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Abstract. We prove that a Minkowski space is Euclidean if it has the weak bisector property.
This confirms a conjecture of R. W. Freese, C. R. Diminnie, and E. Z. Andalafte.
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By X we denote the Minkowski space (i.e., the finite dimensional real Banach space) with
origin o, norm ‖·‖, and unit sphere SX := {x ∈ X : ‖x‖ = 1}. When X is a Minkowski plane,
i.e., a two-dimensional Minkowski space, SX is also called the unit circle of X. Basic references
for the geometry of Minkowski spaces are [5], [4], and the monograph [8]. For x 6= −y, the
intersection of the cone {λx+ µy : λ, µ ≥ 0} and SX is called the (undirected) arc between x
and y and denoted by SX(x, y), and the length of SX(x, y) is denoted by δX(x, y). For brevity,
we use the shorthand notation x̂ = x

‖x‖
for any point x 6= o.

For any three non-collinear points p, x, y ∈ X we call the convex set bounded by the rays
[p, x〉 and [p, y〉 the angle xpy (denoted by ∠xpy) with p as apex. For two linearly independent
points x, y ∈ SX the authors of [2] defined the measure of ∠xoy by

A(x, y) := cos−1

[
1

2
(2− ‖x̂− ŷ‖2)

]
.

The ray [o, z〉 with z ∈ ∠xoy is called the angular bisector of ∠xoy provided A(x, z) = A(y, z)
(the uniqueness of z in this framework follows from [3, p. 170, Corollary]). R. W. Freese, C.
R. Diminnie, and E. Z. Andalafte in [3] proved that a Minkowski space X is Euclidean if X
has the angle bisector property, where X is said to have the angle bisector property if for all
linearly independent x, y ∈ SX the point z = x̂+ y satisfies A(x, z) = A(y, z) = 1

2
A(x, y).

In [6] a stronger result was proved (see Theorem 4.2 there): If for all linearly independent
x, y ∈ SX the point z = x̂+ y satisfies A(x, z) = A(y, z), then the underlying Minkowski
plane is Euclidean. The authors of [3] also asked whether the weak bisector property, which is
formulated in the following, still implies that the underlying space is Euclidean.

iThe research of the second named author is supported by a grant from the Harbin Uni-
versity of Science and Technology (grant number 2009YF028) and by Deutsche Forschungsge-
meinschaft.
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Figure 1. Proof of Theorem 1.

Weak bisector property: For any two linearly independent points x, y ∈ SX there exists
a point z ∈ ∠xoy having the property A(x, z) = A(y, z) which satisfies A(x, z) = 1

2
A(x, y).

Once more we mention that in view of [3, p. 170, Corollary] this point z is unique, up
to positive multiples. The aim of this paper is to give an affirmative answer to this question,
namely by

Theorem 1. A Minkowski space X of dimension at least 2 is Euclidean if it has the weak
bisector property.

To prove this result we need the following lemma:

Lemma 1 (See Corollary 2.5 in [7]). Let X be a Minkowski plane. If there exists a function
ϕ : [0, 2] → [0, 4] such that for any u, v ∈ SX we have δX(u, v) = ϕ(‖u− v‖), then X is
Euclidean.

Proof of Theorem 1: Since a Minkowski space of dimension at least 2 is Euclidean if and
only if each of its two-dimensional subspaces is Euclidean (see [1]), we may assume, without
loss of generality, that X is a Minkowski plane. By Lemma 2, we only need to show that the
length of any undirected arc of SX is determined by the length of the corresponding chord.

Note first that for any x, y ∈ SX there exists a unique point z ∈ SX with z ∈ ∠xoy and
A(x, z) = A(y, z), and that ‖x− z‖ = ‖y − z‖ is determined only by ‖x− y‖. Indeed, from
the assumption of the theorem it follows that

cos−1

[
1

2
(2− ‖x̂− ẑ‖2)

]
= A(x, z) =

1

2
A(x, y) =

1

2
cos−1

[
1

2
(2− ‖x̂− ŷ‖2)

]
,

which implies that

‖x̂− ẑ‖ =

√
2−

√
4− ‖x̂− ŷ‖2.

Now, for any points x, y, x′, y′ ∈ SX with ‖x− y‖ = ‖x′ − y′‖, we show that δX(x, y) =
δX(x′, y′). For any integer n ≥ 1 we have two subsets {z1, · · · z2n+1}, {z

′
1, · · · z

′
2n+1} ⊂ SX
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such that the following holds (note that the points zi etc. are found again in view of [3, p. 170,
Corollary]):

(1) {z1, · · · z2n+1} ⊂ SX(x, y) and {z′1, · · · z
′
2n+1} ⊂ SX(x′, y′),

(2) A(z1, z2n−1+1) = A(z2n+1, z2n−1+1) = A(z′1, z
′
2n−1+1) = A(z′2n+1, z

′
2n−1+1),

(3)

A(z1, z2n−2+1) = A(z2n−2+1, z2n−1+1)

= A(z′1, z
′
2n−2+1) = A(z′2n−2+1, z

′
2n−1+1)

and

A(z2n−1+1, z2n−1+2n−2+1) = A(z2n+1, z2n−1+2n−2+1)

= A(z′2n−1+1, z
′
2n−1+2n−2+1)

= A(z′2n+1, z
′
2n−1+2n−2+1)

· · ·

Continuing with similar arguments, we finally obtain that

‖zi − zi+1‖ = ‖zj − zj+1‖ =
∥∥z′i − z′i+1

∥∥ =
∥∥z′j − z′j+1

∥∥

holds for any 1 ≤ i, j ≤ 2n.
Hence

δX(x, y) = sup
n≥1

{
2n∑

i=1

‖zi − zi+1‖

}

= sup
n≥1

{
2n∑

i=1

∥∥z′i − z′i+1

∥∥
}

= δX(x′, y′),

and this supremum of sums converges to the arc length since ‖zi − zi+1‖ converge to zero.
This follows since that sum is bounded from above by the arc length between x and y, and we
have 2n summands for n→ ∞. The proof is complete. QED

Remark 1. The weak bisector property in Theorem 1 can be replaced by the following
condition: There exists a real function φ such that for any two linearly independent points
x, y ∈ SX , the point z ∈ ∠xoy having the property A(x, z) = A(y, z) satisfies A(x, z) =
φ(A(x, y)).
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