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1 Introduction

A Bol translation plane is a translation plane with two distinguished com-
ponents L and M such that for any other component N , there is an involutory
collineation σN which fixes N pointwise and interchanges L and M . For exam-
ple, every nearfield plane is a Bol translation plane, and it has been conjectured
that these are the only possibilities. On the other hand, Burn [3] has shown that
there are infinite Bol planes that are not nearfield planes.

Bol planes are connected to flocks of hyperbolic quadrics in the following
way: Given a flock of a hyperbolic quadric in PG(3, q), Thas [13] shows that
there is a set of involutions that act on the flock. Using the Thas-Walker con-
struction, Bader and Lunardon [1] realized that there are associated Bol transla-
tion planes. Of course, these Bol spreads are in PG(3, q), so one does not require
complete knowledge of all Bol spreads to classify spreads arising from flocks of
hyperbolic quadrics. From the translation plane point of view, a flock of a hy-
perbolic quadric is equivalent to a translation plane of order q2 with spread in
PG(3, q), which is a union of q+1 reguli sharing exactly two lines (components).
The associated translation plane becomes a Bol translation plane.

The famous theorem of Thas [13]–Baer–Lunardon [1] shows that the associ-
ated translation planes are all nearfield planes. This result would immediately
follow from a complete classification of Bol translation planes as nearfield planes
(given that one knows that the set of involutions exists by Thas [13]).

The group G generated by the involutory collineations can be either solvable
or non-solvable, of course, and Kallaher and Ostrom [11], [12] have shown the
solvable case can almost be resolved. The group GL stabilizing L and M is tran-
sitive on the non-zero vectors and if the group is solvable either GL is a subgroup
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of ΓL(1, qn) if the plane has order qn, or the order is in { 32, 52, 72, 112, 232, 34 }.
The structure of the Bol group shows that except for these sporadic orders the
Bol plane must be a generalized André plane.

1 Theorem (Kallaher and Ostrom [11], [12]). A finite generalized André
plane which is a Bol plane is a nearfield plane; a Bol plane with associated group
in AΓL(1, qn) is a nearfield plane.

2 Theorem (Kallaher and Ostrom [11], [12]). A finite solvable Bol plane is
a nearfield plane or the order is in { 32, 52, 72, 112, 232, 34 }.

In general, Kallaher was able to resolve most of the non-solvable cases and
proved

3 Theorem (Kallaher [10]). A finite Bol translation plane is either a near-
field plane or the order is in { 52, 72, 112, 192, 232, 592, 34, 36 }.

More recently, Kallaher and Hanson have resolved most of these remaining
cases.

4 Theorem (Kallaher and Hanson [5]). A finite Bol plane of order in
{ 52, 72, 112, 192, 232, 592 } is a nearfield plane.

Hence, the remaining two orders 34 and 36 remain in question, and the
order-34 case is quite problematic.

However, recently, the work of Johnson and Prince [9] and of Jha and John-
son [6] proves the following:

5 Theorem (Johnson–Prince [9] and Jha–Johnson [6]). There are exactly
14 translation planes of order 81 admitting SL(2, 5) as a collineation group in
the translation complement as listed in Johnson and Prince [9].

It turns out that this result may be utilized to study Bol planes of order 34.
Recently, the non-solvable triangle transitive translation planes have been clas-
sified (a triangle transitive translation plane is a translation plane admitting an
autotopism collineation group which acts transitively on the non-vertex points
of each leg of the triangle).

6 Theorem (Johnson [8]). Let π be a finite non-solvable triangle transitive
plane. Then π is an irregular nearfield plane of order 112, 292 or 592.

Indeed, the cases of order 34 and 36 must be analyzed in the triangle tran-
sitive planes in a manner similar to that of Bol planes, as Bol planes admit a
group which acts transitively on two legs of an autotopism triangle. These anal-
ysis of planes of order 34 and 36 of Jha, the author and Prince may be applied
for the study of Bol planes of these orders. Using these ideas, the two remaining
orders are resolved to complete the study of Bol translation planes.

Our main theorem is
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7 Theorem. If π is a Bol translation plane of order 34 or 36 then π is a
nearfield plane.

8 Corollary. Finite Bol translation planes are nearfield planes.

2 Background

It is useful to state the classification theorem of all finite doubly transitive
groups.

Let v denote the degree of the permutation group.

The possibilities are as follows:

(A) G has a simple normal subgroup N , and N ≤ G ≤ AutN where N and
v are as follows:

(1) Av, v ≥ 5,

(2) PSL(d, z), d ≥ 2, v = (zd − 1)/(z − 1) and (d, z) 6= (2, 2), (2, 3),

(3) PSU(3, z), v = z3 + 1, z > 2,

(4) Sz(w), v = w2 + 1, w = 22e+1 > 2,

(5) 2G2(z)
′, v = z3 + 1, z = 32e+1,

(6) Sp(2n, 2), n ≥ 3, v = 22n−1 ± 2n−1,

(7) PSL(2, 11), v = 11,

(8) Mathieu groups Mv, v = 11, 12, 22, 23, 24,

(9) M11, v = 12,

(10) A7, v = 15,

(11) HS (Higman-Sims group), v = 176,

(12) .3 (Conway’s smallest group), v = 276.

(B) G has a regular normal subgroupN which is elementary Abelian of order
v = ha, where h is a prime. Identify G with a group of affine transformations
x 7−→ xg + c of GF (ha), where g ∈ G0. Then one of the following occurs:

(1) G ≤ AΓL(1, v),

(2) G0 D SL(n, z), zn = ha,
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(3) G0 D Sp(n, z), zn = ha,

(4) G0 D G2(z)
′, z6 = ha, z even,

(5) G0 D A6 or A7, v = 24,

(6) G0 D SL(2, 3) or SL(2, 5), v = h2, h = 5, 11, 19, 23, 29, or 59 or v = 34,

(7) G0 has a normal extraspecial subgroup E of order 25 and G0/E is isomor-
phic to a subgroup of S5, where v = 34,

(8) G0 = SL(2, 13), v = 36.

Given a finite Bol plane, the stabilizer of two designated components within
the group generated by the set of involutions is in the translation complement
and acts transitively on the non-zero vectors on each of the components. The
translation groups with corresponding fixed centers relative to the components
produce doubly transitive groups on the associated vector spaces. Hence, in our
situation, we will only be using part (B).

We shall also require the theorem of Foulser–Johnson in the odd order case.

9 Theorem (Foulser–Johnson [4]). Let π denote a translation plane of odd
order q2 that admits a group G isomorphic to SL(2, q) that induces a non-
trivial collineation group acting in the translation complement (G need not act
faithfully, but does act non-trivially).

Then π is one of the following planes:

(1) Desarguesian,

(2) Hall,

(3) Hering, or

(4) one of three planes of Walker of order 25.

Some of our arguments require the ‘p-planar bound of Jha’.

10 Theorem (see 21.2.8 of [2]) (The p-planar bound). A quasifield of order
pn cannot admit an automorphism p-group S unless |S| ≤ pn−1, and where
equality holds, n = 2 or pn = 16.

At one point, we require knowledge of the nature of Baer groups.

11 Theorem (see, e.g., Jha and Johnson [7]). Let π be a finite translation
plane of order q2 and let B be a Baer group of order prime to q. Let π0 = FixB.
Then in the net Nπ0 of degree q + 1 and order q2 defined by the components of
π0, there is a unique Baer subplane π2

0 of Nπ0, which is fixed by B, and π2
0 6= π0.
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3 The main theorem

12 Theorem. If π is a Bol translation plane of order 34 or 36 then π is a
nearfield plane.

The proof of the theorem shall be given as a series of lemmas. We assume
the hypothesis of the statement throughout. The first lemma is well known in
the quasifield formulation. Here we wish a spread argument.

13 Lemma. The spread may be represented in the form

x = 0, y = 0, y = xA;A ∈ S,

where A is a 4×4 matrix over GF (3) and x = 0, y = 0 are the special components
inverted by the involutions. We may assume that I ∈ S. The involutions may
be represented in the following form:

(x, y) → (yA−1, xA),

where this element fixes y = xA pointwise. The group

G0 :
〈
(x, y) → (xA, yA−1);A ∈ S

〉

is transitive on each of the non-zero vectors of x = 0 and y = 0.

Proof. An involution which inverts x = 0 and y = 0 has the form (x, y) →
(yB, xB−1). In order that y = xA is fixed pointwise, it then follows that AB = I
and B−1 = A. Since y = x is a component, we compose (x, y) → (y, x) and
(x, y) → (yA−1, xA) to obtain a group element (x, y) → (xA, yA−1) which fixes
both x = 0 and y = 0. Since the group 〈x→ xA;A ∈ S〉 is transitive on non-zero
vectors of the underlying vector space, we see that the lemma follows. QED

We also denote {x = 0, y = 0 } by {L,M}.

3.1 Order 36

Assume that the order is 36. Then, since we have a doubly transitive group
(combine the above group with the associated translation group), it follows from
the classification theorem of finite doubly transitive groups that either the group
is in AΓL(1, 36) or the group is non-solvable.

14 Lemma. If the group is solvable then the plane is a nearfield plane.

Proof. Apply Theorem 2. QED

Hence, assume that the group is non-solvable.
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15 Lemma.

(1) The stabilizer G0 of L and M is SL(2, 13).

(2) The 3-elements in G0 are planar.

(3) The stabilizer of a non-zero vector on L has order 3.

Proof. The stabilizer G0 is non-solvable and we must have one of the
following three cases:

(2) G0 D SL(n, z), zn = ha, (3) G0 D Sp(n, z), zn = ha, (8) G0 = SL(2, 13),
v = 36. Assume situation (2). Then zn = 36, so n = 2, 3, 6 and G0 is SL(2, 36),
SL(3, 32) or SL(6, 3). In the first of these cases, the planes are determined by
Theorem 9 and in fact the plane is Desarguesian. In the second case, when G0 is
SL(3, 9), we have a 3 -group of order 36, which is planar. This is a contradiction
to the p -planar bound Theorem 10. Similarly, in the case SL(6, 3) there is a
planar 3-group of order 315, again a contradiction to the p -planar bound. In
case (3), we have Sp(2, 3

6), Sp(3, 3
2) or Sp(6, 3). We have dealt the the first

two of these groups; in the case of Sp(6, 3), the Sylow 3-group has order 332
,

violating the planar p-bound. Hence, we can only have situation (8), which is
our statement (1). Since SL(2, 13) has order 13 ·7 ·3 ·8, it follows that SL(2, 13)
is generated by planar 3-elements. Furthermore, the stabilizer of a non-zero
point has order exactly 3, since 36 − 1 = 13 · 7 · 8. This proves all parts of the
lemma. QED

16 Lemma. G0 cannot be SL(2, 13).

Proof. Under our representation, consider a collineation, necessarily of the
form

(x, y) → (xA1A2 · · ·At, yA
−1
1 A−1

2 · · ·A−1
t ), where Ai ∈ S, i = 1, 2, . . . , t.

Let A1 · · ·At = C. Suppose that this collineation fixes y = x. Then, (x, x) →
(xC, xC−1), which implies that C = C−1 or rather that C2 = I. This means
the collineation has order 2. There is a unique involution in SL(2, 13). Hence,
the stabilizer of y = x has order 2. Therefore, the orbit length of y = x is
|SL(2, 13)| /2 = 13 · 7 · 3 · 8/2 > 36 − 1 = 13 · 7 · 8, a contradiction. QED

3.2 Triangle transitive planes of order 36

17 Remark. There is a corresponding situation in triangle transitive planes
where the question is asked if there could be a non-solvable triangle transitive
plane of order 36. The following analogous argument gives an simple proof that
there are no such translation planes other than the Desarguesian plane.

Proof. Again, we may reduce to situation in lemma 15. In this setting, we
have two fixed components L and M and a group G0 which acts transitively on
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the non-vertex points of each side of the autotopism triangle. By similar argu-
ments as above we reduce to the case where G0 | L is isomorphic to SL(2, 13).
But SL(2, 13) must induce faithfully on M as well, as there can be no affine
homology subgroup of SL(2, 13) (that is, the involution in SL(2, 13) also acts
faithfully on L and/or M). So, G0 must be isomorphic to SL(3, 13). Further-
more, the 3-elements are planar. Since the group is transitive on the non-vertex
points of the infinite side, it follows that the orbit length of a component y = x
is exactly 13 · 7 · 8 = 36 − 1. However, there is a unique involution in SL(2, 13),
which must either be Baer or the kernel involution and hence must fix paral-
lel classes other than on L or M . But then, the group could not be triangle
transitive. QED

3.3 Order 34

Thus, we consider the order 34. First assume that the group is non-solvable.
By the classification theorem, we have the following possibilities: (2) G0 D

SL(n, z), zn = ha, (3) G0 D Sp(n, z), zn = ha, (6) G0 D SL(2, 3) or SL(2, 5),
v = h2, h = 5, 11, 19, 23, 29, or 59 or v = 34, (7) G0 has a normal extraspecial
subgroup E of order 25 and G0/E is isomorphic to a subgroup of S5, where
v = 34.

18 Lemma. Cases (2) and (3) cannot occur.

Proof. In case (2), we have zn = 34, so we have n = 2 or 4. If we have
the group SL(2, 9) acting on a component L, Theorem 9 applies to classify the
plane and since M is also invariant, the plane must be Hall, which, of course,
is not Bol. If we have SL(4, 3), we have a 3-group of order 36, which must be
planar due to the nature of the group action in contradiction to the p-planar
bound of Theorem 10. Part (3) similarly does not occur since we would have
Sp(4, 3) or Sp(2, 9) acting, where the 3-groups are planar. QED

19 Lemma. Non-solvable case (6) cannot occur.

Proof. If we have case (6), we have SL(2, 5) as a normal subgroup in the
translation complement acting on L and/or M . Note that the stabilizer of the
two special components of the group generated by the central involutions must
act faithfully on each of the two components. However, by Johnson–Prince [9]
and Jha–Johnson [6], we know all possible translation planes of order 81 admit-
ting SL(2, 5) as a collineation group, and it turns out that none of these are
Bol. QED

So consider case (7).

20 Lemma. In case (7), solvable or non-solvable, G0 has a normal extraspe-
cial subgroup E of order 25 containing at least 10 Baer involutions. Furthermore,
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the center Z(E) = E′ is the kernel involution. These 10 Baer collineations gen-
erate E.

Proof. In this case, we note that E/E′ is an elementary Abelian 2 -group
of order 16. Since E has order 32 and acts on 80 points, which is 16 · 5, E must
have an orbit of length dividing 16. That is, not all orbits can have length 32.
Therefore, there must be a collineation of E which fixes at least two points on
a component L. But then there is an involution σ in E which is not the kernel
involution of the translation plane. However, the nature of the group shows that
this involution must be planar and hence E contains a Baer involution.

Now consider the center involution τ . Since τ is either Baer or the kernel
homology, as it acts isomorphically on both L and M , assume that τ is Baer.
Since E′ is characteristic in E, which is normal in G, then, on L the fixed points
of τ are permuted by G. However, this means that there is an invariant set of 9
points on L, a contradiction to transitivity. Hence, τ is the kernel involution.

Let π1 be a Baer subplane fixed pointwise by an involution σ1 of E. Whether
G0 is solvable or non-solvable, G0 contains a collineation of order 5. Let θ5 denote
an element of order 5 in G0, which then normalizes E. If θ5 leaves π1 invariant
then since 5 is a 3-primitive divisor of 34 − 1, it follows that θ5 must leave L
pointwise fixed. But this implies that θ5 also fixes M pointwise, a contradiction.
Hence, there are at least 5 Baer involutions in E. Each Baer involution fixes
pointwise a Baer line on L and leaves invariant a second Baer line. That is, it
follows from Theorem 11 that corresponding to π1 is a second Baer subplane
π2

1 , which shares its parallel classes with π1 and which is fixed by σ1. Since σ1

fixes all parallel classes of π2
1 and fixes an affine point, it follows that σ1 induces

the kernel involution on π2
1. Hence, σ1τ is also a Baer involution in E. But θ5

cannot map π1 onto π2
1 , since if it did, it would be forced to map π2

1 onto π1,
implying that θ2

5 fixes both subplanes, a contradiction. Hence, there are at least
10 subplanes in two orbits of length 5 under 〈θ5〉. It remains to show that these
generate E. Let B denote the subgroup generated by the Baer involutions. The
above argument shows that τ is in B. Since E/E′ is elementary Abelian of order
16, then B/E′ has at least 10 involutions in E/E′, implying that B = E. QED

21 Lemma. Neither solvable nor non-solvable case (7) can occur.

Proof. Any element of G0 is generated by a finite number of elements
of the form (x, y) → (xA, yA−1), where A is in the corresponding spread. If
a finite number of such elements generate a Baer involution, then we have a
collineation of the form (x, y) → (xA1A2 · · ·At, yA

−1
1 A−1

2 · · ·A−1
t ), where Ai is

in the spread for i = 1, 2, . . . , t. If we let A1 · · ·At = C, then such a collineation
(x, y) → (xC, yC−1) is an involution if and only if C2 = I. But then C = C−1,
implying that this collineation fixes y = x. Therefore, we have shown that any
Baer involution in E fixes y = x, and since E is generated by Baer involutions
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we see that E fixes y = x. However, E is not elementary Abelian, so there
are elements g of E of order 4, and of the general form (x, y) → (xT, yT−1),
which fix y = x, implying again that T = T−1 but T 4 = I and T 2 = −I, a
contradiction. QED

Thus, we must have that the group G0 is solvable. We therefore have one
of the following: (1) G ≤ AΓL(1, v), (6) G0 D SL(2, 3) or SL(2, 5), v = h2,
h = 5, 11, 19, 23, 29, or 59 or v = 34, as the solvable (and non-solvable) case (7)
has been resolved. If we have case (1), Theorem 2 applies.

22 Lemma. Solvable case (6) case cannot apply.

Proof. Hence, consider case (6), where we have a normal subgroup isomor-
phic to SL(2, 3). The 3-elements must be planar and hence fix a subplane of
order 3 or 32. There are four planar 3-groups and the group is transitive and
hence permutes these subplanes restricted to the axes. Hence, there are at most
4(32−1)+1 permuted points on each axis—not enough to be transitive (that is,
in general, case (6) and v = 34 forces SL(2, 5) in the transitive group). QED

This completes the proof that Bol planes of orders 34 and 36 are nearfield
planes.
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