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1 Introduction

In the last few decades, the theory of impulsive ordinary differential equa-
tions marked a rapid development. See, for example, [1–3, 11–13] and the refer-
ences cited therein. Now there also exists a well-developed qualitative theory of
functional differential equations [7–10, 12, 16]. Systems of impulsive functional
differential equations provide mathematical models of many natural processes
and phenomena in the field of natural sciences and technology. Their theory is
considerably richer than the theory of ordinary differential equations (without
delay) and of functional differential equations (without impulses). Recently sta-
bility problems on some linear and nonlinear impulsive functional differential
equations are investigated in several papers [1, 4–6, 15, 17, 18].

This paper studies the stability of the solutions of impulsive systems of
functional differential equations with fixed moments of impulse effect in terms of
two different piecewise continuous measures. The priorities of this approach are
useful and well known in the investigations on the stability and boundedness of
the solutions of differential equations, as well as in the generalizations obtained
by this method [7, 13, 14].

In order to study the stability of the solutions of impulsive systems un-
der considerations, we are concerned with the application of the concept of
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Lyapunov–Razumikhin functions and with differential inequalities on piece-
wise continuous functions. It is well known that Lyapunov-Razumikhin function
method have been widely used in the treatment of the stability of functional
differential equations without impulses [7, 8, 12, 16]. Such a method applied to
the investigation of various type of stability of impulsive functional differential
equations can be found in [1, 4–6, 15, 17, 18].

2 Preliminary notes and definitions

Let Rn be the n–dimensional Euclidean space with norm |.|; R+ = [0,∞).
Let r > 0 and E = {φ : [−r, 0] → Rn, φ(t) is continuous everywhere except

at finite number of points t = τk ∈ [−r, 0] at which φ(τk − 0) and φ(τk +0) exist
and φ(τk − 0) = φ(τk)}. If t > t0, t0 ∈ R+ we define xt ∈ E by xt = x(t+ s),
−r ≤ s ≤ 0.

Consider the system of impulsive functional differential equations
{
ẋ(t) = f(t, xt), t > t0, t 6= τk,

∆x(τk) = x(τk + 0) − x(τk − 0) = Ik(x(τk − 0)), τk > t0,
(1)

where f : (t0,∞) × E → Rn; Ik : Rn → Rn; τk < τk+1 with lim
k→∞

τk = ∞.

Let φ ∈ E. Denote by x(t) = x(t; t0, φ), x ∈ Rn the solution of system (1)
satisfying the initial conditions:

{
x(t; t0, φ) = φ(t− t0), t0 − r ≤ t ≤ t0,

x(t0 + 0; t0, φ) = φ(0)
(2)

The solution x(t) = x(t; t0, φ) of the initial value problem (1), (2) is charac-
terized by the following:

a. For t0 − r ≤ t ≤ t0 the solution x(t) satisfied the initial conditions (2).

b. In the interval [t0,∞) the solution x(t; t0, φ) of problem (1),(2) is a piecewise
continuous function with points of discontinuity of the first kind t = τk, τk ∈
[t0,∞) at which it is continuous from the left.

Let τ0 = t0 − r. Introduce the following notations:

I0 = [t0 − r,∞);

Gk = {(t, x) ∈ I0 ×Rn : τk−1 < t < τk} , k = 1, 2, . . . ;

G =
∞⋃

k=1

Gk.
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1 Definition. We shall say that the function V : I0 ×Rn → R+ belongs to
the class V0 if:

1. The function V is continuous in G and locally Lipschitz continuous with
respect to its second argument in each of the sets Gk, k = 1, 2, . . ..

2. For each k = 1, 2, . . . and x ∈ Rn there exist the finite limits

V (τk − 0, x) = lim
t→τk
t<τk

V (t, x), V (τk + 0, x) = lim
t→τk
t>τk

V (t, x).

3. The equality V (τk − 0, x) = V (τk, x) is valid.

In the sequel we will use the next classes of functions:

K = {a ∈ C[R+, R+] : a(r) is strictly increasing and a(0) = 0 } ;

CK = {a ∈ C[I0 ×R+, R+] : a(t, .) ∈ K for any fixed t ∈ I0 } ;

Γ = {h ∈ V0 : inf
x∈Rn

h(t, x) = 0 for each t ∈ I0 } .

2 Definition. Let h, h0 ∈ Γ and define for φ ∈ E





h0(t, φ) = sup
−r≤s≤0

h0(t+ s, φ(s)),

h̄(t, φ) = sup
−r≤s≤0

h(t+ s, φ(s)).
(3)

Then:

(a) h0 is finer than h̄ if there exist a number δ > 0 and a function ϕ ∈ K such
that h0(t, φ) < δ implies h̄(t, φ) ≤ ϕ(h0(t, φ)).

(b) h0 is weakly finer than h̄ if there exist a number δ > 0 and a function
ϕ ∈ CK such that h0(t, φ) < δ implies h̄(t, φ) ≤ ϕ(t, h0(t, φ)).

3 Definition. Let h, h0 ∈ Γ and V ∈ V0. The function V is said to be:

(a) h–positively definite if there exist a number δ > 0 and a function a ∈ K
such that h(t, x) < δ implies V (t, x) ≥ a(h(t, x)).

(b) h0–decrescent if there exist a number δ > 0 and a function b ∈ K such that
h0(t, φ) < δ implies V (t+ 0, x) ≤ b(h0(t, φ)).

(c) weakly h0–decrescent if there exist a number δ > 0 and a function b ∈ CK
such that h0(t, φ) < δ implies V (t+ 0, x) ≤ b(t, h0(t, φ)).
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We will use the following definitions of stability of the system (1) in terms
of two different measures, that generalize various classical notions of stability.

4 Definition. Let h, h0 ∈ Γ and h0 is defined by (3). The system (1) is
said to be:

(a) (h0, h)–stable if

(∀t0 ∈ R+)(∀ε > 0)(∃δ = δ(t0, ε) > 0)

(∀φ ∈ E : h0(t0, φ) < δ)(∀t > t0) : h(t, x(t; t0, φ)) < ε.

(b) (h0, h)–uniformly stable if the number δ from (a) does not depend on t0.

(c) (h0, h)–equiattractive if

(∀t0 ∈ R+)(∃δ = δ(t0) > 0)(∀ε > 0)(∃T = T (t0, ε) > 0)

(∀φ ∈ E : h0(t0, φ) < δ)(∀t > t0 + T ) : h(t, x(t; t0, φ)) < ε.

(d) (h0, h)–uniformly attractive if the numbers δ and T from (c) are independent
on t0.

(e) (h0, h)–equiasymptotically stable if it is (h0, h)–stable and (h0, h)–equi-
attractive.

(f) (h0, h)–uniformly asymptotically stable if it is (h0, h)–uniformly stable and
(h0, h)–uniformly attractive.

For a concrete choice of the measures h0 and h Definition 4 is reduces to the
following particular cases:

1) Lyapunov’s stability of the zero solution of (1) if

h0(t, φ) = ||φ|| = sup
s∈[−r,0]

|φ(s)| and h(t, x) = |x|.

2) stability by part of the variables of the zero solution of (1) if

h0(t, φ) = ||φ||, h(t, x) = |x|k =
√
x2

1 + · · · + x2
k, 1 ≤ k ≤ n,

x = (x1, . . . , xn), 1 ≤ k ≤ n.

3) Lyapunov’s stability of the non-null solution x0(t) = x0(t; t0, φ0) of (1) if
h0(t, φ) = ||φ− φ0||, h(t, x) = |x− x0(t)|.
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4) stability of conditionally invariant set B with respect to the set A, where
A ⊂ B ⊂ Rn if

h0(t, φ) = sup
s∈[−r,0]

d(φ(s), A), h(t, x) = d(x,B),

d being the distance function.

5) eventual stability of (1) if h(t, x) = |x| and h0(t, φ) = ||φ||+α(t), α ∈ K and
lim
t→∞

α(t) = 0.

We will use also the following classes of functions:

PC[I0, R
n] = {x : I0 → Rn : x is piecewise continuous with points of discon-

tinuity of the first kind τk, τk ∈ I0 at which it is continuous from the left };
PC1[[t0,∞), Rn] = {x ∈ PC[[t0,∞), Rn] : x is continuously differentiable every-
where except the points τk, τk ∈ [t0,∞) at which ẋ(τk − 0) and ẋ(τk + 0) exist
and ẋ(τk − 0) = ẋ(τk) };
Ω1 = {x ∈ PC[[t0,∞), Rn] : V (s, x(s)) ≤ V (t, x(t)), t − r < s ≤ t, t ≥ t0, V ∈
V0 }.

Let V ∈ V0, t > t0 − r, t 6= τk, k = 1, 2, . . . and x ∈ PC[I0, R
n]. Introduce

the function

D−V (t, x(t)) = lim
θ→0−

infσ−1[V (t+ θ, x(t) + θf(t, xt)) − V (t, x(t))].

Together with the system (1), we consider the scalar impulsive differential equa-
tion {

u̇(t) = g(t, u(t)), t 6= τk,

∆u(τk) = Bk(u(τk)),
(4)

where g : R+ ×R+ → R and Bk : R+ → R.
Assume ρ > 0, h, h0 ∈ Γ, h0 is defined by (3) and let

S(h, ρ) = {(t, x) ∈ I0 ×Rn : h(t, x) < ρ};
S(h0, ρ) = {(t, φ) ∈ [t0,∞) × E : h0(t, φ) < ρ}.

Introduce the following assumptions:

A1. The function f : (t0,∞) × E → Rn is continuous in (τk−1, τk] × E and
for every xt ∈ E, k = 1, 2, . . . f(τk − 0, xt) and f(τk + 0, xt) exist and
f(τk − 0, xt) = f(τk, xt).

A2. Ik ∈ C[Rn, Rn], k ∈ N.
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A3. t0 − r = τ0 < τ1 < τ2 < · · · and lim
k→∞

τk = ∞.

A4. g ∈ PC[R+ ×R+, R] and g(t, 0) = 0 for t ∈ R+.

A5. Bk ∈ C[R+, R], Bk(0) = 0 and ψk(u) = u+Bk(u) are nondecreasing with
respect to u, k ∈ N.

A6. There exists ρ0, 0 < ρ0 < ρ, such that h(τk, x) < ρ0 implies h(τk + 0, x+
Ik(x)) < ρ, k = 1, 2, . . .

In the proofs of the main theorems we will use the following comparison
results.

5 Lemma. [17] Assume the following conditions hold:

(1) Assumptions A1 −A5 are valid

(2) The function V ∈ V0, V : S(h, ρ) ∩ S(h0, ρ) → R+ is such that for t > t0
and x ∈ Ω1 we have

{
D−V (t, x(t)) ≤ g(t, V (t, x(t))), t 6= τk,

V (τk + 0, x(τk) + Ik(x(τk))) ≤ ψk(V (τk, x(τk))).

(3) For the solution x(t; t0, φ) ofthesystem (1) we have x ∈ PC[I0, R
n] ∩

PC1[[t0,∞), Rn] and (t, x(t+ 0; t0, φ)) ∈ S(h, ρ) as t ∈ I0.

(4) The maximal solution r(t; t0, u0), u0 ≥ V (t0 +0, φ(0)), of the equation (4)
is defined on the interval [t0,∞).

Then
V (t, x(t; t0, φ)) ≤ r(t; t0, u0) for t ∈ [t0,∞).

6 Corollary. Let the following conditions hold:

1. Assumptions A1 −A3 are met.

2. The function V ∈ V0, V : S(h, ρ) ∩ S(h0, ρ) → R+ is such that for t > t0
and x ∈ Ω1 we have

D−V (t, x(t)) ≤ 0, t 6= τk,

V (τk + 0, x(τk) + Ik(x(τk))) ≤ V (τk, x(τk)).

3. Condition 3 of Lemma 5 holds.

Then
V (t, x(t; t0, φ)) ≤ V (t0 + 0, φ(0)), t ∈ [t0,∞).
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3 Main results

7 Theorem. Assume the following conditions hold:

(1) Assumptions A1 −A6 are valid.

(2) h, h0 ∈ Γ and h0 is finer than h̄, where h0, h̄ are defined by (3).

(3) The function V ∈ V0, V : S(h, ρ) ∩ S(h0, ρ) → R+ is h-positively definite
and h0-decrescent.

(4) For t > t0 and x ∈ Ω1 we have

D−V (t, x(t)) ≤ g(t, V (t, x(t))), t 6= τk,

V (τk + 0, x(τk) + Ik(x(τk))) ≤ ψk(V (τk, x(τk))), k = 1, 2, . . .

Then the stability properties of the trivial solution of the equation (4) imply the
corresponding (h0, h)-stability properties of system (1).

Proof. Let us first prove (h0, h)–stability.
Since V is h- positively definite on S(h, ρ) ∩ S(h0, ρ) then there exists a

function b ∈ K such that:

V (t, x) ≥ b(h(t, x)), as h(t, x) < ρ. (5)

Let 0 < ε < ρ0, t0 ∈ R+ be given and suppose that the trivial solution of the
equation (4) is stable. Then for given b = b(ε) > 0 there exists δ0 = δ0(t0, ε) > 0
such that

r(t; t0, u0) < b(ε) as 0 ≤ u0 < δ0, t ≥ t0, (6)

where r(t; t0, u0) is the maximal solution of (4) satisfying r(t0 + 0; t0, u0) = u0.
We choose now u0 = V (t0 + 0, φ(0)). Since V is h0- decrescent there exist a

number δ1 > 0 and a function a ∈ K such that, for h0(t, φ) < δ1,

V (t+ 0, x) ≤ a(h0(t, φ)). (7)

On the other hand h0 is finer than h̄ and there exist a number δ2 > 0 and a
function ϕ ∈ K such that h0(t0, φ) < δ2 implies

h̄(t0, φ) ≤ ϕ(h0(t0, φ)), (8)

where δ2 > 0 is such that ϕ(δ2) < ρ. Hence by (3) we have

{
h(t0 + 0, φ(0)) ≤ h̄(t0, φ) ≤ ϕ(h0(t0, φ)) < ϕ(δ2) < ρ,

h0(t0 + 0, φ(0)) ≤ h0(t0, φ) < δ2.
(9)
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Setting δ3 = min(δ1, δ2). It follows from (5), (9) and (7) that h0(t0, φ) < δ3
implies

b(h(t0 + 0, φ(0))) ≤ V (t0 + 0, φ(0)) ≤ a(h0(t0, φ)). (10)

Choose δ = δ(t0, ε) > 0 such that 0 < δ < δ3, a(δ) < δ0 and let x(t) =
x(t; t0, φ) to be such solution of the system (1) that h0(t0, φ) < δ. Then (10)
shows that h(t0 + 0, φ(0)) < ε, since δ0 < b(ε).

We claim that

h(t, x(t)) < ε as t > t0.

If it is not true, then there would exists a t∗ > t0 such that τk < t∗ ≤ τk+1

for some fixed integer k and

h(t∗, x(t∗)) ≥ ε and h(t, x(t)) < ε, t0 < t ≤ τk.

Since 0 < ε < ρ0, condition A6 shows that

h(τk + 0, x(τk + 0)) = h(τk + 0, x(τk) + Ik(x(τk))) < ρ.

Therefore there exists t0, τk < t0 ≤ t∗, such that

ε ≤ h(t0, x(t0)) < ρ and h(t, x(t)) < ρ, t0 < t ≤ t0. (11)

Applying now Lemma 5 for the interval (t0, t
0] and u0 = V (t0 + 0, φ(0)) we

obtain

V (t, x(t; t0, φ)) ≤ r(t; t0, V (t0 + 0, φ(0))), t0 < t ≤ t0. (12)

So the implications (11), (5), (12) and (6) lead to

b(ε) ≤ b(h(t0, x(t0))) ≤ V (t0, x(t0))

≤ r(t0; t0, V (t0 + 0, φ(0))) < b(ε).

The contradiction we have already obtained shows that h(t, x(t)) < ε for each
t > t0. Therefore the system (1) is (h0, h)- stable.

If we suppose that the trivial solution of (4) is uniformly stable then it is
clear that the number δ can be chosen independently of t0 and thus we get the
(h0, h)- uniform stability of the system (1).

Let us suppose next that the trivial solution of (4) is equiasymptotically
stable, which implies that the system (1) is (h0, h)- stable. So, for each t0 ∈ R+

there exists a number δ01 = δ01(t0, ρ) > 0 such that if h0(t0, φ) < δ01 then
h(t, x(t; t0, φ)) < ρ as t > t0.

Let 0 < ε < ρ0 and t0 ∈ R+. The equiasymptotical stability of the null
solution of the equation (4) implies that there exist δ02 = δ02(t0) > 0 and



Razumikhin–type theorems in terms of two measures 77

T = T (t0, ε) > 0 such that for 0 < u0 < δ02 and t > t0 + T the next inequality
holds:

r(t; t0, u0) < b(ε). (13)

Choosing u0 = V (t0 +0, φ(0)) as before, we find δ03 = δ03(t0), 0 < δ03 ≤ δ02
such that

a(δ03) < δ02. (14)

It follows from (7) and (14) that if h0(t0, φ) < δ03 then

V (t0 + 0, φ(0)) < a(h0(t0, φ)) ≤ a(δ03) < δ02.

In the case, by means of (13) we would have

r(t; t0, V (t0 + 0, φ(0))) < b(ε), t > t0 + T. (15)

Assume δ0 = min(δ01, δ02, δ03) and let h0(t0, φ) < δ0. Lemma 5 shows that
if x(t) = x(t; t0, φ) is an arbitrary solution of the system (1) then the estimate
(12) holds for all t > t0 + T . Therefore we obtain from (5), (12) and (15) that
the inequalities

b(h(t, x(t))) ≤ V (t, x(t)) ≤ r(t; t0, V (t0 + 0, φ(0))) < b(ε)

hold for each t > t0 + T. Hence h(t, x(t)) < ε as t > t0 + T which shows that
the system (1) is (h0, h)- equiattractive.

In case we suppose that the trivial solution of (4) is uniformly asymptotically
stable we get that (1) is also (h0, h)-uniformly asymptotically stable, since δ0
and T will be independent of t0.

Hence the proof of Theorem 7 is complete. QED

We have assumed in Theorem 7 stronger requirements on V , h, h0 only to
unify all the stability criteria in one theorem. This obviously puts burden on the
comparison equation (4). However, to obtain only non-uniform stability criteria,
we could weaken certain assumption of Theorem 7 as in the next result.

8 Theorem. Assume the following conditions hold:

(1) Assumptions A1 −A6 are valid.

(2) h, h0 ∈ Γ and h0 is weakly finer than h̄, where h0, h̄ are defined by (3).

(3) The function V ∈ V0, V : S(h, ρ) ∩ S(h0, ρ) → R+ is h-positively definite
and weakly h0-decrescent.

(4) Condition 4 of Theorem 7 is valid.
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Then the uniform and non-uniform stability properties of the trivial solution of
the equation (4) imply the corresponding non-uniform (h0, h)- stability properties
of system (1).

The proof of Theorem 8 is analogous to the proof of Theorem 7; however
Definition 2 (b) is used instead of Definition 2 (a), and Definition 3 (c) is used
instead of Definition 3 (b).

9 Corollary. Assume the following conditions hold:

(1) Assumptions A1 −A3 and A6 are met.

(2) Conditions 2 and 3 of Theorem 7 are valid.

(3) For each t > 0 and x ∈ Ω1 we have

D−V (t, x(t)) ≤ 0, t 6= τk,

V (τk + 0, x(τk) + Ik(x(τk))) ≤ V (τk, x(τk)).

Then the system (1) is (h0, h)-uniformly stable.

The proof of Corollary 9 could be done in the same way as in Theorem 7,
using Corollary 6 now.

4 Examples

10 Example. Consider the impulsive functional differential equation





ẋ(t) = a(t)x3(t) + b(t)x(t)x2(t− r), t 6= τk,

x(t) = φ1(t), t ∈ [−r, 0],
∆x(τk) = Ik(x(τk)),

(16)

where x ∈ PC[R+, R]; a(t) and b(t) are continuous in R+, b(t) ≥ 0, a(t)+b(t) ≤
−a < 0; r > 0; Ik(x), k = 1, 2, . . . are continuous in R and such that x+Ik(x) > 0
and |x+ Ik(x)| ≤ |x| for x > 0; 0 < τ1 < τ2 < · · · and lim

k→∞
τk = ∞.

Let h0(t, φ1) = ||φ1|| and h(t, x) = |x|. We consider the function

V (t, x) =

{
αe−

1
x2 , for x > 0,

0, for x = 0.

The set Ω1 is defined by

Ω1 =
{
x ∈ PC[R+, R] : x2(s) ≤ x2(t), t− r < s ≤ t

}
.
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If t > 0 and x ∈ Ω1 we have

D−V (t, x(t)) = αe
− 1

x2(t) .
2

x3(t)
[a(t)x3(t) + b(t)x(t)x2(t− r)]

≤ −2aV (t, x(t)), t 6= τk, k = 1, 2, . . .

Moreover

V (τk + 0, x(τk) + Ik(x(τk))) = αe
− 1

(x(τk)+Ik(x(τk)))2

≤ V (τk, x(τk)), k = 1, 2, . . . , x ∈ Ω1.

Since the trivial solution of the equation
{
u̇(t) = −2au(t), t 6= τk,

∆u(τk) = 0,

is asymptotically stable [2], then Theorem 8 with g(t, u) = −2au and Bk(u) =
0, k = 1, 2, . . ., shows that the equation (16) is (h0, h)−asymptotically stable.

11 Example. Consider the impulsive functional differential equation




ẋ(t) = −ax(t) + bx(t− r) − e(t)g(x(t)), t 6= τk,

x(t) = φ2(t), t ∈ [−r, 0],
∆x(τk) = −αkx(τk), k = 1, 2, . . . ,

(17)

where a, b, r > 0; e(t) ≥ 0 is a continuous function; g(0) = 0 and xg(x) > 0 if
x > 0; 0 ≤ αk ≤ 2, k = 1, 2, . . .; 0 < τ1 < τ2 < · · · and lim

k→∞
τk = ∞.

Let h0(t, φ2) = ||φ2|| and h(t, x) = |x|. We consider the function V (t, x) =
x2. The set Ω1 is defined by

Ω1 =
{
x ∈ PC[R+, R] : x2(s) ≤ x2(t), t− r < s ≤ t

}
.

If t > 0 and x ∈ Ω1 we have

D−V (t, x(t)) = −2ax2(t) + 2bx(t)x(t − r) − 2e(t)x(t)g(x(t))

≤ 2V (t, x(t))[−a+ b], t 6= τk, k = 1, 2, . . .

Moreover

V (τk + 0, x(τk) − αkx(τk)) = (1 − αk)
2V (τk, x(τk))

≤ V (τk, x(τk)), k = 1, 2, . . . , x ∈ Ω1.

Assume the inequality a ≥ b holds. Then Corollary 9, shows that the equation
(17) is (h0, h)−uniformly stable.

Let the inequality b ≤ a− ε hold for some positive ε. Applying Theorem 7,
we obtain that (17) is (h0, h)−uniformly asymptotically stable.
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