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Abstract. In this paper, we consider the following initial value problem

ut(x, t) =

∫

Ω

J(x− y)(u(y, t)− u(x, t))dy − γup(x, t) in Ω× (0,∞),

u(x, 0) = u0(x) > 0 in Ω,

where γ ∈ {−1, 1} is a parameter, Ω is a bounded domain in RN with smooth boundary ∂Ω,
p > 1, J : RN −→ R is a kernel which is nonnegative, measurable, symmetric, bounded and∫
RN J(z)dz = 1, the initial datum u0 ∈ C0(Ω), u0(x) > 0 in Ω. We show that, if γ = 1, then the

solution u of the above problem tends to zero as t→ ∞ uniformly in x ∈ Ω, and a description
of its asymptotic behavior is given. We also prove that, if γ = −1, then the solution u blows
up in a finite time, and its blow-up time goes to that of the solution of a certain ODE as the
L∞ norm of the initial datum goes to infinity.
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1 Introduction

Consider the following initial value problem

ut(x, t) =

∫

Ω

J(x− y)(u(y, t)− u(x, t))dy − γup(x, t) in Ω× (0,∞), (1)

u(x, 0) = u0(x) > 0 in Ω, (2)
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where γ ∈ {−1, 1} is a parameter, Ω is a bounded domain in RN with smooth boundary ∂Ω,
p > 1, J : RN −→ R is a kernel which is nonnegative, measurable, symmetric, bounded and∫
RN J(z)dz = 1, the initial datum u0 ∈ C0(Ω), u0(x) > 0 in Ω. Recently, nonlocal diffusion
problems have been the subject of investigations of many authors (see, [1], [2], [4]–[7], [13]–[18],
[20]–[22], [25]–[27], [31], and the references cited therein). Nonlocal evolution equations of the
form

ut(x, t) =

∫

RN

J(x− y)(u(y, t)− u(x, t))dy,

and variations of it, have been used by a lot of authors to model diffusion processes (see, [4]–[6],
[13], [20], [21]). The solution u(x, t) can be interpreted as the density of a single population
at the point x, at the time t, and J(x − y) as the probability distribution of jumping from
location y to location x. Then the convolution (J ∗ u)(x, t) =

∫
RN J(x − y)u(y, t)dy is the

rate at which individuals are arriving to position x from all other places, and −u(x, t) =
−
∫
RN J(x− y)u(x, t)dy is the rate at which they are leaving location x to travel to any other

side (see, [20]). Let us notice that for our equation, the term of the source −γup(x, t) can be
rewritten as follows

−γup(x, t) =

∫

RN

J(x− y)(−γup(x, t))dy.

Therefore, in view of the above equality, the term of the source −γup(x, t) can be interpreted
as a force which increases the rate of individuals that leave location x to travel to any other
site when γ = 1, and decreases this rate when γ = −1.
In this paper, we are interested in the asymptotic behavior of the solution of (1)–(2) when
γ = 1, and the blow-up of the solution of (1)–(2) when γ = −1. For local diffusion problems,
the asymptotic behavior of solutions has been the subject of investigations of several authors
(see, [3], [9]–[12], [23], [24], and the references cited therein). For our problem, in the case where
γ = 1 and Ω = RN , Pazoto and Rossi studied in [26] the asymptotic behavior of solutions. On
the other hand, when γ = −1, Perez-LLanos and Rossi proved that the solution u of (1)–(2)
blows up in a finite time and some results about blow-up rate and set have been given. In the
same way, in [25], we considered the following initial-boundary value problem

ut(x, t) = ε

∫

Ω

J(x− y)(u(y, t)− u(x, t))dy + f(u(x, t)) in Ω× (0, T ),

u(x, t) = 0 in (RN − Ω)× (0, T ), u(x, 0) = u0(x) in Ω,

where f : [0,∞) → [0,∞) is C1 nondecreasing function, and ε is a positive parameter. Under
some assumptions, we showed that the solution u of the above problem blows up in a finite
time, and its blow-up time goes to that of the solution of the following ODE α

′

(t) = f(α(t)),
t > 0, α(0) = ‖u0‖∞, as ε goes to zero. In the current paper, we obtain an analogous result
when γ = −1 taking as parameter the L∞ norm of the initial datum. We also prove that
when γ = 1, then the solution u of (1)–(2) tends to zero as t → ∞ uniformly in x ∈ Ω, and
a complete description of its asymptotic behavior is exhibited. The remainder of the paper
is written in the following manner. In the next section, we provide some material about the
maximum principle for nonlocal problems. In the third section, we prove the local existence
and uniqueness of solutions. In the fourth and fifth sections, we obtain the main results when
γ = 1 and γ = −1, respectively.
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2 Maximum principle

In this section, we give some insights about the maximum principle for nonlocal problems
for our subsequent use.
The following lemma is a form of the maximum principle for nonlocal problems.

Lemma 1. Let b ∈ C0(Ω × [0,∞)) and let u ∈ C0,1(Ω × [0,∞)) satisfy the following
inequalities

ut(x, t)−

∫

Ω

J(x− y)(u(y, t)− u(x, t))dy + b(x, t)u(x, t) ≥ 0 in Ω× (0,∞),

u(x, 0) ≥ 0 in Ω.

Then we have u(x, t) ≥ 0 in Ω× (0,∞).

Proof. Let T0 be any positive quantity satisfying T0 <∞, and let λ be such that b(x, t)−λ > 0
in Ω×[0, T0]. Introduce the function z(x, t) = eλtu(x, t), and supposem = minx∈Ω,t∈[0,T0]

z(x, t).

Then there exists (x0, t0) ∈ Ω× [0, T0] such that m = z(x0, t0). We get z(x0, t0) ≤ z(x0, t) for
t ≤ t0 and z(x0, t0) ≤ z(y, t0) for y ∈ Ω, which implies that

zt(x0, t0) ≤ 0, (3)

and
∫

Ω

J(x0 − y)(z(y, t0)− z(x0, t0))dy ≥ 0. (4)

Using the first inequality of the lemma, it is not hard to see that

zt(x0, t0)−

∫

Ω

J(x0 − y)(z(y, t0)− z(x0, t0))dy

+(b(x0, t0)− λ)z(x0, t0) ≥ 0.

Making use of (3) and (4), we observe that the first two terms on the left hand side of the
above inequality are nonpositive. We deduce that (b(x0, t0) − λ)z(x0, t0) ≥ 0, which implies
that z(x0, t0) ≥ 0 because b(x0, t0) − λ > 0. Consequently, we have u(x, t) ≥ 0 in Ω × [0, T0],
which leads us to the result. QED

Another version of the maximum principle for nonlocal problems is the following compar-
ison lemma.

Lemma 2. Let u, v ∈ C0,1(Ω× [0,∞)) be such that

ut(x, t) −

∫

Ω

J(x− y)(u(y, t)− u(x, t))dy + γup(x, t) >

vt(x, t) −

∫

Ω

J(x− y)(v(y, t)− v(x, t))dy + γvp(x, t) in Ω× (0,∞),

u(x, 0) > v(x, 0) in Ω.

Then we have u(x, t) > v(x, t) in Ω× (0,∞).
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Proof. Let w = u− v in Ω× [0,∞). A straightforward computation reveals that

wt(x, t)−

∫

Ω

J(x− y)(w(y, t)− w(x, t))dy + b(x, t)w(x, t) > 0 in Ω× (0,∞),

w(x, 0) > 0 in Ω,

where b(x, t) = pγ
∫ 1

0
(su(x, t) + (1− s)v(x, t))p−1ds. We know from Lemma 1 that u(x, t) ≥ 0

in Ω× (0,∞). Assume that w(x0, t0) = 0 for a certain (x0, t0) ∈ Ω× (0,∞). This implies that
wt(x0, t0) ≤ 0 and

∫
Ω
J(x− y)(w(y, t0)− w(x0, t0))dy ≥ 0. We infer that

wt(x0, t0)−

∫

Ω

J(x− y)(w(y, t0)− w(x0, t0))dy + b(x0, t0)w(x0, t0) ≤ 0,

which is a contradiction. This finishes the proof. QED

3 Local existence

In this section, we shall establish the existence and uniqueness of nonnegative solutions
of (1)–(2) in Ω× (0, T ) for small T . We shall also point out that global existence occurs when
γ = 1.

Without loss of generality, we may replace the reaction term −γup(x, t) by the term
−γ|u(x, t)|p−1u(x, t). Indeed, if one shows the existence and uniqueness of nonnegative solu-
tions of (1)–(2) in Ω× (0, T ) taking this last reaction term, then the nonnegativity of solutions
implies the existence and uniqueness of solutions of (1)–(2) in Ω× (0, T ) for the first reaction
term. Let t0 > 0 be fixed and define the function space

Yt0 = {u; u ∈ C([0, t0], C(Ω))}

equipped with the norm defined by ‖u‖Yt0
= max0≤t≤t0 ‖u(·, t)‖∞ for u ∈ Yt0 . It is easy to

see that Yt0 is a Banach space. Introduce the set

Xt0 = {u; u ∈ Yt0 , ‖u‖Yt0
≤ b0},

where b0 = 2‖u0‖∞ + 1. We observe that Xt0 is a nonempty bounded closed convex subset of
Yt0 . Define the map R as follows

R : Xt0 −→ Xt0 ,

R(v)(x, t) = u0(x) +

∫ t

0

∫

Ω

J(x− y)(v(y, s)− v(x, s))dyds− γ

∫ t

0

|v(x, s)|p−1v(x, s)ds.

Theorem 1. Assume that u0 ∈ C0(Ω). Then R maps Xt0 into Xt0 , and R is strictly
contractive if t0 is appropriately small relative to ‖u0‖∞.

Proof. We get

|R(v)(x, t)− u0(x)| ≤ 2‖J‖∞|Ω|‖v‖Yt0
t+ ‖v‖pYt0

t,

which implies that ‖R(v)‖Yt0
≤ ‖u0‖∞ + 2‖J‖∞b0|Ω|t0 + bp0t0.

Consequently, if

t0 ≤
b0 − ‖u0‖∞

2|Ω|‖J‖∞b0 + bp0
, (5)
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then ‖R(v)‖Yt0
≤ b0. Therefore if (6) holds, then R maps Xt0 into Xt0 . Now we are going to

prove that the map R is strictly contractive. Let v, z ∈ Xt0 . Setting α = v − z, we discover
that

|(R(v)−R(z))(x, t)| ≤ |

∫ t

0

∫

Ω

J(x− y)(α(y, s)− α(x, s))dyds|

+|

∫ t

0

(|v(x, s)|p−1v(x, s)− |z(x, s)|p−1z(x, s))ds|.

Use Taylor’s expansion to obtain

|(R(v)−R(z))(x, t)| ≤ 2‖J‖∞|Ω|‖α‖Yt0
t+ t‖v − z‖Yt0

p‖β‖p−1
Yt0

,

where β is a function which is localized between v and z. We deduce that

‖R(v)−R(z)‖Yt0
≤ 2‖J‖∞|Ω|‖α‖Yt0

t0 + t0‖v − z‖Yt0
p‖β‖p−1

Yt0
,

which implies that ‖R(v)−R(z)‖Yt0
≤ (2‖J‖∞|Ω|t0 + t0pb

p−1
0 )‖v − z‖Yt0

. If

t0 ≤
1

4‖J‖∞|Ω|+ 2pbp−1
0

,

then ‖R(v) − R(z)‖Yt0
≤ 1

2
‖v − z‖Yt0

. Hence, we see that R(v) is a strict contraction in Yt0 ,
and the proof is complete. QED

It follows from the contraction mapping principle that for appropriately chosen t0 ∈ (0, 1),
R has a unique fixed point u ∈ Xt0 which is a solution of (1)–(2). Making use of Lemma 1,
one easily sees that this solution is nonnegative in Ω× [0, t0].

Now, let us reveal that the solution u of (1)–(2) is global when γ = 1. In order to prove
this assertion, we need to show an a priori estimate. More precisely, we shall exhibit that

‖u(·, t)‖∞ ≤ ‖u0‖∞ for t > 0.

To demonstrate this estimate, we proceed in the following manner. Multiply both sides of (1)
by (u(x, t)− ‖u0‖∞)+ and integrate over Ω to obtain

d

dt

∫

Ω

(u(x, t)− ‖u0‖∞)2+
2

dx

=

∫

Ω

∫

Ω

J(x− y)(u(y, t)− u(x, t))(u(x, t)− ‖u0‖∞)+dxdy

−

∫

Ω

|u(x, t)|p−1u(x, t)(u(x, t)− ‖u0‖∞)+dx,

where (x)+ denotes max(x, 0). It is not hard to check that

(A−B)(A+ −B+) ≥ (A+ −B+)
2.

On the other hand, according to the fact that the kernel J is symmetric, we realize that
∫

Ω

∫

Ω

J(x− y)(ϕ(y)− ϕ(x))ψ(x)dxdy
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= −
1

2

∫

Ω

∫

Ω

J(x− y)(ϕ(y)− ϕ(x))(ψ(y)− ψ(x))dxdy.

Use the above relations to arrive at

d

dt

∫

Ω

(u(x, t)− ‖u0‖∞)2+
2

dx

≤ −
1

2

∫

Ω

∫

Ω

J(x− y)|(u(y, t)− ‖u0‖∞)+ − (u(x, t)− ‖u0‖∞)+|
2dxdy

−

∫

Ω

|u(x, t)|p−1u(x, t)(u(x, t)− ‖u0‖∞)+dx ≤ 0,

which implies that
∫
Ω

(u(x,t)−‖u0‖∞)2+
2

dx = 0. We infer that

‖u(·, t)‖∞ ≤ ‖u0‖∞ for t > 0,

and our estimate is proved. Now, let us show that, if γ = 1, then there exists a unique
nonnegative global solution of (1)-(2). We know that for t0 > 0 small enough, the problem (1)-
(2) admits a unique bounded solution u in Ω× [0, t0]. Taking as initial datum u(·, t0) ∈ C(Ω)
and arguing as before, it is possible to extend the solution up to some interval [0, t1) for certain
t1 > t0. Repeating this procedure, we easily prove the existence of a unique solution of (1)-(2)
in Ω× [0,∞). Making use of Lemma 1, one easily sees that the above solution is nonnegative
in Ω× [0,∞)

4 Asymptotic behavior of solutions

In this section, we show that if γ = 1, then the solution u of (1)-(2) tends to zero as t
approaches infinity uniformly in x ∈ Ω. We also give its asymptotic behavior as t→ ∞.

Introduce the function µ(x) defined by

µ(x) = (C0 + x)p − λ(C0 + x) for x ∈ [−C0,∞),

where C0 = ( 1
p−1

)
1

p−1 and λ = 1
p−1

, which is crucial for the asymptotic behavior of solutions.

We have µ(0) = 0 and µ′(0) = 1. We deduce that µ(x) > 0 for any x ≥ 0 and µ(x) < 0 for any
x ∈ (−C0, 0).

The lemma below shows that the solution u of the problem (1)-(2) tends to zero as t
approaches infinity uniformly in x ∈ Ω when γ = 1.

Lemma 3. Let u be the solution of (1)–(2). If γ = 1, then we have

u(x, t) > 0 in Ω× [0,∞) and lim
t→∞

u(x, t) = 0,

uniformly in x ∈ Ω.

Proof. Introduce the function α(t) defined as follows

α(t) = ((u0min)
1−p + (p− 1)t)1/(1−p) for t ∈ [0,∞),

where u0min = min
x∈Ω

u0(x) > 0. It is not hard to see that α
′

(t) = −αp(t), t > 0, α(0) =
u0min. Setting e(x, t) = u(x, t)− α(t), an application of the mean value theorem leads us to

et(x, t)−

∫

Ω

J(x− y)(e(y, t)− e(x, t))dy + β(x, t)e(x, t) = 0 in Ω× (0,∞),
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e(x, 0) ≥ 0 in Ω,

where β(x, t) = p
∫ 1

0
(su(x, t)+(1−s)α(t))p−1ds. It follows readily from Lemma 1 that e(x, t) ≥

0 in Ω× (0,∞), that is u(x, t) ≥ α(t) > 0 in Ω× (0,∞). Thus, the first part of the lemma is
proved. In order to demonstrate the second one, we proceed as follows. Let z(x, t) = C0t

−λ in

Ω× [1,∞), where λ = 1
p−1

and C0 = ( 1
p−1

)
1

p−1 . A straightforward computation reveals that

zt(x, t)−

∫

Ω

J(x− y)(z(y, t)− z(x, t))dy + zp(x, t) = 0 in Ω× (1,∞),

z(x, 1) = C0 in Ω.

Let k > 1 be so large that kz(x, 1) = kC0 > u(x, 1) in Ω. Obviously kzp(x, t) < (kz)p(x, t),
which implies that

(kz)t(x, t)−

∫

Ω

J(x− y)(kz(y, t)− kz(x, t))dy + (kz)p(x, t) > 0 in Ω× (1,∞),

kz(x, 1) > u(x, 1) in Ω.

An application of Lemma 2 renders 0 ≤ u(x, t) < kz(x, t) in Ω × (1,∞), or equivalently
0 ≤ u(x, t) < kC0t

−λ in Ω × (1,∞). We deduce that limt→∞ u(x, t) = 0, uniformly in x ∈ Ω,
and the proof is complete. QED

Now, let us give the asymptotic behavior of the solution u when γ = 1. We have the
following result.

Theorem 2. Let u be the solution of (1)-(2). If γ = 1, then we have

u(x, t) = C0t
−λ(1 + o(1)) as t→ ∞,

uniformly in x ∈ Ω, where C0 = ( 1
p−1

)
1

p−1 and λ = 1
p−1

.

The proof of the above theorem is based on the following lemmas.

Lemma 4. Let u be the solution of (1)-(2). If γ = 1, then for any ε > 0 small enough,
there exist two times τ ≥ T ≥ 1 such that

u(x, t+ τ) ≤ (C0 + ε)(t+ T )−λ + (t+ T )−λ−1 in Ω× (0,∞).

Proof. Introduce the function w(x, t) defined as follows

w(x, t) = (C0 + ε)t−λ + t−λ−1 in Ω× [1,∞).

A direct calculation yields

wt(x, t)−

∫

Ω

J(x− y)(w(y, t)− w(x, t))dy + wp(x, t)

= t−λ−1 (−λ(C0 + ε)− (λ+ 1)t−1)+ t−λp (C0 + ε+ t−1)p in Ω× (1,∞).

Due to the fact that pλ = λ+ 1, we arrive at

wt(x, t)−

∫

Ω

J(x− y)(w(y, t)− w(x, t))dy + wp(x, t)
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= t−λ−1 (−λ(C0 + ε)− (λ+ 1)t−1 + (C0 + ε+ t−1)p
)

in Ω× (1,∞).

Applying Taylor’s expansion, we get (C0 + ε+ t−1)p = (C0 + ε)p +M(t)t−1 for t ≥ 1, where
M(t) is a bounded function for t ≥ 1. Hence, we find that

wt(x, t) −

∫

Ω

J(x− y)(w(y, t)− w(x, t))dy + wp(x, t)

= t−λ−1(µ(ε)− (λ+ 1)t−1 +M(t)t−1) in Ω× (1,∞).

Having in mind that ε > 0 is small enough, we discover that µ(ε) > 0. Therefore, there exists
a time T ≥ 1 such that

wt(x, t)−

∫

Ω

J(x− y)(w(y, t)− w(x, t))dy + wp(x, t) > 0 in Ω× (T,∞).

Since u goes to zero as t approaches infinity uniformly in x ∈ Ω owing to Lemma 3, there
exists τ ≥ T such that u(x, τ) < w(x, T ) in Ω. Setting z(x, t) = u(x, t+ τ − T ), we easily see
that

zt(x, t)−

∫

Ω

J(x− y)(z(y, t)− z(x, t))dy + zp(x, t) = 0 in Ω× (T,∞),

z(x, T ) = u(x, τ) < w(x, T ) in Ω.

Comparison Lemma 2 implies that z(x, t) ≤ w(x, t) in Ω× (T,∞), or equivalently u(x, t+ τ −
T ) ≤ (C0 + ε)t−λ + t−λ−1 in Ω× (T,∞). We deduce that

u(x, t+ τ) ≤ (C0 + ε)(t+ T )−λ + (t+ T )−λ−1 in Ω× (0,∞),

and the proof is complete. QED

Lemma 5. Let u be the solution of (1)-(2). If γ = 1, then for any ε > 0 small enough,
there exists a time τ ≥ 1 such that

u(x, t+ 1) ≥ (C0 − ε)(t+ τ)−λ + (t+ τ)−λ−1 in Ω× (0,∞).

Proof. Introduce the function w(x, t) defined by

w(x, t) = (C0 − ε)t−λ + t−λ−1 in Ω× [1,∞).

As in the proof of Lemma 4, we find that

wt(x, t) −

∫

Ω

J(x− y)(w(y, t)− w(x, t))dy + wp(x, t)

= t−λ−1(µ(−ε)− (λ+ 1)t−1 +M(t)t−1) in Ω× (1,∞),

where M(t) is a bounded function for t ≥ 1. Since ε > 0 is small enough, we discover that
µ(−ε) < 0. Consequently, there exists a time T ≥ 1 such that

wt(x, t)−

∫

Ω

J(x− y)(w(y, t)− w(x, t))dy + wp(x, t) < 0 in Ω× (T,∞).

We know from Lemma 3 that u(x, 1) > 0 in Ω. Since limt→∞ w(x, t) = 0, uniformly in x ∈ Ω,
there exists a time τ ≥ T such that w(x, τ) < u(x, 1) in Ω. Setting z(x, t) = w(x, t+ τ − 1), it
is not difficult to see that

zt(x, t)−

∫

Ω

J(x− y)(z(y, t)− z(x, t))dy + zp(x, t) < 0 in Ω× (1,∞),
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z(x, 1) = w(x, τ) < u(x, 1) in Ω.

It follows from Comparison Lemma 2 that z(x, t) < u(x, t) in Ω × (1,∞), which implies that
u(x, t) ≥ (C0 − ε)(t+ τ − 1)−λ + (t+ τ − 1)−λ−1 in Ω× (1,∞). We deduce that

u(x, t+ 1) ≥ (C0 − ε)(t+ τ)−λ + (t+ τ)−λ−1 in Ω× (0,∞),

and the proof is complete. QED

Now, we are in a position to prove the main result of this section.

Proof of Theorem 2. It follows from Lemmas 4 and 5 that

C0 − ε ≤ lim
t→∞

inf(
u(x, t)

t−λ
) ≤ lim

t→∞
sup(

u(x, t)

t−λ
) ≤ C0 + ε,

which gives the desired result. QED

5 Blow-up solutions

It is well known (see, [27]) that the solution u of (1)–(2) blows up in a finite time when
γ = −1. In this section, we prove that, if γ = −1 and the L∞ norm of the initial datum is
bigger than one, then the solution u of (1)–(2) blows up in a finite time T , and its blow-up
time goes to that of the solution of a certain ODE when the L∞ norm of the initial datum
goes to infinity. These results are stated in the theorem below.

Theorem 3. Let u be the solution of (1)–(2), and assume that the initial datum satisfies
‖u0‖∞ > 1. If γ = −1, then the solution u blows up in a finite time T, and the following
estimates hold

0 ≤ T − Tu0 ≤ Tu0‖u0‖
1−p
∞ + o(Tu0‖u0‖

1−p
∞ ) as ‖u0‖∞ → ∞, (6)

where Tu0 =
‖u0‖

1−p
∞

p−1
is the blow-up time of the solution α(t) of the ODE defined below

α
′

(t) = αp(t), t > 0, α(0) = ‖u0‖∞.

Proof. Let (0, T ) be the maximal time interval of existence of the solution u. Our aim is to
show that T is finite and satisfies the above estimates. Due to the fact that the initial value is
positive in Ω, it is clear that the solution u is nonnegative in Ω× (0, T ) because of Lemma 1.
We note that

∫
Ω
J(x− y) ≤

∫
RN J(x− y)dy = 1, which implies that

ut(x, t) ≥ −u(x, t) + up(x, t) in Ω× (0, T ), (7)

because J(z) ≥ 0 for z ∈ RN . The estimate (8) can be rewritten as follows

ut(x, t) ≥ up(x, t)(1− u1−p(x, t)) in Ω× (0, T ). (8)

Introduce the function U(t) defined as follows

U(t) = ‖u(·, t)‖∞ for t ∈ [0, T ).

Let t1, t2 ∈ [0, T ). Then there exist x1, x2 ∈ Ω such that U(t1) = u(x1, t1) and U(t2) =
u(x2, t2). Making use of Taylor’s expansion, it is easy to observe that

U(t2)− U(t1) ≥ u(x1, t2)− u(x1, t1) = (t2 − t1)ut(x1, t1) + o(t2 − t1),
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and
U(t2)− U(t1) ≤ u(x2, t2)− u(x2, t1) = (t2 − t1)ut(x2, t2) + o(t2 − t1),

which implies that U(t) is Lipschitz continuous. Further, if t2 > t1, then

U(t2)− U(t1)

t2 − t1
≥ ut(x1, t1) + o(1) ≥ up(x1, t1)(1− u1−p(x1, t1)) + o(1).

Letting t1 → t2, we obtain

dU(t)

dt
≥ Up(t)(1− U1−p(t)) for a.e. t ∈ (0, T ). (9)

We claim that U(t) > ‖u0‖∞ for t ∈ (0, T ). Indeed, using estimate (10), one gets

U(t)− ‖u0‖∞ ≥

∫ t

0

Up(s)(1− U1−p(s))ds, (10)

for any t ∈ [0, T ]. Since U is continuous and Up(0)(1− U1−p(0)) > 0, there exists δ > 0, such
that Up(s)(1−U1−p(s)) > 0 for any s ∈ (0, δ). Hence, U(t) > ‖u0‖∞ for t ∈ (0, δ). Suppose by
contradiction that U(t)− ‖u0‖∞ is not everywhere positive in (0, T ). Then, there would exist
t0 ∈ (0, T ) such that U(t) > ‖u0‖∞ for any t ∈ (0, t0) and U(t0) = ‖u0‖∞. Since ‖u0‖∞ > 1,
by assumptions, Up(s)(1 − U1−p(s)) > 0 for any s ∈ (0, t0). Inequality (11) then would show
that U(t0) − ‖u0‖∞ > 0: a contradiction. In view of the claim and (10), we discover that

U
′

(t) ≥ (1 − ‖u0‖
1−p
∞ )Up(t) for a.e. t ∈ (0, T ), or equivalently dU

Up ≥ (1 − ‖u0‖
1−p
∞ )dt for a.e.

t ∈ (0, T ). Integrate the above estimate over (0, T ) to obtain

T ≤
‖u0‖

1−p
∞

(p− 1)(1− ‖u0‖
1−p
∞ )

. (11)

We infer that the solution u of (1)–(2) blows up in a finite time because the quantity on the
right hand side of the above inequality is finite. Now, let us show that the estimates in (7)
hold. Apply Taylor’s expansion to obtain

1

1− ‖u0‖
1−p
∞

= 1 + ‖u0‖
1−p
∞ + o(‖u0‖

1−p
∞ ) as ‖u0‖∞ → ∞.

Exploiting the above relation and (12), we find that

T − Tu0 ≤ Tu0‖u0‖
1−p
∞ + o(Tu0‖u0‖

1−p
∞ ) as ‖u0‖∞ → ∞,

and the second estimate of the theorem is demonstrated. In order to prove the first one, we
proceed in the following manner. Introduce the function z(x, t) defined as follows

z(x, t) = α(t)− u(x, t) in Ω× [0, T∗),

where T∗ = min{T, Tu0}. Invoking the mean value theorem, it is not hard to see that

zt(x, t) =

∫

Ω

J(x− y)(z(y, t)− z(x, t))dy + pξ(x, t)z(x, t) in Ω× (0, T∗),

z(x, 0) ≥ 0 in Ω,

where ξ(x, t) =
∫ 1

0
(σα(t) + (1− σ)u(x, t))p−1dσ. It follows from Lemma 1 that

z(x, t) = α(t)− u(x, t) ≥ 0 in Ω× (0, T∗). (12)

We claim that T ≥ Tu0 . To prove this assertion, we argue by contradiction. Assume that
T < Tu0 . In view of (13), we note that ‖u(·, T )‖∞ ≤ α(T ) < ∞, which contradicts the fact
that (0, T ) is the maximal time interval of existence of the solution u. Consequently, the claim
is demonstrated, and the proof is complete. QED
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Remark 1. Let us notice that the estimates in (7) can be rewritten as follows

0 ≤
T

Tu0

− 1 ≤ ‖u0‖
1−p
∞ + o(‖u0‖

1−p
∞ ) as ‖u0‖∞ → ∞.

We infer that lim‖u0‖∞→∞
T

Tu0
= 1.
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