ coincides with that of My,

the preferred orientation of ¢’ is opposite to that of M.
Let (M4, @, g) be an almost Norden-Walker manifolds. For a Walker manifold Ma, with

the proper almost complex structure ¢, the g-orthogonal opposite almost complex structure
¢’ takes the form

0’0 = —(01c +%2 20)01 — Ub0s + 0205 + 0104,

@O0y = (—91a+egc)al + %260, + 0105 —9264,
/85 (Glach 9242 4 92+92)81 — (%ab+ 92+92 )82 + %2405 + ‘9—1a84,
—(01% + 91ab+ 82%:_62 + %2 (ac - bc))al +( Bbe+ 2% +

(91b+026)63 —+ (0107 b)84,

+ 52520

where 01 and 02 are two parameters.
In the present paper, we shall focus our attention to one of explicit forms of ¢, obtained
by fixing two parameters as 6; = 1 and 62 = 0 (only for simplicity), as follows:

001 = —cOr — %baz + Ok, ©'0s = —%(Lal + 03,
©'0s = —3aco — (2ab+1)d2 + ada, (16)
@04 = —(* + tab+1)01 — $bcOz + 1b0s + cOa,

and ¢’ has the local components

—c —ia —Lac —(c® + fab+1)
: ~1p 0 —(tab+1) —1pe
/ /1
g=wl=1 ¢ ! ¥ (17)
I 0 1 0 b
1 0 %a c

For the covariant derivative V' of the opposite almost complex structure ¢, the non-
vanishing components of which are

1

Vap,” = —Vap,! =Vepl® = —Vap,' = %VZSD;Z = -3¢ (18)
V0l = V= Vel = Vel = %vw;t - _%cy,

Vapi® = —cco, Vypi® = —ccy, Vaopy® = — bau + at + ccy + iaQM

Vagl! = tbe, + jhas, Vgl = Vi) = _%cy - %az,

Vap,” = iaaz +cay + ia’cyv V., =c. — %acz - 1at + caz + 3bay,

V.ot = —ay, V.l = iacaz —ay + jacey + 30201,

V.p! = éabcy + %abaz — %cy — %az,

Vep” = —c— 106+ %at - %Cagc - ibay, V. = —iacy - 700,

V.oi¥ = —2cc. + (%ab — %c2 +ac— %)ax + car + (%ab + %CQ — %)cy,
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V.ol = —co+ ibQ(zy + ibccy + %bcax, V. = —cey — ibax — %bcy,

V.ot = e — ibay - %at — %ccy - iacm7 Viph” = —%bz — ibcy + %cby + %abz,
Vigh! = gbby + ghen, Vight = —ba, Veghh' = Vigl =~ by — ea,

Vtap;z = iacz + ccy + iaby, Vtap;y = fiabz + %bz + %ccz + gbcy,

Viplt = iacby —cy + iaccm + iazbz, Vil = éabby + éabcm - %by — %cz,
Vipl? = —iab;r — %bz — ibcy — %ccm, Viplt = —iaby — iacm,

Vipr® = —cbs+ (éab - %C2 - %)cz + achy + (%ab—i— %02 - %)by7

Vigr! = —bs+ ib%y + %bccz + %bcby, V.p,® = —cby — ibcz - ibby,

Vgt = fibcy - %cby + %bz - iabz.

From (2), (4) and (18) we have

Theorem 9. The opposite almost complex structure of an almost Norden- Walker manifold
(Muy, ¢, g) is isotropic Kdhler if and only if the following PDEs hold:

cz(2bay — 2ac, + 4c. — 2a4 + 2caz) + ¢y (2b, — 2ab,) = 0. (19)
From (19) we have
Corollary 1. The triple (M4, ', g) with metric

0 0 1 0
=00 0 1
IZMIT 10 a(myat) ezt

o

1 c(z,t) b(z,y,z,t)

is always isotropic Kahler.

6.1 Integrability of ¢

The opposite almost complex structure ¢’ is integrable if the analogue of the PDE’s (6)
for ¢;* in (17) vanish. From some calculation, we have explicitly the following theorem.

Theorem 10. The opposite almost complex structure ¢’ of an almost Norden- Walker

manifold is integrable if and only if the following PDEs hold:
by =0, az—2cy =0, ab;—2b.=0, (20)
bay — 2a¢ — 2acy + 4cey + 4c. = 0.

Let (M4, ¢, g) be a Norden-Walker manifold with the integrable almost complex structure
¢, 1.e. Ny =0.If a = 0, then from (20) by =b. = ¢y =c. =0.
Thus we have

Theorem 11. Let a = 0. The triple (M4, ', g) with metric

0 0 1 0
oo o 1
9=1(9:) = 10 0 ez, t)

0 1 c(z,t) b(z,t)
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s always Norden- Walker.

7 Norden-Walker-Einstein metrics

We now turn our attention to the Einstein conditions for the Norden-Walker metric g in

(2).
Let R;; and S denote the Ricci curvature and the scalar curvature of the metric g in (2).
The Einstein tensor is defined by G;; = R;j; — %S gi; and has non zero components as follows

(see [15], Appendix D):

1 1 1 1
Gy = 2 Qzx — Zbyy, Gut = 5 Cax + §bxy7
1

Gy = ?aw + 5Cyy, nyt = 1byy — 70aa, ) )
Gzz - Zlaazz + Clamy "2_ §bcllyy - ayt1+ cyz - §aycz + Eazcy
+ §ayby - E(Cy) — 3QCzy — Zabyw (21)
Gat = SaCsz + SCCoy + Azt — ECar — 2aybs + Leaey + be
zt — 3 TT 2 TY g Uzt gtzz s UyVzx 5 txCy 2 Yy

1 1 1 1
20 * 3bys — 3¢l - ZCb%‘y’ 2,1 1 1
G = §abxx + Cbxy + ot — byps — 5(01) + §axbx - §bxcy + §bycx
1 1 1
—+ beyy — Zbazz — §bczy.

The metric g in (2) is almost Norden-Walker-Einstein if all the above components Gi;
vanish (G;; = 0).
Theorem 12. Let (My, ¢, g) be a Norden- Walker manifold. If

az =by=cy =c. =0 (oray,=ay=cy, =c, =0), (22)

then g is a Norden- Walker-Einstein.

Proof. Suppose that the triple (M4, ¢, g) be a Norden-Walker manifold. Then from (20) and
(22), we see that the assertion is clear, i.e., G;; = 0. QED

Corollary 2. The triple (My, ¢, g) with metric

0 0 1 0

o loo o 1
9= (93) = 1 0 a(y,zt) ct)
0 1 c(t) b(t)

s always Norden- Walker-Einstein.

8 Counterexamples to Goldberg’s conjecture

1. Let (M4, ¢, g) be an almost Norden-Walker manifold.
Consider the metric

0 O 1 0

o loo 0 1

9= 1(9:) = 1 0 a(z,y,zt) 0
0 1 0 a(z,y,z,t)
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That is the metric is defined by putting a = b, ¢ = 0 in the generic canonical form (2). In
this case, we see from (21) that the Einstein condition consist of the following PDE’s:
Gze — Qyy =0, oy =0, @z —2ay + (ay)2 =0,
Gzt — QzGy + Gyz =0, QGzz — 200, + (agc)2 =0.
If @ is independent of y and ¢, and if a contains x only linearly, the first four PDE’s hold

trivially, and the last one reduces to: 2a,. — (az)® = 0. We see that a = —2 is a solution to
the PDE, and therefore the metric

0 0 1 0
0 0 0 1
o1 o0 -2

is Einstein on the coordinate patch z > 0 (or z < 0). Thus, the second condition (G2) of
Goldberg conjecture holds. We know that this metric admits a proper almost complex structure
as follows:

@0z = 0y, @Oy = —0z, @0, =ady— 0 YO = —als+ 0. (24)

For the Einstein metric (23), the proper almost complex structure ¢ in (24) becomes
2z 2z
POz = 0y, @Oy =—05, 0. = —781, — 0y @Oy = 7&5 + 0..
Then, the integrability of ¢, given in Theorem 3, becomes
4
Gy + by +2cy =2a, =—— #0, ay+by—2c; =2ay=0.
z

Thus, ¢ cannot be integrable.
Similarly, the opposite almost complex structure ¢’ in (16) has the form

410/8. :—fay-i-at, gOlay = %81+6Z7
00, = —((2) + 1), — 20, ¢'0 = —((2)* +1)0: — 2.

The ¢'- integrability condition (20) in Theorem 10 becomes

by =0, ao—2cy=a;=—32#0, aby—2b:=aa, =35 #0,
bay — 2a¢ — 2acy +4CCy+4CZ =0.

Thus, ¢’ is not integrable.

2. Let (M4, ¢’,g) be an almost Norden-Walker manifold. We assume that a, b, ¢ does
not depend on z and y, i.e., a = a(z,t), b = b(z,t), ¢ = ¢(z,t). Therefore, the metric g in (2)
becomes

0 0 1 0
— (i) = 0 0 0 1
9= =1 1 o a(z,t)  c(z,t)

0 1 c(zt) b(z1t)
In this case, we see from (21) that the metric g is Norden-Walker-Einstein, i.e., G;; = 0. Thus,
the second condition (G2) holds.
If a, b and c are independent of z and y, the ¢'- integrability condition (20) in Theorem

10 becomes
bz:(), at—202:0.

On the other hand, since b = b(z,t), we have b, # 0. Thus, ¢’ is not integrable.
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9 Holomorphic Norden-Walker (Kéihler-Norden-
Walker) metrics on (My, ¢, g)

Let (Ma, ¢, g)be an almost Norden-Walker manifold. Substituting (2) and (17) in

we find the following Kéahler-Norden-Walker condition of (M4, ¢’, g).

(e 9)aa=

((I)«p’g)zyz
((I)w’g)zyt
(q’w’g)zzt
(‘I’w’g)ztt

(q)so/g)ywz
(q)eo’g)yyz

(q)w’g)yyt
(P g)y=t
(D g)yte
(q’eo/g)zxt
(q)«p’g)zw
((bqo’g)zwf
(R g)zz2
(‘1><p/g)zzt
(‘bw'g)ztt
(P g)taz
(P G)tat
((bw’g)tyz
(P g)tzz
(‘ng)m

(<1>¢/g)m

(Q(p’g)zzz = —Cg, ((I)gp/g)zzt = (q’w/g)zm = 7(<I)Ap’g)ta::c = 7bz’

1 1
('@v’g)wzy = —Cy — 0z, ((I)go’g)zzz = —caz — 2¢c; — ibay + at,

2
(Py 9oty = — (P tay = —(Pypr 9)tye = —Ca — %by,
(Byrg)ers = —cex — 3o, — 3bs — abe — rbas,
~ebs — bew — Lbby, (Bprg)yet = (Bprg)yta = — by,
(@1 9)yes = ~(9) sy = ~(B09)ua =~ a,
(P g)yzy = —(Pprg)zyy = —ay,
(¢¢’9)yty = _%((I)Wg)tyy = —Cy, ((I)Lp'g)yzz = —Eaam
(Perg)yt= = *éacz - %at - iaby - ibay + e,
_%abr + b — cby —bey, (Pyr9)zez = (Pypr9)zza = —%acz,
(Pyrg)zta = ibaz - %abw — %bz,
((btp’g)zzy = —iacy,

1 1
—aby — c: + -ay,

1
(éw’g)zty = Zbay T2 2

1 1
fiacaz —ac, — Zabay —ay + —aay,

2
(P g) st = flacc — 1abc —cy — —ab
©'G)ztz = 2 T 4 Y Y 2 Z
1 1 1
—Eacbx — Eabby —by —cb, + Ebat — bes,

1 1 1
(q)tp’g)tzx = —ccg + Zabx — Zbax + §bz7

1 1
(év’g)ttw = _gbcwv ((I)ap’g)tyt = ((I)so’g)tty = gbcya

1 1 1
(P g)tzy = —cey + Zaby - Zbay QM + ez,

1 1 1
7620@ - Zabaz — agy — 2¢cc, — gbcay + iabz + ca,

(Pyrg)eez = —cey — %abcz — g + b, — %bccy — %bat,

2 1 1 1
cb, 4abb¢ ba 2bcby + bez.

The following theorem is same to the Theorem 5.
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(10),

(25)
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Theorem 13. A triple (Ma, ', g) is a Kihler-Norden- Walker manifold if and only if the
following PDFEs hold:

0 O 1 0

0 0 1

g= (gi]') = 1 0 a(z) 0
0 1 0 b(t)

is always Kdahler-Norden- Walker.

Let (Ma, ¢, g) be an almost Norden-Walker manifold. For the covariant derivative VG’ of
the twin metric G’ put (VG')ix = VG, where G’ is deffined by G}; = ¢;™ gm;. Then, after
some calculations we obtain

V.G
V.G,
VG
VG,
V.G,
V.G
V.G,
V.G
V.G,

V.G

V.G
V.Gl
V.Gl
VG
VGl
V.G,

VG

1 1
vZBG/zz = _VxG;t = _VQZG;y = Esz;z = _Ecac:

2
’ / , 1 , 1
VyGep = _vyGyt = _vyth = ithyy = _5097

1 1
*iacyavyGlzt = VG, = —scey,

2
’ 1 1 , , 1
V.Gye = 50— icy,VzG,;t = V.G = becy —CcCqp —
1 1 1
V.G, = —Zacx — 56% —c, + iat — Zba,y7
1 1
—ay, VZG’;Z = VZG'Zy = —Zaax — Zacy,
1 1 1 1
sz;,y =Cz — §at - ZG/CI — §CCy — Zbalﬁ
—ac, + —aar — 1aba — laca —a
S I e S S
V.G, = —cc, — ibcay + %cat — (%c2 + %abJr %)az
1 1 1 1
— 0z — (iab — gab—k 5)cy,
1 1 1
be, — Qbat — ibccy — (A + Zab + ey,
1 1
_bq”VtG;y = VtG;z = _507; — §by7
1 1 1 1
V.G, = —Zabz — ibz — Zbcy — Eccz,
’ 1 1 , , 1
ViGiy = fzbby — cby — Zbcm7 ViGy, = ViG, = fiaby
1 1 1 1
V.G, = b = Jabe = Jboy — by,

1 1 1
—§abZ — —abey — Qaccm — ¢y,

4
1 1 1 1
th;z = _(gab‘i' §)by - ZaCbm — Zbccy

(26)

1 1 1
_*an”szlzt = VzG;Z = _§CCI7V(EG;t = VyG;t = ibc‘q”

ibaz,

— —acy,

4
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1 1 1, 1
—§cbz — (gab-‘r §C + 5)0x7
, 1 1 1
ViGy = b — Sbeby — Labb, — by — by

From (25) and (26) we have
Theorem 14. A triple (Ma, ', g) is a quasi-Kdihler Norden- Walker manifold if and only
if the following PDE’s hold:

Gy =y =by =by =b.=co =¢;, =0, at —2c. =0.
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