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Abstract. Let {Yi,−∞ < i < ∞} be a doubly infinite sequence of identically distributed
ρ-mixing random variables, {ai,−∞ < i < ∞} an absolutely summable sequence of real
numbers. In this paper, we prove the complete convergence and Marcinkiewicz-Zygmund strong

law of large numbers for the partial sums of the moving average processes {
∞∑

i=−∞

aiYi+n, n ≥ 1}.
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Introduction and Main Results.

Let {Yi,−∞ < i < +∞} be a doubly infinite sequence of identically distributed random
variables and {ai,−∞ < i < +∞} be an absolutely summable sequence of real numbers. Next,

iThis work is supported by the National Natural Science Foundation of China
iiThis work is supported by the National Science and Engineering Council of Canada

http://siba-ese.unisalento.it/ c© 2010 Università del Salento
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let

Xn =

∞∑

i=−∞

aiYi+n, n ≥ 1

be the moving average process based on the sequence {Yi,−∞ < i < +∞}. As usual, we denote
Sn =

∑n
k=1Xk, n ≥ 1, the sequence of partial sums.

Under the assumption that {Yi,−∞ < i < +∞} is a sequence of independent identically
distributed random variables, many limiting results have been obtained for the moving average
process {Xn, n ≥ 1}. For example, Ibragimov [3] established the central limit theorem, Burton
and Dehling [4] obtained a large deviation principle assuming E exp{tY1} < ∞ for all t, and
Li et al. [5] obtained the complete convergence result for {Xn, n ≥ 1}.

Certainly, even if {Yi,−∞ < i < +∞} is the sequence of independent identically dis-
tributed random variables, the moving average random variables {Xn, n ≥ 1} are dependent.
This kind of dependence is called weak dependence. The partial sums of weakly dependent
random variables {Xn, n ≥ 1} have similar limiting behaviour properties in comparison with
the limiting properties of independent identically distributed random variables.

For example, we could present some the previous results connected with complete conver-
gence. The following was proved in Hsu and Robbins [1].

Theorem A. Suppose {Xn, n ≥ 1} is a sequence of independent identically distributed

random variables. If EX1 = 0, E|X1|
2 <∞, then

∞∑
n=1

P{|Sn| ≥ εn} <∞ for all ε > 0.

Hsu-Robbins result was extended by Li et al. [5] for moving average processes.

Theorem B. Suppose {Xn, n ≥ 1} is the moving average processes based on a sequence
{Yi,−∞ < i < ∞} of independent identically distributed random variables with EY1 = 0,

E|Y1|
2 <∞. Then

∞∑
n=1

P{|Sn| ≥ εn} <∞ for all ε > 0.

Very few results for a moving average process based on a dependent sequence are known.
In this paper, we provide a result on the limiting behavior of a moving average process based
on a ρ-mixing sequence.

Let {Zi,−∞ < i < ∞} be a sequence of random variables defined on a probability space
(Ω,F , P ) and denote σ-algebras

Fm
n = σ(Zi, n ≤ i ≤ m), −∞ ≤ n ≤ m ≤ +∞.

As usual, for a σ-algebra F we denote by L2(F) the class of all F-measurable random variables
with the finite second moment.

A sequence of random variables {Zi,−∞ < i < ∞} is called ρ-mixing if the maximal
correlation coefficient

ρ(m) = sup
k≥1

sup

{∣∣∣∣∣
cov(X,Y )√

Var(X)Var(Y )

∣∣∣∣∣ , X ∈ L2(Fk
−∞), Y ∈ L2(F∞

m+k)

}

→ 0

as m→ ∞.

The following maximal inequality can be found in Shao ([7], Theorem 1.1) and plays a
crucial role in the proof of our main result. As usual, the notation [·] is used for the integer
part function.

Maximal Inequality. Assume that {Zn, n ≥ 1} is a sequence of ρ-mixing random vari-
ables with EZn = 0 and E|Zn|

q < ∞ for all n ≥ 1 and some q ≥ 2. Then there is a positive
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constant K = K(q, ρ(·)) depending only on q and ρ(·) such that for any n ≥ 1,

E max
1≤k≤n

|
k∑

i=1

Zi|
q ≤ K



nq/2 exp




K
[logn]∑

i=0

ρ(2i)








 max
1≤k≤n

(E|Zk|
2)q/2

+n exp




K
[logn]∑

i=0

ρq/2(2i)




 max
1≤k≤n

E|Zk|
q.

Recall that a measurable function h is said to be slowly varying if for each λ > 0

lim
x→∞

h(λx)

h(x)
= 1.

We refer to Seneta [6] for other equivalent definitions and for detailed and comprehensive study
of properties of such functions.

Now we can present the main result of the paper.

Theorem 1. Let {Yi,−∞ < i < ∞} be a sequence of identically distributed ρ-mixing
random variables, and {Xn, n ≥ 1} be the moving average process based on the sequence
{Yi,−∞ < i <∞}.

Let h(x) be a positive slowly varying function and 1 ≤ p < 2, r ≥ 1. If rp = 1,
additionally assume that

∑∞
i=1 |ai|

θ < ∞ for some θ ∈ (0, 1). If rp < 2 take q = 2, and if

rp ≥ 2 take any q > 2p(r−1)
2−p

. Set

φ(t) =

[log t]∑

i=0

ρ2/q(2i).

Let K = K(q, ρ(·)) be the constant defined in the Maximal Inequality presented above.
If EY1 = 0 and E|Y1|

rph(|Y1|
p) exp{Kφ(|Y1|

p)} <∞ then for all ε > 0

∞∑

n=1

nr−2h(n)P{max
k≤n

|Sk| ≥ εn1/p} <∞.

In particular, if EY1 = 0 and E|Y1|
p exp{Kφ(|Y1|

p)} < ∞, then the following Marcinkiewicz-
Zygmund strong law of large numbers

n−1/pSn → 0, a.s.

holds.

Remark 1. If
∑∞

n=0 ρ
2/q(2n) <∞, then

E|Y1|
rph(|Y1|

p) exp{Kφ(|Y1|
p)} <∞ and E|Y1|

rph(|Y1|
p) <∞

are equivalent. Hence the first statement of Theorem extends and generalizes Theorem 3.1 of
Shao [7]. Marcinkiewicz-Zygmund strong law of large number presented in Theorem generalizes
Theorem 5.1 of Fazekas and Klesov [2] and Corollary 3.1 of Shao [7].

By the following Proposition, the function exp{Kφ(t)} is a slowly varying function. Hence
the assumption about exp{Kφ(t)} in Theorem 5.1 of Fazekas and Klesov [2] is excessive

Proposition 1. Let {bn, n ≥ 0} be a sequence of real number with limn→∞ bn = 0 and set

Φ(t) =
∑[log t]

n=0 bn. Then for any constant K > 0 the function exp{KΦ(t)} is a slowly varying
function.
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Proofs

Proof of Theorem 1. Note that

n∑

k=1

Xk =
n∑

k=1

∞∑

i=−∞

aiYi+k =
∞∑

i=−∞

ai

i+n∑

j=i+1

Yj

and since
∑∞

i=−∞ |ai| <∞,

n−1/p|E
∞∑

i=−∞

ai

i+n∑

j=i+1

YjI{|Yj | ≤ n1/p}|

≤ n−1/p
∞∑

i=−∞

|ai|
i+n∑

j=i+1

E|Yj |I{|Yj | ≤ n1/p}

≤ n1−1/p

(
∞∑

i=−∞

|ai|

)

E|Y1|I{|Y1| > n1/p}

≤ CE(n1/p)p−1|Y1|I{|Y1| > n1/p}

≤ CE|Y1|
pI{|Y1| > n1/p} → 0, as n→ ∞.

Hence for n large enough we have

n1/p|
∞∑

i=−∞

ai

i+n∑

j=i+1

YjI{|Yj | ≤ n1/p}| < ε/4.

Let Ynj = YjI{|Yj | ≤ n1/p} − EYjI{|Yj | ≤ n1/p}. Then

∞∑

n=1

nr−2h(n)P{ max
1≤k≤n

|Sk| ≥ εn1/p}

≤ C
∞∑

n=1

nr−2h(n)P{ max
1≤k≤n

|
∞∑

i=−∞

ai

i+k∑

j=i+1

YjI{|Yj | > n1/p}| ≥ εn1/p/2}

+C
∞∑

n=1

nr−2h(n)P{ max
1≤k≤n

|
∞∑

i=−∞

ai

i+k∑

j=i+1

Ynj | ≥ εn1/p/4}

=: I + J, say.

For I, if rp > 1, by Markov inequality we have

I ≤ C
∞∑

n=1

nr−2h(n)n−1/pE max
1≤k≤n

|
∞∑

i=−∞

ai

i+k∑

j=i+1

YjI{|Yj | > n1/p}|

≤ C
∞∑

n=1

nr−1−1/ph(n)E|Y1|I{|Y1| > n1/p}

=
∞∑

n=1

nr−1−1/ph(n)
∞∑

m=n

E|Y1|I{m < |Y1|
p ≤ m+ 1}

=
∞∑

m=1

E|Y1|I{m < |Y1|
p ≤ m+ 1}

m∑

n=1

nr−1−1/ph(n)
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≤ C

∞∑

m=1

mr−1/ph(m)E|Y1|I{m < |Y1|
p ≤ m+ 1}

≤ CE|Y1|
rph(|Y1|

p) ≤ CE|Y1|
rph(|Y1|

p) exp{Kφ(|Y1|
p)} <∞.

If rp = 1, by Markov inequality and the same argument as the case rp > 1 we have

I ≤ C
∞∑

n=1

nr−2h(n)n−θ/pE max
1≤k≤n

|
∞∑

i=−∞

ai

i+k∑

j=i+1

YjI{|Yj | > n1/p}|θ

≤ C
∞∑

n=1

nr−1−θ/ph(n)E|Y1|
θI{|Y1| > n1/p} <∞.

For J , if rp < 2, by Markov, Hölder, and Maximal inequalities we have

J ≤ C
∞∑

n=1

nr−2h(n)n−2/pE max
1≤k≤n

|
∞∑

i=−∞

ai

i+k∑

j=i+1

Ynj |
2

≤ C
∞∑

n=1

nr−2h(n)n−2/pE

(
∞∑

i=−∞

(
|ai|

1− 1/2
)(

|ai|
1/2 max

1≤k≤n
|

i+k∑

j=i+1

Ynj |

))2

≤ C
∞∑

n=1

nr−2−2/ph(n)(
∞∑

i=−∞

|ai|)
∞∑

i=−∞

|ai|E max
1≤k≤n

|
i+k∑

j=i+1

Ynj |
2

≤ C
∞∑

n=1

nr−2−2/ph(n)



n exp




K
[logn]∑

i=0

ρ(2i)








E|Y1|
2I{|Y1| ≤ n1/p}

= C
∞∑

n=1

nr−1−2/ph(n) exp {Kφ(n)}E|Y1|
2I{|Y1| ≤ n1/p}

≤ C
∞∑

n=1

nr−1−2/ph(n) exp {Kφ(n)}
n∑

k=1

E|Y1|
2I{(k − 1)1/p < |Y1| ≤ k1/p}

≤ C

∞∑

k=1

E|Y1|
2I{(k − 1)1/p < |Y1| ≤ k1/p}

∞∑

n=k

nr−1−2/ph(n) exp {Kφ(n)}

≤ C
∞∑

k=1

kr−2/ph(k) exp {Kφ(k)}E|Y1|
2I{(k − 1)1/p < |Y1| ≤ k1/p}

≤ CE|Y1|
rph(|Y1|

p) exp{Kφ(|Y1|
p)} <∞.

If rp ≥ 2, by Markov, Hölder, and Maximal inequalities we have

J ≤ C
∞∑

n=1

nr−2h(n)n−q/pE max
1≤k≤n

|
∞∑

i=−∞

ai

i+k∑

j=i+1

Ynj |
q

≤ C

∞∑

n=1

nr−2h(n)n−q/pE

(
∞∑

i=−∞

(
|ai|

1− 1/q
)(

|ai|
1/q max

1≤k≤n
|

i+k∑

j=i+1

Ynj |

))q

≤ C
∞∑

n=1

nr−2−q/ph(n)(
∞∑

i=−∞

|ai|)
q−1

∞∑

i=−∞

|ai|E max
1≤k≤n

|
i+k∑

j=i+1

Ynj |
q

≤ C
∞∑

n=1

nr−2−q/p+q/2h(n) exp




K
[logn]∑

i=0

ρ(2i)




 (E|Y1|
2I{|Y1| ≤ n1/p})q/2
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+C
∞∑

n=1

nr−1−q/ph(n) exp {Kφ(n)}E|Y1|
qI{|Y1| ≤ n1/p}

=: J1 + J2, say.

For J1, since r − 2− q/p+ q/2 < −1, we can take t > 0 small enough such that r − 2− q/p+
q/2 + tq/(2p) < −1. Then

J1 = C
∞∑

n=1

nr−2−q/p+q/2h(n) exp




K
[logn]∑

i=0

ρ(2i)




 (E|Y1|
2−t+tI{|Y1| ≤ n1/p})q/2

≤ C
∞∑

n=1

nr−2−q/p+q/2+tq/(2p)h(n) exp




K
[logn]∑

i=0

ρ(2i)




 (E|Y1|
2−tI{|Y1| ≤ n1/p})q/2 <∞.

For J2, we have

J2 = C
∞∑

n=1

nr−1−q/ph(n) exp {Kφ(n)}E|Y1|
qI{|Y1| ≤ n1/p}

≤ C
∞∑

n=1

nr−1−q/ph(n) exp {Kφ(n)}
n∑

k=1

E|Y1|
qI{k − 1 < |Y1|

p ≤ k}

= C

∞∑

k=1

E|Y1|
qI{k − 1 < |Y1|

p ≤ k}
∞∑

n=k

nr−1−q/ph(n) exp {Kφ(n)}

≤ C
∞∑

k=1

kr−q/ph(k) exp {Kφ(k)}E|Y1|
qI{k − 1 < |Y1|

p ≤ k}

≤ CE|Y1|
rph(|Y1|

p) exp {Kφ(|Y1|
p)} <∞.

Now we show the almost sure convergence. By the first part of Theorem, EY1 = 0 and
E|Y1|

p exp{Kφ(|Y1|
p)} <∞ imply

∞∑

n=1

n−1P

{
max

1≤k≤n
|Sn| ≥ εn1/p

}
<∞, for all ε > 0.

Hence

∞ >
∞∑

n=1

n−1P{ max
1≤m≤n

|Sm| > εn1/p}

=

∞∑

k=1

2k∑

n=2k−1

n−1P{ max
1≤m≤n

|Sm| > εn1/p}

≥ 1/2
∞∑

k=1

P{ max
1≤m≤2k−1

|Sm| > ε2k/p}.

By Borel-Cantelli lemma,

2−k/p max
1≤m≤2k

|Sm| → 0 almost surely
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which implies that Sn/n
1/p → 0 almost surely.�

Proof of Proposition 1. Since limn→∞ bn = 0, for all ε > 0 there exists a positive integer
N = N(ε) such that

−ε < bn < ε for all n > N.

For any λ > 1

exp{KΦ(λt)}/ exp{KΦ(t)} = exp{K

[log(λt)]∑

n=[log t]+1

bn}.

Note that for t > 1

[log(λt)]− [log t] ≤ log(λt)− (log t− 1) = log λ+ 1.

Hence for t large enough

exp{−K(log λ+ 1)ε} ≤ exp{KΦ(λt)}/ exp{kΦ(t)} ≤ exp{K(log λ+ 1)ε}

and by the arbitrariness of ε > 0

lim
t→∞

exp{KΦ(λt)}/ exp{KΦ(t)} = 1.�
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