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Introduction

Let K be a complete non-Archimedean valued field and let C'(X, E) be the space of all con-
tinuous functions from a zero-dimensional Hausdorff topological space X to a non-Archimedean
Hausdorff locally convex space E. We will denote by Cy(X, E) (resp. by Cr.(X, E)) the space
of all f € C(X,FE) for which f(X) is a bounded (resp. relatively compact) subset of E. The
dual space of C,.(X, E), under the topology t., of uniform convergence, is a space M (X, E’) of
finitely-additive E’-valued measures on the algebra K(X) of all clopen , i.e. both closed and
open, subsets of X. Some subspaces of M (X, E’) turn out to be the duals of C(X, E) or of
Cy(X, E) under certain locally convex topologies.

In section 2 of this paper, we study some of the properties of the so called Q-integrals, a
concept given by the author in [14]. In section 3, we identify the dual of Cy(X, E) under the
strict topology 1. In section 4, we prove that the dual space of C'(X, E), under the topology of
uniform convergence on the bounding subsets of X, is the space of all m € M (X, E’) which have
a bounding support. In section 5 it is shown that the space M, (X) of all separable members of
M(X), under the topology of uniform convergence on the uniformly bounded equicontinuous
subsets of C,(X), is complete. The same is proved in section 6 for the space Mgy, (X) of
those separable m for which the support of the extension m?®°, to all of the Banaschewski
compactification 8, X of X, is contained in the N-repletion v,X of X, if we equip M., (X)
with the topology of uniform convergence on the pointwise bounded equicontinuous subsets of
C(X).
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1 Preliminaries

Throughout this paper, K will be a complete non-Archimedean valued field, whose valua-
tion is non-trivial. By a seminorm, on a vector space over K, we will mean a non-Archimedean
seminorm. Similarly, by a locally convex space we will mean a non-Archimedean locally convex
space over K (see [25]). Unless it is stated explicitly otherwise, X will be a Hausdorff zero-
dimensional topological space , E a Hasusdorf locally convex space and cs(F) the set of all
continuous seminorms on E. The space of all K-valued linear maps on E is denoted by E*,
while E’ denotes the topological dual of E. A seminorm p, on a vector space G over K, is
called polar if p = sup{|f| : f € G*,|f| < p}. A locally convex space G is called polar if its
topology is generated by a family of polar seminorms. A subset A of G is called absolutely
convex if Az + py € A whenever z,y € A and \,p € K, with ||, |u] < 1. We will denote
by BoX the Banaschewski compactification of X (see [5]) and by v, X the N-repletion of X,
where N is the set of natural numbers. We will let C(X, E)) denote the space of all continuous
E-valued functions on X and Cy(X, E) (resp. Cre(X, E)) the space of all f € C(X, E) for
which f(X) is a bounded (resp. relatively compact) subset of E. In case E = K, we will sim-
ply write C(X),Cy(X) and Cr.(X) respectively. For A C X, we denote by xa the K-valued
characteristic function of A. Also, for X C Y C 3,X, we denote by BY the closure of B in Y.
If f e EX, paseminorm on E and A C X, we define

1l = sup p(f(x)), [Iflla,p = supp(f(z)).
zeX z€A

The strict topology 8, on Cy(X, E) (see [9]) is the locally convex topology generated by the
seminorms f +— ||hf||,, where p € c¢s(F) and h is in the space B,(X) of all bounded K-valued
functions on X which vanish at infinity, i.e. for every € > 0 there exists a compact subset Y of
X such that |h(z)| <eifz ¢ Y.

Let Q@ = Q(X) be the family of all compact subsets of 3,X \ X. For H € Q, let Cy be
the space of all h € Cy.(X) for which the continuous extension hP to all of BoX vanishes
on H. For p € cs(E), let Bu,p be the locally convex topology on Cy(X, E) generated by the
seminorms f — ||hf|lp, h € Cu. For H € Q, Bu is the locally convex topology on Cy(X, E)
generated by the seminorms f — ||hf|lp, h € Cu,p € cs(E). The inductive limit of the
topologies B, H € €, is the topology 5. Replacing 2 by the family €2; of all K-zero subsets of
80X, which are disjoint from X, we get the topology (1. Recall that a K-zero subset of 8,X
is a set of the form {z € B,X : g(z) = 0}, for some g € C(B,X). We get the topologies 8,
and 3, replacing € by the family Q, of all Q € Q with the following property: There exists a
clopen partition (A;);er of X such that @ is disjoint from each Eﬁox. Now £, is the inductive
limit of the topologies fg, @ € €. The inductive limit of the topologies Br,p, as H ranges
over §2,, is denoted by B.,p, while 3., is the projective limit of the topologies Bu,p, p € cs(E).
For the definition of the topology . on Cy(X) we refer to [12].

Let now K(X) be the algebra of all clopen subsets of X. We denote by M (X, E’) the
space of all finitely-additive E’-additive measures m on K (X) for which the set m(K (X)) is
an equicontinuous subset of E’. For each such m, there exists a p € cs(E) such that ||m|, =
myp(X) < oo, where, for A € K(X),

my(A) = sup{|m(B)s|/p(s) : p(s) #0, AD B e K(X)}.

The space of all m € M(X,E’) for which m,(X) < oo is denoted by M,(X,E’). For
m € My(X, E') we define N, , on X by

N p(xz) =inf{m,(V):z € V € K(X)}.
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In case E = K, we denote by M (X) the space of all finitely-additive bounded K-valued
measures on K (X). An element m of M (X) is called 7-additive if m(Vs) — 0 for each decreas-
ing net (Vs) of clopen subsets of X with (Vs = (). In this case we write V5 | . We denote by
M- (X) the space of all 7-additive members of M (X). Analogously, we denote by M, (X) the
space of all o-additive m, i.e. those m with m(V,,) — 0 when V,, | 0. For an m € M (X, E’)
and s € E, we denote by ms the element of M (X) defined by (ms)(V) = m(V)s. A subset G
of X is called a support set of an m € M (X, E’) if m(V) = 0 for each V € K(X) disjoint from
G.

Theorem 1 ([17). , Theorem 2.1] Let m € M(X, E’) be such that ms € M,(X), for all
s € E, and let p € cs(E) with ||m||, < co. Then :

(1) mp(V) = D,y Nomp(a) for every V € K(X).
(2) The set
supp(m) = [ [{V € K(X) : mp(V*) = 0}
is the smallest of all closed support sets for m.
(3) supp(m) = To : Nowp(@) £ OF.

(4) If V is a clopen set contained in the union of a family (V;)ier of clopen sets, then

mp(V) < sup{mp(V;) :i € I}.

Next we recall the definition of the integral of an f € E* with respect to anm € M(X, E’).
For a non-empty clopen subset A of X, let D4 be the family of all « = {A1, Aa, ..., Ap; 21, T2,
...yZn}, where {A1,...,An} is a clopen partition of A and zr € Ar. We make Dy into a
directed set by defining a1 > ao iff the partition of A in «; is a refinement of the one in as.
For an o = {A1, A2, ..., An; 21,72, ... ,on} € Da and m € M(X, E’), we define

wa(fym) = m(Ax)f (k).
k=1

If the limit lim wq (f, m) exists in K, we will say that f is m-integrable over A and denote this
limit by fA f dm. We define the integral over the empty set to be 0. For A = X, we write simply
J fdm. 1t is easy to see that if f is m-integrable over X, then it is m-integrable over every
clopen subset A of X and [ 4 fdm = [ xafdm.If 7, is the topology of uniform convergence,
then every m € M (X, E') defines a 7,-continuous linear functional ¢,, on Cyc(X, E), ¢m(f) =
J fdm. Also every ¢ € (Cre(X, E), 7.) is given in this way by some m € M (X, E').

For p € cs(E), we denote by M; (X, E") the space of all m € My,(X,E’) for which m,
is tight, i.e. for each € > 0, there exists a compact subset Y of X such that m,(A) < € if the
clopen set A is disjoint from Y. Let

M(X,E)= | Mup(X,E).

pEcs(E

Every m € M (X, E’) defines a Bo-continuous linear functional um, on Cp(X, E), um(f) =
J fdm. The map m — um, from M(X,E’) to (Co(X, E), Bo)’, is an algebraic isomorphism.
For m € M,(X) and f € K*, we will denote by (VR) [ f dm the integral of f , with respect
to m, as it is defined in [25]. We will call (VR) [ f dm the (V R)-integral of f.

For all unexplained terms on locally convex spaces, we refer to [23] and [25].
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2 Q-Integrals

We will recall next the definition of the Q-integral which was given in [14]. Let m €
M(X,E") be such that ms € M.(X) for all s € E. This in particular happens if m €
M, (X,E"). For f € EX and = € X, we define
()= inf B .V o Be K(X)), = ().
Qus0) = o sup{im(B)f(z) CON 510 = 510 Qs ()

Let S(X, E) be the linear subspace of EX spanned by the functions yas, s € E, A €
K (X), where x4 is the K-characteristic function of A. We will write simply S(X) if E =K.

Lemma 1. If g€ S(X,E), then
19l = SUP Qm g(x) < co.
zeX

Proof: 'The proof was given in [14], Lemma 7.2. Note that, if ||m|, < co and d > ||g||p,
then Qm,q(x) < d-mp(X).
Lemma 2. For g € S(X, E), we have

\/gdm\ < llgllon.

Proof: Assume first that ¢ = xas, A € K(X). Then
Im(A)s| < [ms|(A) = sup Nims(y).
yeA

But, for y € A, we have

Nops = inf su m(B)s| = inf su m(B = Qm, .
)= ot s m(B)s = e s m(B)gw)] = Qma(y)

Thus  |m(A)s| < sup,e 4 @m,g(y). In the general case, there are pairwise disjoint clopen sets
A1,..., Ay covering X and si € E with g = ZZ:1 XA, Sk. Thus,

‘/gdm' = IS A

k=1
Definition 1. Let m € M(X, E’) be such that ms € M,(X) for all s € E. A function
f € EX is said to be Q-integrable with respect to m if there exists a sequence (g,,) in S(X, E)
such that ||f — gnll@,, — 0. In this case, the Q-integral of f is defined by

@ [ sam = tim_ [ g.dm.

If f is Q-integrable with respect to m, then for A € K(X) the function xaf is also
Q-integrable. We define

< < = )
< max [m(Ac)se| < sup Qg () = llgllan,

@ [ sam=(Q [ xasam

As it is proved in [14], the Q-integral is well defined. If 4 € M,(X) and g € K*, then
Qu,g(x) = |g(x)|Ny(x). Thus the Q-integral with respect to p coincides with the integral as it
is defined in [23], which we will call (VR)-integral. Hence

(VR)/gdu: (Q)/gdu-
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Lemma 3. If f € EX is Q-integrable with respect to an m € M(X, E’) and if (gn) is a
sequence in S(X, E), with ||f — gnlla,, — 0, then

Il = i lanlla, < oo, and |(@) [ fam] < o

Proof: Since
Qm,htg () < max{Qm,g(x), @m,n(2)},
it follows that
Ih+ gllQ. < max{[|hllq,. llglle..}-
Thus

flQ. < max{[lf = gnllQm,lgnll@m} < IIf = gnll@m + llgnll@. < oo

It follows that
fllQm — llgnll@m| < [If = gnllQ. — 0.

Moreover,

@ [ fam| = tim | [ . < 1 gl =l
n— o0 n— oo
Hence the result follows.

Theorem 2. Let m € M(X, E') be such that ms € M,(X) for all s € E, and let f € EX
be Q-integrable. Define

my: K(X) - K, mf(A):(Q)/Afdm.

Then my € M, (X).

Proof: Since |mys(A)] < || fll@m, it is easy to see that my € M(X). Let now Vs | @ and
€ > 0. Choose a g =Y ;_, xA, Sk € S(X, E) such that || f — g||l@,, <€ Then

/ gdm = zn:(msk)(Vg NAg) — 0.

k=1

Let §, be such that ’fvs gdm’ < €if § > §,. Now, for 6 > §,, we have

‘(Q)/Véfdm’ (Q)/Vs(ffg)dm., \/Végdm\}
maxc{Lf — gllan. ‘/Vagdm‘}“

IA

max{

IN

Thus ms(Vs) — 0.

Lemma 4. If f € EX is Q-integrable with respect to an m € M(X,E'"), then the map
T = Qm,s(x) is upper semicontinuous.

Proof: We need to show that, for each a > 0, the set
V=A{z:Qm(z) <a}

is open. So let z € V and choose € > 0 such that Qm,f(x) < a — 2e. Let g € S(X,E) be
such that ||f — gllg,, < €. Let Ai,..., A, be a clopen partition of X and s; € F such that
g = > p_1 XA Sk- Let k be such that o € Aj. There exists a clopen set B, containing = and
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contained in Ay, such that |m(D)g(z)| < Qm,q(x) + € for every clopen set D contained in B.
If y € B, then for B D D € K(X) we have

Im(D)g(y)| = [m(D)g(z)] < Qum,qg(x) +€
< maX{Qm,g*f(x)v vaf(x)} +e
< Qm,(x) + 2.

Thus Qm,¢(y) < Qm,s(z) + 2¢ < a. Hence z € B C V and the result follows.
Lemma 5. If f € EX is Q-integrable with respect to an m € M(X,E'), then N, <
Q.-

Proof: Let x € X and € > 0. In view of the preceding Lemma, there exists a clopen
neighborhood V' of X such that Qm,f(y) < Qm,s(z) +eforally e V.If V O B € K(X), then

[mg(B)| < sup Qum. £ (y) < Q. r(x) + €
yeB

and so
Ny () < [mg|(V) < Qm.s(2) + €
Hence the result follows.

Lemma 6. Let m € M(X, E') be such that ms € M-(X) for all s € E. If g € S(X, E),
then Qm.,g = Ning.

Proof: Let {A1,..., An} be a clopen partition of X and s, € E such that g = Y"}'_; xa, Sk-
Suppose that N, () < a. Then, there exists a clopen neighborhood V' of x such that
|mg|(V) < a. Let © € Ag. If B is a clopen set contained in Ay NV, then

my(B) = Q) [ gdm = [ gdm =m(B)g(z)
since g = g(z) on B. Thus

Qmg(x) < sup [m(B)g(z)| < |my|(V) < a.
BCARNV

This proves that Qum,g < Ni, and the result follows.
Theorem 3. If f € EX is Q-integrable with respect to an m € M(X,E"), then Qm,5 =
;-
Proof: Assume that Ny, () < o and let 0 < e < a. There exists a clopen neighborhood
V of = such that |my|(V) < a. Let g € S(X, E) be such that ||f — g||g., < €. For A clopen
contained in V', we have

N,

mp(A) — my(A)] = ‘(Q)/(f—g) dm\ <If — gllgm <¢

and so
Img(A)] < max{e, [ms(A)[} <a.
Thus
Qm,g(2) = N, (z) < |myg|(V) < o
Now

Qm.f () < max{Qm.s—¢(z), Qmg(2)} <a,
which proves that Qu,,f < N, and the result follows by Lemma 5.
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Theorem 4. Let m € M(X, E') be such that ms € M-(X), for all s € E, and let f € B~
be Q-integrable with respect to m. If g € KX is Q-integrable with respect to my, then gf is
Q-integrable with respect to m and

@ [9sam=(@ [ gam;.
Proof: If h € K, then
Qm.ny(x) = [M(@)|Qm, s (x) = [(2)| Ny (2) = Q.0 ().
Let (gn) be a sequence in S(X) such that ||g — gnHme — 0. We have
lg = gnllen, = sup lg(x) — gn(2)| - N, ()
= SUP Qu, (9905 (2) = [19F = gnfllQum-
zeX

If A€ K(X), then xaf is Q-integrable with respect to m and

@ [xatam =@ [ fam=ms) = [ xadm.

It follows that, for all n, g, f is Q-integrable with respect to m and

@ [ gutdm= [ gdm; (@ [ gam;.

Since gnf is Q-integrable with respect to m and ||gf — gnfllQ.. — 0, it follows that gf is
Q-integrable and

@ [ g dm= 1 @) [ gufdm = tim [ godm; =@ [ gimy,

which completes the proof.

Theorem 5. Let m € M(X,E') be such that ms € M,(X), for all s € E, and let
p € cs(E) with |m|, < co. If f € EX is Q-integrable with respect to m, then, given € > 0,
there exists o > 0 such that |(Q) [, fdm| < e if mp(A) < a.

Proof: Let g € S(X, E) with ||f — ¢gllg@,. < €. For a clopen set A, we have |ngdm| <
llgllp - mp(A). Let o > 0 be such that « - ||gll, < €. If mp(A) < o, then

'(Q)/Afdm' @ [ (- gyam). ]/Agdm}
< max{llf — gllan, Nglls mp(A)} <.

Lemma 7. Let m € M,(X) and let g € K¥ be (VR)-integrable. Then, given ¢ > 0, there
exists § > 0 such that ||g||la,n,, < € if Im|(A) < 4.

Proof: There exists h € S(X) such that [|g — h|n,, < e It suffices to choose > 0 such
that ¢ - ||| < e.
Let m € M(X). For A C X, we define

Im|"(A) = inf{|m|(V) : V € K(X), ACV}.

IN

max{

A

Recall that a sequence (g,) in K* converges in measure to an f € K*, with respect to m
(see [14], Definition 2.12) if, for each a > 0, we have

lim ||z : gn(2) — g(x)| > a} = 0.
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Theorem 6 (Dominated Convergence Theorem). Let m € M, (X) and let (fn) be a
sequence of (VR)-integrable, with respect to m, functions, which converges in measure to some
f € KX. If there exists a (VR)-integrable function g € K* such that |f.| < |g| for all n, then
f is (VR)-integrable and

(VR) | fdm = lim (VR)/fn dm.

n—00

Proof: Let € > 0 and choose inductively n1 < nz < ... such that |m|" (Vi) < 1/k, where
Vi = Az 2 [fny, (x) = f(x) = 1/k}.

Let V = N3 Upsn Ve If 2 € V, then Ny (z) = 0. Indeed, for every N, there exists k > N
with z € Vi and so Ny (z) < |m|(Vi) < 1/k < 1/N, which proves that Np,(z) = 0. Also,
for z € X \'V, we have f(z) = limg—oo fn, (z). In fact, there exists N such that x ¢ V; for
k > N and so |fn, (z) — f(z)| < 1/k — 0. It follows that |f(z)| < |g(z)| when = ¢ V. Since
g is (VR)-integrable, there exists (by the preceding Lemma) 6 > 0 such that ||g||a,n,, < € if
|m|(A) < . Let now o > 0 be such that « - ||m| < €. For each n, let

Gn={z:[fulz) - f(2)| = o}

and choose a clopen set W,, containing G, with |m|(W,) < 1/n+|m|*(G»). Since |m|"(Gr) —
0, there exists n, such that |m|(W,) < § if n > n,. Let now n > n, and x € X. If z € V, then
N (z) = 0. Suppose that ¢ V. Then |f(z)| < |g(z)| and so

[f (@) = fu(@)|Nm () < |g(2)|Nom ().
If x € Wh, then |g(z)|Nm(z) < ¢, since |m|(Wy) < 4, while for ¢ W, we have
|f (@) = fu()|Nim(z) < - [[m]| <e

Thus, for n > n,, we have ||f — fu||n,, < €. Since fn is (VR)-integrable, it follows that f is
(VR)-integrable and

(VR) | fdm = ILm (VR)/fn dm
since

'(VR) Ju-1 dm’ <f = Fallwn — 0.

This completes the proof.

Let now 7 be the topology of X and let K.(X) be the collection of all subsets A of X such
that ANY is clopen in Y for each compact subset Y of X. It is easy to see that if A, A1, As
are in K.(X), then each of the sets A°, A1 N Az and A1 U A is also in K.(X). Now K.(X) is
a base for a zero-dimensional topology 7F on X finer than 7. We will denote by X® the set
X equipped with the topology 7F. We have the following easily established

Theorem 7. (1) 7 and 7" have the same compact sets.
(2) T and 7% induce the same topology on each T-compact subset of X.
(3) A subset B of X is T"-clopen iff B € K.(X).
(4) IfY is a zero-dimensional topological space and f : X —Y, then f is T"-continuous iff
the restriction of f to every compact subset of X is T-continuous.
Let now m € M (X, E’) be such that ms € M,(X) for each s € E.

Lemma 8. If B € K.(X), s € E and h = xBs, then h is Q-integrable with respect to m.
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Proof: Let ¢ > 0. Since ms € M-(X), there exists a compact subset Y of X such that
|ms|(V) < € for each clopen subset V of X disjoint from Y. Since BNY is clopenin Y and Y is
compact, there exists A € K(X) with BNY = ANY (see [25], p. 188). Let g = xas, f = h—g.
If z € AAB, then z is not in Y and so there exists V € K(X) such that z € V C Y*°. If
W € K(X) is contained in V, then |m(W) f(z)| = |m(W)s| < |ms|(V) < e and s0 Qm,s(z) < e.
Thus ||k — ¢||@,, < e. Hence the Lemma follows.

Now for B € K.(X), we define

m®(B): E—-K, m®™(B)s= (Q)/XBS dm.

Clearly m®) is linear. Let p € cs(E) be such that m,(X) < occ.
Theorem 8. Let A € K.(X), and let V € K(X) with AC V. Then :
(1) 1m®) (A)s] < [ms|(V) < mp(V) - p(s) for all s € E.
2) m™ e M,(X™ E.
(8) m®se M(X®) for all s € E.
(4) If m € My (X, E"), then m™ € M, ,(X® E).

Proof: Let s€ E, h=xasand x € A C V. If W is a clopen subset of X contained in V,
then |m(W)h(z)| < |ms|(V) and s0 Qm,n(z) < |ms|(V), which implies that

Im™ (A)s| < sup Qmn(x) < [ms|(V) < mp(V) - p(s).
€A

This proves that m®(A4) € E" and |m® (4)||, < m,(V). Clearly m™® e M,(X* E’) and
I < flmly-

Let now s € E and € > 0. There exists a compact subset Y of X such that |ms|(Z) < e
for each Z € K(X) disjoint from Y. Let B € K.(X) be disjoint from Y and let x € B. Then
z ¢ Y and so there exists a D € K(X) containing x ad contained in Y°. For h = xps, we
have Qum.n(z) < |ms|(D) < e. Thus |m® (A)s| < e. Tt follows that [m®s|(B) < e for each
B € K.(X) disjoint from Y and so m®s € M,(X®). Finally, assume that m € M, ,(X.E).
Given e > 0, there exists a compact subset Y of X such that m,(V) < € for each V € K(X)
disjoint from Y. If s € E, with p(s) > 0, then for V € K(X) disjoint from Y we have |ms|(V) <
myp(V)-p(s) < €-p(s). Thus, for B € K.(X) disjoint from Y we have [m®®s|(B) < ¢-p(s) and

S0 m;(,k)(B) < e. This clearly completes the proof.

Theorem 9. Let m € M(X,E’) be such that ms € M.(X) for each s € E. Then:
(1) If A€ K(X), then |ms|(A) = |m™s|(A) for all s € E.
(2) If m € My(X,E'), then my(A) = m{ (A) for each A € K(X).

(3) If f € B is Q-integrable with respect to m, then f is Q-integrable with respect to m®)
and Qm,r < Q,,w) ;- Moreover

@ [ am =@ [ fam®.

Proof: Let A € K(X). Clearly |ms|(A) < |m™s|(A). On the other hand, let [m*)s|(A) >
6 > 0. There exists D € K.(X), D C A, such that [m® (D)s| > 6. Let h = xps. Since
|m™)(D)s| < sup,cp Qm,n(z), there exists # € D such that Qmn(z) > 6. The set Y =
{z € X : Qm,n(z) > 0} is compact. Hence there exists Z € K(X) with ZNY = DNY.
Since z € ZN A and Qm,r(X) > 0, there exists W € K(X) contained in Z N A and such
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that |m(W)h(z)| > 6. Then h(z) = s and so |m(W)s| > 6, which proves that |ms|(A4) > 6.
Thus, |ms|(A)] > |m® s|(A). Assume next that m{¥’(A) > a > 0. There exists B € K.(X)
contained in A and s € E with |m*® (B)s|/p(s) > a. Now |ms|(A) = [m™s|(A) > a - p(s).
Thus my,(A) > |ms|(A)/p(s) > a, which shows that m,(A) = m{” (A). Thus (1) and (2) hold.
(3). Assume that f € E¥ is Q-integrable with respect to m.
Claim : If z € D € K(X), then

sup  [mM(2)f(@)| = sup  |m(Z)f(@)].

ZeKc(X),ZCD ZEK(X),ZCD

Indeed, suppose that there exists a Z € K.(X) contained in D such that |[m® (Z) f(z)| > 6 > 0.
For h = xz f(x), we have

0 < |m™(Z)f(x)| < sup Qm.n(2).

z2€Z

Thus, there exists z € Z with Qm,n(z) > 0. Since z € Z C D, there exists W € K(X)
contained in D such that |m(W)h(z)| = |m(W) f(z)| > 6. This clearly proves the claim. Now

m.r(x) = inf su m(Z) f(x
Qus@) = _jnf s m(2)f(a)
= inf sup  [m™(2)f (@) = Q) 4 (x).

z€DEK(X) DoZeK . (X)

Since f is Q-integrable with respect to m, there exists a sequence (g») C S(X, E) C S(X®) | E)
such that || f —gnllQ,, — 0. But then [[f—gnllq_, < [If—gnll, — 0.Hence f is Q-integrable

with respect to m*) and

n—oo

@ [ fam® = 1w [ g dm® = [ g,dm=(@) [ sam

This completes the proof of the Theorem.

Next we recall the definition of the topology B, which was given in [14]. Let Cy 1 (X, E) be
the space of all bounded E-valued functions on X whose restriction to every compact subset
of X is continuous. By Theorem 7 we have that Cy (X, E) = Co(X®, E). For p € ¢s(E),
we denote by B, the locally convex topology on Cj (X, E) generated by the seminorms
f = |[hfllp, h € B,(X). Since X and X® have the same compact sets, we have that
B,(X) = BO(X(k)) and so B, coincides with the topology B, on C’b(X(k)7 E). The topology
Bo is defined to be the locally convex projective limit of the topologies Bop, p € cs(E). Thus
Bo coincides with topology S, on Cb(X<k), E).

Theorem 10. (1) If m € My(X, E"), then every f € Cy (X, E) is Q-integrable with

respect to m and
@ [ ram= [ sam®.

b Cop(X,E) 5 K, ém(f) = (Q) / f dm

Thus the map

18 Bo-continuous.

(2) If E is polar, then every Bo-continuous linear functional ¢ on Cy (X, E) is of the form
bm for some m € My (X, E’).
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Proof: 1. Let p € cs(E) be such that m € M ,(X, E’) and ||m||, < 1. Let d > ||f]|, and
€ > 0. There exists a compact subset Y of X such that m,(V) < ¢/d for every V € K(X)
disjoint from Y. For each z € Y, the set

Dy ={yecY :p(fy) — f(z)) < e}

is clopen in Y and D, = D, if D, N Dy # (. In view of the compactness of Y, there are
Z1,...,%n in Y such that the sets Dy, ..., D, form a partition of Y. For each k, there exists
a clopen subset Vj, of X such that V; NY = D, . If W, = Vi \U,,, Vi, then W, NY = D,, .
Let g = >"7_, xwy f(zx). Then ||f — gl|g., <e€. Indeed, let 2 € X.

Case I: © ¢ Y. There is a clopen neighborhood V of z disjoint from Y. If B € K(X) is
contained in V, then

ik

Im(B)[f(z) — g(@)]| < p(f(z) —g(x)) - mp(V) <€

and 50 Qm,f—g(x) <e.
Case Il : © € Y. There exists a k such that € Wy, and so g(z) = f(zx). If a clopen set
B is contained in Wy, then

im(B)[f (x) — g(@)]| = Im(B)[f(z) — fzk]l < mp(Vi) - p(f(2) — flax)) <
and so again Qm,f—g(z) < e. This proves that ||f — ¢||@,. < € and so f is Q-integrable. Now

6n(D=(Q) [ fam=(Q) [ fam® = [ ram®.

Thus ¢, is Bo-continuous on Co(X,E). ~
Finally assume that E is polar and let ¢ be a So-continuous linear functional on Co.x(X, E).
Since B, induces the topology B, on Cp(X, E), there exists an m € M;(X, E') such that

o) = [ ram=(Q [ fam

for each f € Cy(X, E). Now ¢ and ¢y, are both Bo-continuous on Cy (X, E) and they coincide
on the B,-dense subspace Cy(X, E) of Cp (X, E). Thus ¢ = ¢, and the proof is complete.

3 The Dual Space of (Cy(X, E), (1)
For u a linear functional on Cy(X, E), p € cs(E) and h € K*, we define
lulp(h) = sup{|u(g)| : g € Cb(X, E), pog<|hl}.
Theorem 11. For a linear functional u on Cy(X, E), the following are equivalent :

(1) u is B1-continuous.

(2) For each sequence (Vy,) of clopen sets, with V,, | 0, there exists p € cs(E) such that
[|ullp < oo and lim,— oo |ulp(xv,,) = 0.

(8) For each sequence (hy) in Cyp(X), with hy, | 0, there exists p € cs(E) such that ||ul|, < oo
and limn— o0 |t]p(hn) — 0.

Proof: (1) = (2). LetV, J@and H = mWf"x. Then H € 1 and so u is By, p-continuous
for some p € cs(E). Let € > 0 and h € Cy be such that

Wi={f e C(X,E): [|nflly <1} CW =A{f: [u(f)] < €}
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It is easy to see that ||ul|, < co. Let M = {z € X : |h(z)| > 1}. There exists n, such that
M C V; .Let now n > n, and f € Co(X, E) with po f <|xv, |- Let f1 =xmf, fo=[f— fi1.
If € M, then x € V;{ and so p(f(z)) = 0. This implies that f1 € W1 C W. Also, if x ¢ M,
then |h(z)| <1 and so |h(z)|p(f(z)) < 1, which proves that fo € Wi. Thus f = fi + fo € W,
which shows that |u|,(xv,) < €.

(2) = (3). Let hy | 0. Without loss of generality, we may assume that ||hi|| < 1. Let
A€eK, 0<|A <1 and set

Vi =A{z: [hn(z) 2 [A[}.

Then V;, | 0. By (2), there exists p € ¢s(E) with |lul|, < co and |u|p(xv,,) — 0. We may choose
p so that ||lul|, < 1. Choose n, such that |u|,(xv,) < || if » > n,. Let now n > n,. We will
show that |ulp(hn) < |A|. In fact, let f € Co(X, E) with po f < |hnl|, g1 = xvi, [y 92 = f — g1.
If x € V,, then p(g1(z)) < |hn(z)| and so po g1 < |xv,|, which implies that |u(g1)| < ||
If z ¢ Vi, then p(g2(z)) = p(f(2)) < [hn(z)| < |Al. Hence [u(g2)| < [lullp - [lg2]l, < [A], and
therefore |u(f)| < |A|. This proves that |u|,(hn) < |A|.

(3) = (2). It is trivial.

(2) = (1). Let

W ={f € Cy(X, B) : Ju(f)] < 1}

and let H € Q1. There exists a decreasing sequence (V;,) of clopen subsets of X with Vnﬁox =
H. Let p € cs(E) be such that ||ul|, <1 and |u|p(xv,,) — 0. Let X be a nonzero element of K
and choose n so that |u|(xv;,) < |A|7'. Now

Wi =A{f € Co(X, E) : [[fllp <IAl [Ifllver <1} CW.

Indeed, let f € Wi and set fi = xv, f,fo = f — fi. Since A7 f1| < |xv..|, we have that
[u(f1)] < 1. Also |u(f2)| < |If2llp < 1, and so |u(f)| < 1, which proves that Wi C W. By
[13], Theorem 2.2, it follows that W is a B ,-neighborhood of zero. This, being true for all
H € Qq, implies that W is a 81-neighborhood of zero, i.e. u is $1-continuous, which completes

the proof.

Theorem 12. For a set H of linear functionals on Cy(X, E), the following are equivalent

(1) H is r-equicontinuous.

(2) If (V) is a sequence of clopen subsets of X which decreases to the empty set, then there
exists p € cs(E) such that sup, ¢y ||ullp < co and |ulp(xv,,) = 0 uniformly for u € H.

(8) If (hn) is a sequence in Cyp(X) with h, | 0, then there exists p € cs(E) such that
sup, ey llullp < oo and |u|p(hn) — 0 uniformly for u € H.

Proof: (1) = (2). Let Vi, L 0. Then Z = OV,"°" € Qu. Let A € K, A # 0. Since H
is Bi-equicontinuous, the set AH® is a Bi-neighborhood of zero. Thus, there exists p € cs(E)
such that AH? is a 8z ,-neighborhood of zero. Let h € Cz be such that

Wi ={f:|lhfllp <1} CAH".

It follows now easily that sup,cp ||ull, < co. Also, as in the proof of the implication (1) = (2)
in the preceding Theorem, we prove that |u|,(xv,,) — 0 uniformly for v € H. For the proofs
of the implications (2) = (3) = (2) = (1) we use an argument analogous to the one used in
the proof of the preceding Theorem.

Theorem 13. In the space Cy(X), B1 is the finest of all locally solid topologies v with the
following property: If (fn) C Co(X) with fn 1 0, then f, 2 0.
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Proof: By [12], Theorems 3.7 and 3.8, 1 is locally solid and f, 2% 0 when fn 4 0. Consider
now the family U of all solid absolutely convex subsets W of C,(X) such that f, € W eventually
when f, | 0. Clearly U is a base at zero for the finest locally solid topology 7, on Cy(X) having
the property mentioned in the Theorem.

Claim I : v, is coarser than 7. Indeed, let W € U and let A € K, 0 < |A| < 1. For each
n, let g, be the constant function A\". Since g, | 0, there exists an n with g, € W. If now
f € Cy(X) with ||f|| < |A", then f € W, which implies that W is a 7,-neighborhood of zero.

Claim II : $; is finer than v, and hence 81 = 7,. Indeed, let W € U, Z € 3 and r > 0.
There exists € > 0 such that

Wi ={feCy(X):|gll <e CW.

Choose p € K with |u| > r. There exists a decreasing sequence (V;,) of clopen subsets of X
with Z = m?n’g"x. Since pxv;, J 0, there exists n such that uyv, € W. Let now f € Cp(X)
with |[f| <7, |[fllve <e andlet g=f-xv,, h=f—g. Then |g] <|uxv,|and so g € W
since W is solid. Also, ||h|| < € and so h € W, which implies that f € W. This proves that W
is a Bz-neighborhood of zero for all Z € Q; and hence W is a 1-neighborhood of zero. This
clearly completes the proof.

The proofs of the following two Theorems are analogous to the ones of Theorems 12 and 13.

Theorem 14. For a subset H of linear functionals on Cy(X, E), the following are equiv-
alent :
(1) H is B-equicontinuous.
(2) For each net (Vs), of clopen subsets of X with Vs | 0, there exists p € cs(E) such that
sup, ey [lull)p < 0o and |ulp(xvs) — 0 uniformly for u € H.

(8) For each net (hs) in Cy(X) with hs | 0, there exists p € cs(E) such that sup, ¢y |lullp <
oo and |ulp(hs) — 0 uniformly for uw € H.
Theorem 15. In the space Cv(X), B is the finest of all locally solid topologies ~ with the
following property: If (fs) C Co(X) with fs | 0, then fs = 0.

4 The Space My(X, E')

A subset A of X is called bounding if every f € C(X) is bounded on A. Note that several
authors use the term bounded set instead of bounding. But in this paper we will use the term
bounding to distinguish from the notion of a bounded set in a topological vector space. A set

A C X is bounding iff A% s compact. In this case (as it is shown in [1], Theorem 4.6) we
have that A7~ = A%~ Clearly a continuous image of a bounding set is bounding.

Theorem 16 ([17). , Theorem 8.4] If G is a locally convex space (not necessarily Haus-
dorff), then every bounding subset A of G is totally bounded.

We denote by M,(X, E’) the space of all m € M (X, E') which have a bounding support,
i.e. there exists a bounding subset B of X such that m(V) = 0 for all clopen V disjoint from
B. In case E =K, we write simply M(X).

Theorem 17. If m € My(X, E'), then every f € C(X, E) is m-integrable. Moreover, if
B is a bounding support of m and p € cs(E) with mp(X) < 0o, then

\ / fdm] < 1 fll5.p - mly-
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Proof: Let f € Cy(X,E) and let B be a bounding subset of X which is a support set
for m. Since the closure of a bounding set is bounding, we may assume that B is closed. Let
p € ¢s(E) with mp(X) < oco. The set f(B) is bounding in F and hence totaly bounded by
Theorem 4.1. Thus, given € > 0, there are z1,...,x, in B such that the sets

Vi ={z:p(f(z) = flzx)) < e/lmllp}, k=1,...,n,
are pairwise disjoint and cover B. Let V11 = X\, _,; V& and choose n11 € Viq1 if Vg1 # 0.
Let {Wh,...,Wn} be a clopen partition of X which is a refinement of {Vi,...,Vht1} and
y; € W;. We may assume that |J7_, Vi = Ule W;. If W; C V; for some ¢ < n, then
Im(W)[f (y5) = f()ll < llmllp - p(f(y;) = f(2:)) <€
while, for W; C V41, we have m(W;) = 0. Thus

N

D m(Wi)f(yg) = 3 m(Vi) ()

Jj=1

<e.

This proves that f is m-integrable and

Since |m(Vi) f(z:)| < || fllB,p - [|m]]p, it follows that

‘ / fdm‘ < max{|fll5.p - [mllp: e},

for each € > 0, and the proof is complete.
We denote by 7, the topology on C(X, E) of uniform convergence on the bounding subsets
of X.

Lemma 9. The space S(X, E) is 1p-dense in C(X, E).

Proof: Let f € C(X,E), p€cs(E), e>0and B a bounding subset of X. There are
T1,...,%n in B such that the sets

Vi = {z:p(f(2) = fan) S €}, k=1,....n,

are pairwise disjoint and cover B. If g = Y"7'_, xv;, f(zx), then || f — g||5,p < € and the Lemma
follows.

Theorem 18. For m € My(X, E'), let
Un i OX.E) K wn(f) = [ fam.

Then v, is Ty-continuous and My(X, E’) is algebraically isomorphic to the dual space of
(C(X,E), ) via the isomorphism m — P, .

Proof: In view of Theorem 4.2, 1y, is an element of G = (C(X, E), 7). On the other
hand, let ¢ € G. Since 7|, (x,E) is coarser than the topology 7. of uniform convergence,
there exists m € M(X, E’') such that ¢(f) = [ fdm for all f € Crc(X, E). Let B a bounding
subset of X and p € cs(E) be such that

{f e CXE): fllmp <1} C{f: [0(f) <1}
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It follows that B is a support set for m and so m € My(X, E’). Now 1 and 1y, are both
Tp-continuous and they coincide on the 7,-dense subspace S(X, E) of C(X, E). Thus ¢ = ¢,
and the result follows.

Recall that, for p € cs(E), My (X, E') denotes the space of all m € M, (X, E’) such that

myp(As) — 0 for each decreasing net (As) of clopen subsets of X for which ﬂfgﬁox € Qy (see
[13], p. 123).

Theorem 19. Let m € My(X,E'). If p € cs(E) is such that |m||, < oo, then m €
M (X, E").

Proof: Let B be a bounding support for m and let (V;)icr be a clopen partition of X.
The set B'° is compact and

B  co.x c UVf"X.

Hence, there exists a finite subset J of I such that

BX U WﬁoX
ieJ
and so B C |J;c; Vi, which implies that m,(U,;z; Vi) = 0. Thus m € My (X, E’) by [13],
Theorem 5.7.
Theorem 20. The topology induced by 7, on Cy(X, E) is coarser than f3;,.

Proof: Let B be a bounding subset of X, p € cs(F) and H € €,. There exists a clopen
partition (V;)ier) of X such that

HcBX\|JV™.
il
As in the proof of the preceding Theorem, there exists a finite subset J of I such that B C
Uies Vi = V. If h = xv, then hPo = Xi780x vanishes on H and

{f e (X, EB) : |[hflly < e} C{F = [IfllBp < €}

which clearly completes the proof.

5 M,(X) as a Completion

The space M,(X) was introduced in [12]. It is the space of the so called separable members
of M,(X). For m € M(X), d a continuous ultrapseudometric on X and A a d-clopen subset
of X, we define

|m|a(A) = sup{|m(B)| : BC A, B d — clopen}.

For F C X, we define
Im|3(F) = inf sup |m|a(An),

where the infimum is taken over the family of all sequences (A, ) of d-clopen sets which cover
F. An element m of M,(X) is said to be separable if, for each continuous ultrapseudometric
d on X, there exists a d-closed, d-separable subset G of X such that |m|;(X \ G) = 0. As it is
shown in [12], if m € M,(X), then every f € Cy(X) is m-integrable. Let now G = (Cy(X), ),
where 7, is the topology of uniform convergence. For each x € X, let 0, be the corresponding
Dirac measure. Thus §, € G, 6-(f) = f(z). Let L(X) be the subspace of G spanned by the
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set {0z : ¢ € X }. Let &, be the collection of all equicontinuous 7,-bounded subsets of Cy(X).
Consider the dual pair < Cy(X), L(X) >.
For d a bounded continuous ultrapseudometric on X, let

7Td:X—>Xd, xl—)i'd,

be the quotient map and let
Ta : (Co(Xa), B) = (Co(X), Be)

be the induced linear map. The dual of the space (Cy(X), Be) is the space Ms(X) (see [12],
Theorem 6.4 ) and
T3 (M.(X)) € My (Xa) = My (Xa).
Theorem 21. For an m € My (X), the following are equivalent :
(1) m e Ms(X).

(2) For each continuous ultrapseudometric d on X, there exists a d-closed, d-separable subset
G of X such that m(V') = 0 for each d-clopen set V disjoint from G.

Proof: (1) = (2). Let d be a continuous ultrapseudometric on X and let p = Tjm €
M-(Xq). By [12], Theorem 6.2, there exists a closed separable subset Z of X4 such that
|p|*(Xa\Z) =0.1f z € X4\ Z, then N,(z) = 0. In fact, given € > 0, there is a sequence (A,)
of clopen subsets of Xy covering X4\ Z and sup,, |p|(Ar) < € and so N,(z) < €. If now B is a
clopen subset of X disjoint from Z, then |u|(B) = sup,.p Nu(z) = 0. If G = 7;'(Z), then G
is d-closed, d-separable and m (V') = 0 for each d-clopen set V disjoint from G.

(2) = (1). Let (Vi)ier be a clopen partition of X and let f; = xv;. Define

d(z,y) = sup |fi(z) = fi(y)]-

Then, d is a continuous ultrapseudometric on X. Each V; is d-clopen and hence |J,., Vi is
d-clopen for each subset J of I. Since G is d-separable (and hence d-Lindelof ), there exists a
countable subset J = {i1,i2,...} such that G C |J, Vi,. Let J1 =T\ J. Theset V.=, ; Vi
is d-clopen and m(V') = 0. Also, m(V;) = 0 for ¢ € J;. Since m is o-additive, we have that

oo )

m(X) =m(V)+ Y m(Vi) =Y m(Vi,) = > m(Vi).
k=1 i€l
This (In view of [12], Theorem 6.9) proves that m € M,(X) and the result follows.
Lemma 10. If B € &,, then the bipolar B°° of B, with respect to < Cp(X), L(X) >, is
also in &,.
Proof: Let o = o0(Cy(X), L(X)). By [21], Proposition 4.10, we have that B°® = (co(B)o)e,

where co(B) is the absolutely convex hull of B , co(B)’ the o-closure of co(B) and, for A an
absolutely convex subset of a vector space E over K, A° is the edged hull of A (see [25] ).
Thus, if |A\| > 1, we have

B C Aco(B)’.

So it suffices to show that the set By = co(B)U isin &,. But

sup [|f|| = sup || f]| < occ.
fe€B1 feB
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Given z € X, and € > 0, there exists a neighborhood V of x such that |f(z) — f(y)| < € for
every f € Bandeveryy € V. It is easy tosee, for f € By andy € V, we have |f(z)— f(y)| < e.
This proves that B°° € £, and the result follows.

Consider now on L(X) the topology e, of uniform convergence on the members of &,.
Thus e, is generated by the family of seminorms pg, B € &, where pg(u) = sup;cp [u(f)].
Let

A:X = L(X), x5,

Clearly A is one-to-one.

Theorem 22. The map
A X — (A(X)76“|A(x))

is a homeomorphism.

Proof: Let (z-) be a net in X converging to some z € X and let B € &, and € > 0. There
exists a neighborhood V' of = such that

pB(6z — 6y) = sup [f(z) — f(y)| <€
feB

if y € V. Let v, be such that z, € V if v > ~,. Now, for v > ~,, we have that pp(d, —dz.,) <€,
which proves that A is continuous. Conversely, suppose that for a net (x-) in X, we have that
Ja., = 5, and let V be a clopen neighborhood of z. Let f = xv, B = {f} € &,. There exists
a 7o such that pp(z — z,) = |f(z) — f(y)] < 1 when v > ~,. But then 2, € V when v > ~,,
which proves that x, — x, and the result follows.

In view of the preceding Theorem, we may consider X as a topological subspace of
(L(X), eu).

Theorem 23. e, is the finest of all polar locally convex topologies v on L(X) which induce
on X its topology and for which X is a bounded subset of (L(X),~).

Proof: The topology e, is clearly polar. We show first that X is e,-bounded. Indeed, let
B € &, and choose A € K with || > sup;c g || f[l. Since [d:(f)| < [A], for all f € B, we have
that X C AB°, and so X is e,-bounded. Suppose now that v is a polar topology on L(X) which
induces on X its topology and for which X is -bounded. Let W be a polar y-neighborhood
of zero in L(X) and take B = {¢|x : ¢ € W°}, where W is the polar of W in the dual space
of (L(X),~). Every f € B is continuous on X. Since X is y-bounded, there exists A € K,
such that X C AW and so sup;.p || f|| < |A|. Also, B is an equicontinuous set. In fact, let
x € X C AW. Let a be a non-zero element of K and take V = (z + aW) N X. Then V is a
neighborhood of z in X. If y € V, then for ¢ € W° and f = ¢|x, we have |fy) — f(x)| < |af.
This proves that B € &,. Moreover B° C W°° = W, which proves that W is a neighborhood
of zero in L(X) for the topology e,. This completes the proof.

Theorem 24. The dual space of F = (L(X), en) coincides with Cp(X).

Proof: Since e, is finer than the weak topology o(L(X), Cs(X)), it follows that Cp(X) is
contained in F’ (considering every element of Cy,(X) as a linear functional on L(X) ). On the
other hand, let ¢ € F' and define f : X - K, f(x) = ¢(6s). Then f is continuous. Since X
is ey-bounded, there exists A € K such that X C AD, where D = {u € L(X) : |¢p(u)| < 1}. It
follows that || f|| < |A] and so f € Cy(X). It is now clear that ¢(u) =< f,u >, for all u € L(X),
and the result follows.

Next we will look at the completion F of the space F' = (L(X), e,). Since F is a Hausdorff
polar space, E is the space of all linear functionals on F’ = Cy(X) which are o(Cy(X), L(X))-
continuous on each e, -equicontinuous subset of Cy(X) (by [16]). We will prove that F' coincides
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with the space M,(X) equipped with the topology of uniform convergence on the members of
Eu-

Lemma 11. A subset B of Cy(X) is ey-equicontinuous iff B € &,.

Proof: If B € &,, then B° is an e,-neighborhood of zero and so B°° (and hence also its
subset B) is ey-equicontinuous . Conversely, let B be an e,-equicontinuous subset of Cp(X).
There exists By € &, such that B C Bf°. Since BY° € &,, the same holds for B and the
Lemma follows.

Theorem 25. The completion of the space F' = (L(X), e.) is the space Ms(X) equipped
with the topology of uniform convergence on the members of &, .

Proof: Let u € . Then u is a linear functional on F’ = Cy(X).

Claim I. u is T,-continuous. In fact, Let (f,) be a sequence in Cy(X) with f, —% 0.
The set B = {fn : n € N} belongs to &, and f, — 0 in the weak topology o(Cy(X), L(X)).
Since u € F, we have that u(f,) — 0, which proves that u is 7,-continuous.

Claim II. wu is B,-continuous. To prove this, it suffices to show that, on every member
of £, u is continuous with respect to the topology of simple convergence (by [12], Theorem
6.4). But the last topology coincides with o(Cy»(X), L(X)). Hence the claim follows.

By [12], Theorem 6.4, there exists an m € M,(X) such that u(f) = [ fdm, for all f €
Cy(X). Conversely, if m € M(X), then the linear functional um on Cy(X), um(f) = [ fdm,
is in F by Lemma 11 and by [12], Theorem 6.4. This clearly completes the proof.

Theorem 26. Let E be a Hausdorff polar locally convex space and let f : X — E be
continuous such that f(X) is bounded. Then there exists a unique continuous linear map T :
(L(X),en) = E such that T = f on X. If E is in addition complete, then there exists a
continuous linear map T : (Ms(X),en) — E such that T = f on X.

Proof: Let T : (L(X),e,) — E be the unique continuous linear extension of f. We need
to show that 7" is e,-continuous. Let 7, be the polar topology of E. Then 71 = T~ * (7o) is polar
and so the supremum 75 = e, V 71 is polar. It is easy to see that X is mo-bounded. Also 72|x
coincides with the topology of X. In view of Theorem 23, 7 coincide with e, which clearly
implies that T is e,-continuous. In case E is complete, T" has a continuous linear extension
T : (Ms(X),en) — E since (L(X),ey) is a dense topological subspace of (M,(X), e,). Hence
the result follows.

A linear functional ¢ on Cy(X) is said to be bounded if it is 7,-continuous. Equivalently,
¢ is bounded if

16ll = sup{[a(NI/If] : | € Co(X), f # 0} < o0

Theorem 27. For a linear functional ¢ on Cy(X) the following are equivalent :
(1) There ezists m € Ms(X) such that ¢(f) = [ fdm for all f € Cp(X).

(2) ¢ is bounded and, for each equicontinuous net (fs) in Cy(X), with f5 | 0, we have that
o(f5) = 0.

Proof: (1) = (2) . Let m € M (X) be such that @ = um, um(f) = [fdm. By
Theorem 25, ¢ belongs to the completion of F' = (L(X), ex). Then ¢ is bounded. Let (f5);_A
be an equicontinuous net with fs | 0. If 6, € A, then taking the subnet (f5)s>s5, we see that
{fs:0 > 6o} € Eu. Since f5(z) — 0 for all z, we have that ¢(fs) — 0.

(2) = (1). Since ¢ is bounded, there exists an m € M(X) such that ¢(f) = [ fdm for
all f e Cre(X).

Claim I. m € Ms(X). Indeed, let (V;)ier be a clopen partition of X. For each fi-
nite subset J of I, let Ay = Uie]m’ B; = AS. If f; = xBj,, then f; | 0. Also (fs)
is equicontinuous and f; — 0 pointwise. By our hypothesis, m(Bs) = ¢(fs) — 0. Thus
m(X) =3 ,c;m(Vi) =m(Bs) = 0, and so m € Ms(X) by [12], Theorem 6.9.
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Claim II. ¢ = u,,. Indeed, let f € Cy(X) and € > 0. consider the equivalence relation ~
on X,z ~yiff |f(z)— f(y)|] <e. Let (V;)ier be the clopen partition of X corresponding to ~.
Let z; € Vi, i = f(i). For each finite subset J of I, let g5 = 3, ; aixvi,  hy = 32,45 qixv;-
Then (hy) is equicontinuous and hy | 0. By our hypothesis, ¢(h;) — 0. Also, um(hs) — 0.
Hence there exists J such that |um(hs)| <€, |¢(h;)| < e Let g = f —gs — hy. Then ||g]] <e.
Hence

[P <@l - llgll < €lldll,  [um(g)] < ellml].
Since ¢(gs) = um(gs), it follows that

[¢(f) = um ()| < max{el|p[l, ellm]}-

As € > 0 was arbitrary, we conclude that ¢(f) = um(f) and the proof is complete.

Lemma 12. For d a bounded continuous ultrapseudometric on X the map
T; : (Ms(X),eu) = (Mr(Xa), eu)

18 continuous.

Proof: It follows from the fact that, if A € E.,(Xa4), then B = T4(A) € £,(X) and
T7(B°) C A°.

Theorem 28. (M,(X),eu) is the projective limit of the spaces (M (Xa), eu), with respect
to the maps T, where d ranges over the family of all bounded continuous ultrapseudometrics
on X.

Proof: We need to show that the topology e, is the weakest of all locally convex topologies
7 on M,(X) for which each

Ty : (Ms(X),7) = (M,(Xa),eu)

is continuous. Let 7 be such a topology and let B € £,(X). Define d(z,y) = sup;cp |f(z) —
f(@W)|- Then d is a bounded continuous ultrapseudometric on X. For each f € B, the function

f:Xa—=K, f(Zad)=f(),

is well defined and continuous. Clearly the set A = {f : f € B} is uniformly bounded. Let
Tqg € Xgq and € > 0. The set ~
V = {fa : d(Za, §a) < €}

is a neighborhood of Z4 and, for §4 € V and f € B, we have
f(§a) = f(Za)| < d(Fa,9a) < €.

Thus A € £.(Xaq). Since T is T-continuous, the set M = (T;) "' (A°) is a T-neighborhood of
zero. But M C B°. Thus B° is a 7-neighborhood of zero, which proves that 7 is finer than e,,.
Hence the result follows.

6 M, (X) as a Completion

For X C Y C B,X, and m € M(X), we denote by m* the element of M(Y) defined
by m¥ (V) = m(V N X). We denote by m*> and mP° the m¥ for Y = v,X and Y = 3,X,
respectively.

Theorem 29. ([17], Theorem 2.4 ) Let m € My(X, E') and u = mPe. The following are
equivalent:
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(1) supp(p) C voX.

(2) If Vo, | 0, then there exists an n, such that m(V,,) = 0 for every n > n,.

(8) If Vi, L 0, then there exists an n such that m(V) = 0 for every clopen set V' contained
n Vp.

(4) For every Z € Q1 there exists a clopen subset A on BoX disjoint from Z and such that
supp(p) C A.

(5) If Vi, 1 0, then there exists an n such that my(Vy,) = 0.

For each x € X, d, may be considered as an element of the algebraic dual C(X)* of

the space C'(X). Let L(X) be the subspace of C(X)* spanned by the set {d, : x € X}. Let
& = E(X) be the family of all pointwise bounded equicontinuous subsets of C(X).

Lemma 13. The bidual B°°, of a set B € £, with respect to the pair < C(X),L(X) >,
is also in E.

Proof: The proof is analogous to the one of Lemma 10.

Consider on L(X) the locally convex topology e of uniform convergence on the members
of £. As in Theorem 30, we have the following

Theorem 30. If A: X — L(X), x> J,, then the map
A: X = (A(X), 6|A(X))

is a homeomorphism.

In view of the preceding Theorem, we may consider X as a topological subspace of
(L(X),e).

Theorem 31. e is the finest of all polar topologies on L(X) which induce on X its topol-
0gy.

Proof: The proof is analogous to the one of Theorem 11.

The proof of the following Theorem is analogous to the one of Theorem 24.

Theorem 32. The dual space of G = (L(X), e) coincides with C(X).

Lemma 14. A subset B, of the dual space C(X) of G = (L(X),e), is e-equicontinuous
iff Be€.

Proof: The proof is analogous to that of Lemma 11.

Next we will look at the completion of the space G = (L(X),e). Since G is Hausdorff
and polar, its completion @ coincides with the space of all linear functionals on G’ = C(X)
which are ¢(C(X), L(X))-continuous ( equivalently continuous with respect to the topology
of simple convergence on e-equicontinuous subsets of C'(X), i.e. on the members of £. The
topology of G is that of uniform convergence on the members of €. Let M., (X) be the space
of all m € My(X) for which supp(m®) C voX. For m € Mgy, (X), we will show that every
f € C(X) is m-integrable . Thus m defines a linear functional um, on C(X), um(f) = [ fdm.
We will prove that M., (X) is algebraically isomorphic to G via the isomorphism m — Uy,

Theorem 33. If m € My(X), then un, € G.

Proof: Let D be a bounding subset of X which is a support set for m. The set Z = D#X
is contained in 6, X. Let B € £ and let (f5) be a net in B which converges pointwise to the zero
function. Since the set B% = {f% : f € B} is in £(0,X) (by [17] Theorem 3.10), given z € Z
and € > 0, there exists a clopen neighborhood W, of z in 6,X such that |f%(z) — f%(y)| <
e/|lm] for all f € B and all y € W,. In view of the compactness of Z, there are z1,..., 2z, in
Z such that Z C | J{_, Wz, Let Vi = XNW,, . If a,b € Vi, then |f(a) — f(b)] < ¢/||m]|| for all
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feB. Let Ay =Vi, Apy1= Vk+1\U?:1 Vi, for k =1,...,n—1. Keeping those A; which are
not empty, we may assume that A; # () for all i. Choose x; € A;. Clearly |m|(X\U;_, Ax) = 0.
Since fs — 0 pointwise, there exists d, such that

max{|fs(@x)| : 1 < k < n} < ¢/||m]

for all 6 > 6,. Let now 6 > d,. Then

) Js dm — m(Ayg) fs(zr)

<e and |m(Ar)fs(zr)| <e,

which implies that |fAk fs dm| < e. Thus, for § > d,, we have

d
Z:: Akf6 "

fre- I

Theorem 34. Let m € Ms,,(X), g € C(X) and d a continuous ultrapseudometric on X
be such that g is d-uniformly continuous. Then :

<e,

which completes the proof.

(1) g is m-integrable.
(2) If p=Tim € M-(Xq), then p has compact support.
(8) The function
g:Xa— K, g(&a) = g(=),
is well defined and continuous. Moreover [ gdu = [ gdm.
(4) um € G.

Proof: (1). Let V,, = {x € X : |g(z)] < n}, W, = V<. Since W,, | 0 and supp(m?) C
voX, there exists n such that |m|(W,) = 0 (by Theorem 29). Let h = g - xv,,. Then f = h
m.a.e. (see [14, Definition 2.4]), and so f is m-integrable since h is m-integrable. Moreover
Jgdm = [hdm.

(2) Since p is 7-additive, we have

B, X
supp(u”®) = supp(p) .

Now it suffices to show that supp(u) is bounding since X4 is a po-space. So we need to prove
that supp(uﬁo) C voX4. To show this it is enough to prove that

supp(p”*) C 7% (supp(m”)) = D,
where 7 : X — Xy is the quotient map. So, let W be a clopen subset of 8,X which is disjoint
from D. Then (7”°)~*(W) is disjoint from supp(m”*) and
1o (W) = p(W N Xa) =< Tjm, xwnx, >
= m(r YW N Xg)) = mP (ﬂ_l(W n Xd)ﬂ"x) .
But o
' (W N Xg) C(@P)TH W) andso mt(WNXg) "o c(xP) N (W)

which implies that e (W) = 0. Tt follows that the support of u®° is contained in D and this
proves (2).
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(3). It is easy to see that g is well defined and continuous. Let
Ap={z e X :|g(z)| <n}.

There exists an n such that |m|(AS) = 0. If h = g - xa,,, then 7(A,) is d-clopen and h
G Xn(An)- If Y is a clopen subset of Xy disjoint from m(Ay), then u(Y) = m(z~*(Y)) =
since 77(Y") is disjoint from A,,. Thus

/gdm:/hdm:/ﬁdu:/gdu.
(4). Let B € £ and let (fs) be a net in B which converges pointwise to the zero function.

Define d(z,y) = sup;cp | f(z) — f(y)|- Now B={f:fec B}c&Xy4) and fs — 0 pointwise.
Since p has a bounding support, we have that [ fsdm = ff,; dp — 0 by the preceding

0

Theorem. This proves that u,, € G and the result follows.
Theorem 35. If ¢ € é, then there exists an m € Msy, (X) such that ¢ = um.

Proof: Let B € &, and let (fs) be a net in B which converges pointwise to the zero
function. Then ¢(fs) — 0, which proves that ¢|c,(x) belongs to the completion of the space
F = (L(X),ey). Thus, by Theorem 5.7, there exists m € M (X) such that ¢(f) = [ fdm for
all f € Cy(X). We will show first that supp(m®) C v,X. In fact, assume that there exists
a z € supp(m®) \ v, X. Let (V) be a sequence of clopen subsets of X, with V,, | § and
z € Wﬁox for all n. Since z € supp(mﬁo), there exists a clopen subset A, of Vnﬂox with
mPo(An) = an #0. Let B, = A, N X and f, = a; x5, . Given z € X, there exists n, such
that ¢ V,,. For y ¢ V,_, we have f,(y) = 0 for all n > n,. Hence (f») € £ and f, — 0
pointwise. Thus

1=a,'m(B,) = /fn dm — 0,

a contradiction. This proves that m € Mj,,(X). We will finish the proof by showing that
¢(f) = [ fdm for all f € C(X). So, let f € C(X). For each positive integer n, let

An:{x:|f(a:)|2n}, fa=F"Xan, gn=1Ff—fn

Then (fn) € € and f,, — 0 pointwise. Thus ¢(fn) — 0 and um (frn) — 0. Also, ¢(gn) = Um(gn)-
It follows that ¢(f) — um(f) = 0, which completes the proof.

Combining Theorems 34 and 35, we get

Theorem 36. The completion of the space G = (L(X), e) coincides with the space Mgy, (X)
equipped with the topology of uniform convergence on the members of £.

By Theorem 33, My(X) is a subspace of Ms,,(X). We will denote also by e the topology
on M (X) of uniform convergence on the members of £. For d a continuous ultrapseudometric
on X, let mg : X — X4 be the quotient map and let Sq : C(Xq) — C(X) be the induced

linear map. As it is shown in Theorem 34, if m € M,,,(X), then Sjm has compact support,
ie. ng S Mc(Xd).

Lemma 15. For each continuous ultrapseudometric d on X, the map
52 : (MSUo(X)76) - (MC(Xd)ve)

18 continuous.
Proof: Let A € £(X4), B = S4(A). Then B € £(X). If B® is the polar of B in M, (X)
and A° the polar of A in My(X4) = M.(X4), then S}(B°) C A° and the result follows.

Theorem 37. (Ms,,(X), e) is the projective limit of the spaces (M.(X4), €), with respect
to the maps Sy, where d ranges over the family of all continuous ultrapseudometrics on X.
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Proof: We need to show that e is the weakest of all locally convex topologies 7 on My, (X)
for which each of the maps

Si + (Mo, (X), 7) = (Me(Xa), €)
is continuous. So, let 7 be such a topology and let B € £(X). Define
d(x,y) = sup [ f(x) — f(y)]-
feB
Then d is a continuous ultrapseudometric on X. For each f € B, the function
f:Xa—=K, f(ia)=f(z)

is well defined and continuous. Clearly the set A = {f : f € B} is in £(X4). Since Sj is
T-continuous, the set M = (S})~'(A°) is a T-neighborhood of zero. But M C B°. Thus B° is
a T-neighborhood of zero, which proves that 7 is finer that e. Hence the result follows.

Theorem 38. For an m € M(X), the following are equivalent:
(1) m € My, (X).

(2) For each continuous ultrapseudometric d on X the measure
ma: K(X4) =K, ma(A) =m(x; " (A))

has compact support.

(8) For each clopen partition (A;)icr of X, there exists a finite subset J, of I such that
m(U, ¢ Ai) = 0 for all finite subsets J of I which contain Jo.

Proof: (1) = (2). It follows from the fact that mq = Sym.

(2) = (3). Let (A;)ier be a clopen partition of X and take f; = x4,. If B; = m4(A;), then
(Bi)ier is a clopen partition of X4. Let Z be a compact support of mg. There exists a finite
subset J, of I such that Z C |, Bi. Let the finite subset J of I contain J,. If A = UiéZJ A;
and B = mq(A), then 0 = my(B) = m(r; ' (B)) = m(A).

(3) = (1). Let (Ai)icr be a clopen partition of X and let J, be as in (3). Clearly
m(A;) =0 for all ¢ ¢ J,. Thus

m(X)=m ( U Ai) tm | A | =D mA) => m(A),

iclo igJo i€Jo el
and so m € M,(X) by [12], Theorem 6.9. To show that
supp(m®)) C v, X

it suffices, by Theorem 6.1, to show that if (W,,) is a sequence of clopen subsets of X, with
W, | 0, then there exists n, such that m(Wy,) = 0 if n > n,. Given such a sequence, let
Dy = W{, Dnpi1 = Wi \ Whyt for n > 1. Then (D) is a clopen partition of X. By our
hypothesis, there exists n, such that m(U,>,, Dn) = 0 if n1 > no. For each n, we have

Wa = Ugsn Dr. Hence, for n > n,, we have m(W,) = 0, which completes the proof.
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