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Abstract. The study of almost sure convergence of Riemann sums is a fascinating question
which has connections with various problems from Number Theory, among them the Riemann
hypothesis through its link with Farey sequences. Moreover, it has been known since the
fundamental paper of Rudin, that the convergence almost everywhere of Riemann sums, along
a given subsequence of positive integers, definitively relies on the arithmetical properties of
the subsequence. The arithmetical characterization of that property is an open and certainly
hard question. The study of Riemann sums has for years been an object of constant interest
from analysts, ergodicians, and number theorists. It even seems, that its power of attraction
has grown even more during this last decade. This is the reason of the present survey. Our
motivation in writing it, was to propose a text to the interested reader, giving a direct access
to the main results of that theory, as well as an easy understanding, as far as possible each
time in each case, of the various methods elaborated by the authors of these results.
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1 Introduction

The study of the almost everywhere convergence of the Riemann sums of
a measurable function f is a famous and still unsolved problem having deep
arithmetical aspects. In the present paper, we will mainly be interested in the
study of the almost sure convergence of these sums for Lesbegue integrable
functions.

We will state and comment the essential results, discuss their links when
necessary and also give indications of proofs. The paper is organized as follows:
in Section 2 we introduce Jessen’s Theorem on convergence almost everywhere
of Riemann sums along chains of integers. A typical example of a chain is the
sequence of the powers of two. This is likely to be the first result of the theory.
A brief sketch of the proof is indicated, and comments by Marcinkiewicz-Salem
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about its optimality are also included. We continue with Rudin’s Theorem,
which is the second fundamental result in the Theory of Riemann sums. This
Theorem shows for instance the irregularity of Riemann sums along the se-
quence of primes. We conclude that section by presenting a striking example
obtained by Rudin as a by-product of Jessen’s and Rudin’s Theorems as well
as Dirichlet’s Theorem on the distribution of primes in arithmetic progressions,
which motivated the study of Riemann sums. This example indeed shows that
the study of the convergence almost everywhere of Riemann sums along a given
sequence, definitively relies on the arithmetical properties of the sequence. Some
extensions of Jessen’s Theorem are also included at the end of this Section.

Section 3 is devoted to results of a different nature. They are individual
type Theorems. A different approach is considered here. It is indeed possible to
obtain sufficient conditions on the function f , sometimes quite sharp, ensuring
the convergence almost everywhere of the Riemann sums of f . These conditions
are often expressed in terms of the integral modulus of continuity of f , and have
a direct translation to properties of the Fourier coefficients of f . The results are
mainly due to Marcinkiewicz and Salem.

The next section in some sense combines these points of view by giving new
arithmetical characterizations for the convergence of Riemann sums of specific
classes of functions.

In Section 5, we discuss a new method introduced and developed by Bour-
gain in the study of the convergence almost everywhere of sequences of operators
like for instance Riemann sums. The method relies on an important tool: the
Bourgain’s Entropy Criterion. We will see how it allows to prove Rudin’s Theo-
rem by different techniques, as well as other new results. Special attention will
be given to the study of the convergence of Riemann sums along the sequence
of primes.

In Section 6, we are concerned with deep connections between Riemann sums
and Number Theory, in particular their link with Riemann Hypothesis through
the study of Farey sequences and with the Prime Number Theorem, based on
the thorough work of Wintner.

Finally Section 7 is devoted to some parallel results which seemed important
to us. They mostly concern operators defined in a slightly different way than
the usual Riemann sums.

Throughout the paper we denote the torus by T = [0, 1[= R/Z and let m
the normalized Lebesgue measure on it. Let f be any measurable function on
T. For n = 1, 2, . . . , define the Riemann sums of f as follows: for all n > 1

Rn(f)(x) =
1

n

n−1∑

j=0

f

(
x+

j

n

)
(∀x ∈ T) (1)
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When x = 0, we simply write

Rn(f) =
1

n

n−1∑

j=0

f

(
j

n

)
, (2)

for the usual Riemann sums. Their role in Number Theory is deep (see Section
6). The results we shall discuss here mostly concern these operators. Before
ending this introduction, let us indicate and comment on a fundamental property
of Riemann sums. Consider the characters of T: ek(x) = exp (2πik), k ∈ Z. Then,
for all n > 1,

Rn(ek(x)) = ek(x)
1

n

n−1∑

j=0

exp

(
2iπkj

n

)
= ek(x)δn|l. (3)

Hence, for f ∈ L2(m) with Fourier expansion f ∼ ∑
l alel, the Riemann sums

of f can be expressed as

Rn(f) =
∑

n|l
alel. (4)

We shall comment this property by means of the infinite Möbius inversion due
to Hartman and Wintner [17, page 853]. Consider the following two infinite
systems of linear equations (where in (6), µ(.) denotes the Möbius function, see
Section 6)

∞∑

m=1

xnm = yn, (n = 1, 2, . . .) (5)

∞∑

m=1

µ(m)ynm = xn, (n = 1, 2, . . .) (6)

If xn = O(n−1−η) for some η > 0, then (5) has unique solution which is given by
(6), namely xn =

∑∞
m=1 µ(m)ynm, n = 1, 2, . . .. Conversely, if yn = O(n−1−η)

for some η > 0, then (6) has unique solution which is given by (5).

In our case, this shows that if the Fourier coefficients of f satisfy the condition

an = O(|n|−1−η) for some η > 0, (7)

then, it is possible to obtain f from its Riemann sums. More precisely

anen(x) =
∑

m

µ(m)Rnm(f(x)). (8)
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2 Fundamental results of Jessen and Rudin

We may introduce the problem as follows. When f is Riemann integrable
on T, for any real x we have:

lim
n→+∞

Rn(f)(x) =

∫ 1

0
f(t)dm(t). (9)

When f is only Lebesgue integrable (f ∈ L1(T)), it is a well-known fact that
{Rn(f), n > 1} converges to

∫
T
f dm in mean. This is easy to check.

Let us indeed first consider f ∈ L2(T) with Fourier expansion f(x) ∼∑
l alel(x), where el(x) = exp(2iπlx), l ∈ Z, and a0 =

∫
fdm = 0. From (3) we

deduce

Rnf =
∑

n|l
alel, (10)

so that ||Rn(f)||22 6
∑

|l|>n a
2
l → 0 as n tends to infinity. This proves, that for

f ∈ L2(T) we have limn→+∞
∥∥Rn(f) −

∫
fdm

∥∥
2

= 0.

When f ∈ L1(T), let (fk)k>1 ⊂ L2(T) approximating f in L1(T) so that :

lim
k→+∞

‖f − fk‖1 = 0.

Let ǫ > 0 be fixed, and choose k large enough such that
∥∥fk − f

∥∥
1

6 ǫ. Observe
that

∥∥Rn(f) −
∫
fdm

∥∥
1

6
∥∥Rn(f) − Rn(fk)

∥∥
1
+
∥∥Rn(fk) −

∫
fkdm

∥∥
1
+
∣∣
∫
fkdm−

∫
fdm

∣∣.

Since Rn is an L1(T) contraction, we may write

∥∥Rn(f) −
∫
fdm

∥∥
1

6
∥∥f − fk

∥∥
1
+
∥∥Rn(fk) −

∫
fkdm

∥∥
1
+
∣∣
∫
fkdm−

∫
fdm

∣∣

6 2ǫ+
∥∥Rn(fk) −

∫
fkdm

∥∥
2
.

Letting k tend to infinity, we obtain

lim
k→+∞

∥∥Rn(f) −
∫
fdm

∥∥
1

6 2ǫ.
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But ǫ is arbitrary, and so we have that

lim
n→+∞

∥∥Rn(f) −
∫
fdm

∥∥
1

= 0.

It is natural to inquire about the almost everywhere convergence of these sums.
A first study was made in 1914 by Hahn [16] in a paper describing the approx-
imation of Lebesgue integral by Riemann sums. But to our knowledge, it is in
an article published by Jessen [19, Theorem A, page 60] in 1934, that one can
find the first real result about the almost sure convergence of Riemann sums.
Introduce the following definition:

1 Definition. A sequence of positive integers is a chain S = (nk)k>1, if :

nk|nk+1 (for all k > 1) (11)

By considering such sequences, Jessen was able to prove the following result:

2 Theorem. Assume that f ∈ L1(T). Then

lim
k→+∞

Rnk
f(x) =

∫

T

f(t)dm(t) a.e.

Proof. As noted by Marcinkiewicz and Salem [31], this result is in a certain
sense best possible. Indeed, in the particular case when S =

{
2n | n > 1

}
, they

proved (Theorem 1, page 377) that for every positive and increasing function ω

satisfying limx→+∞
ω(x)
log x = 0, it is possible to associate a function f satisfying:

∫

T

|f |ω(|f |)dm < +∞ and

∫

T

sup
s>0

|R2s(f)| dm = +∞.

Jessen’s result is based on the following observation: Since f is 1-periodic, Rn(f)
is 1

n -periodic for any n > 1, and thus 1
m -periodic if m divides n.

Consequently, since Rnk
f(x) is 1

nk
-periodic for any k, it follows that

Φ(x) = lim
nk→+∞

Rnk
f(x) = C,

for almost every x, where C denotes some constant. It suffices here in fact that:
For infinitely many p, np divides nm as soon as m is large enough. Let B be
some fixed real and put

Ek = {x | Rnk
(f)(x) > B}.

Then Ek as well as Ec
k are 1

nk
-periodic. Put

E = {x | sup
16k6N

Rnk
(f)(x) > B}.
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We have, E = EN +Ec
N ∩EN−1 +Ec

N ∩Ec
N−1∩EN−2 + · · ·+Ec

N ∩ . . .∩Ec
2∩E1 .

Set
Ak = Ec

N ∩ . . . ∩ Ec
k+1 ∩ Ek.

Then Ak is 1
nk

-periodic. Thus,

∫

Ak

f(x) dx =

∫

Ak

f(x+
j

nk
) dx =

∫

Ak

Rnk
(f)(x) dx > Bm(Ak).

Consequently, by summing over k
∫

E
f(x)dx > Bm(E).

Letting then N tend to infinity, this leads to
∫

{x | supk>1 Rnk
(f)(x)>B}

f(x)dx > Bm(x | sup
k>1

Rnk
(f)(x) > B).

If B < C , m(x | supk>1Rnk
(f)(x) > B) = 1. The above relation thus shows

∫ 1

0
f(y)dy > B · 1 = B.

Hence C 6
∫ 1
0 f(y)dy. By replacing f by −f , we deduce

∫ 1

0
f(y)dy 6 lim inf

nk→∞
Rnk

(f)(x).

Hence the result. QED

Later Ursell [60] showed (page 231) that Riemann sums converge almost
everywhere along the whole sequence of integers for a special class of square
summable functions — namely those, that are monotonic in the periodic interval
[0, 1]. On the other hand he gave (page 230) the following simple example, which
shows that almost everywhere convergence does not take place for Lebesgue
integrable functions in general: let 1

2 < δ < 1 be fixed and take for all 0 < x 6 1

f(x) = |x|−δ .

This result as well as the next one, obtained by Marcinkiewicz and Zygmund [32,
Theorem 3 page 157 and Theorem 3’ page 158] announce in some sense the much
more general result of Rudin [47].

3 Theorem. There exists an f ∈ L1(T) such that

lim
n→+∞

R2n+1(f)(x) = +∞ a.e.
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The proof of this Theorem relies upon the fact that it is possible to exhibit a
subset H of [0, 1[ with positive measure, and possessing the following property:
For any x ∈ H, there exists a sequence of fractions, {pi/qi}i=1,2,..., with qi even,
such that: ∣∣∣∣x− pi

qi

∣∣∣∣ <
4

q2i
, for all i > 1.

Let H∗ be the set of points x+ α
β , where x ∈ H and α

β are fractions with even
denominators. Since m(H) > 0, H∗ contain almost all reals in [0, 1[. Moreover,
to each x ∈ H∗ we can associate a sequence of fractions {pi/qi}i=1,2,... satisfying:

∣∣∣∣x− pi

qi

∣∣∣∣ <
4β2

q2i
, for all i > 1,

where β depends on x only. Now, it is easy to check that if

f(x) = |x|− 1
2 log

1

|x|
,

for all |x| 6 1
2 , the requested property is satisfies.

In a well-known paper written by Rudin [47], it was shown that there is
not necessarily almost sure convergence, even for bounded functions. According
to [47, page 322] we have:

4 Theorem. If S is an increasing sequence of positive integers satisfying:
- for any N > 1, there is a set SN of N elements of S, none of which divides

the least common multiple (l.c.m.) of the others,
then there is a measurable set A of T, such that for f = 1A, {Rn(f), n > 1}

does not converge almost everywhere.

For example, one can takes for S the sequence of primes. We will see in
Section 4, that this result can be entirely proved by means of Bourgain’s en-
tropy criterion. This Theorem immediately implies, that there is no maxi-
mal inequality for the Riemann sums. Indeed, otherwise this would imply, by
means of the Banach Principle, that the set of elements of L2(m) for which
{Rn(f), n > 1} converges almost everywhere is closed. Since {Rn(f), n > 1}
does converge almost everywhere when f is a finite linear combination of the
characters en(x) = exp(2iπnx), n ∈ Z, this set is also everywhere dense in
L2(m) providing a contradiction.

By combining this Theorem with Jessen’s result, and using Dirichlet’s The-
orem on primes in arithmetic progressions, Rudin has built a sequence S =
{nk, k > 1} possessing some dramatic properties. The construction goes as fol-
lows. Let n1 = 1 and assume nk is defined; there exists an integer r > 1 such
that q = 1 + rnk is a prime. Then we set nk+1 = rnk. One the one hand, by
means of Jessen’s Theorem, we know that
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a) for any f ∈ L1(m),

m{x | lim
S∋n→+∞

Rn(f)(x) =

∫

T

f dm} = 1.

And on the other hand, this time by invoking Rudin’s Theorem,

b) there exists a bounded Lebesgue measurable f such that

m{x | lim
S∋n→+∞

Rn+1(f)(x) =

∫

T

f dm} = 0.

This clearly shows that the problem relies on the arithmetical properties of S.

Before ending this section, we give a generalization of Jessen’s result. The
fact that for f ∼∑l alel, the Riemann sums of f can be expressed by Rn(f) =∑

n|l alel leads to a natural generalization of the problem in L2-spaces. Assume,
that we are given a fixed set of indices N together with some fixed element (al)
of ℓ2. Let µ be a Borel probability measure on [0, 1]. Let (ψn) be an orthonormal
sequence of L2 = L2(µ) and define the generalized Riemann sums as follows

Rn = R(a)
n =

∑

n|l
alψl.

The investigation of the problem of knowing whether the convergence almost
everywhere of the sums Rn when n runs along the index N takes place for all
orthonormal systems simultaneously generalizes the study of the convergence
almost everywhere of Riemann sums as well as the one of orthogonal series. This
is quite a fundamental problem in Analysis. It is also quite a hard task, since
for instance the periodicity argument used repeatedly by Jessen for proving
the convergence of Riemann sums along chains no longer works for arbitrary
orthogonal systems. However, in [61, Theorem 11] the following extension of
Jessen’s Theorem is obtained by means of the theory of stochastic processes.

5 Theorem. Let N = {nk, k > 1} be a chain and put

Ek = {n : nk|n}, Fk = Ek\Ek+1 and δ2k =
∑

n∈Fk

a2
n.

Assume, that

(a)
∑

n>1 δ
2
n(log 1

δn
)2(log log 1

δn
)2(log log log 1

δn
)2+ε < +∞, (ε > 0)

or,

(b)
∑

n>1 δ
2
n(log 2

δn
)1+h(log n)1−h < +∞, (0 6 h < 1).
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Then, the sequence (Rn, n ∈ N ) converges almost surely. In particular, if

(a’)
∑

n>1 a
2
n(log 1

an
)2(log log 1

an
)2(log log log 1

an
)2+ε < +∞, (ε > 0)

or,

(b’)
∑

n>1 a
2
n(log 2

an
)1+h(log n)1−h < +∞, (0 6 h < 1),

then the sequence (Rn, n ∈ N ) converges almost surely.

Notice that the latter conditions are of the same type as those in the paper
by [31] (see e.g. condition (3.10)).

Extensions of Jessen’s Theorem for locally compact groups were also ob-
tained by Ross-Stromberg in 1967 and more recently by Ross-Willis in 1997
(see [49], [50]). A generalization of Jessen’s Theorem to one-parameter groups
of measure preserving transformations was given by Civin [8] in 1955. Let T (ǫ)
be such a group. If f is an integrable function satisfying f(s) = f(T (1)s), then
the result asserts that the sequence of sums fn(s) = 2−n

∑2n

i=1 f(T (i2−ns)) con-
verge almost everywhere as n→ ∞.

3 Individual Theorems of spectral type

The main contributions are due to Marcinkiewicz and Salem. In [31], various
type of results are presented with deep insight. Compared with the preceding
section, the approach developed is different. Both authors have examined under
which kind of regularity assumptions on f , the associated sequence of Riemann
sums converges a.e. These conditions are often expressed in terms of the inte-
gral modulus of continuity of f , and have a direct translation on the Fourier
coefficients of f . For instance (see [31, Theorem 2, page 377])

6 Theorem. Under the condition

∫

T

[f(x+ t) − f(x)]2 dx = O(tε) (ε > 0), (12)

the sequence {Rn(f), n > 1} converges a.e. to
∫

T
f dm.

Let us give a sketch of the proof.

Let
∑+∞

ν=−∞ aνe
2πiνx be the Fourier series of f . By replacing f by f − a0, if

necessary, we may suppose that a0 =
∫ 1
0 f(x)dx = 0. We have

Rnf(x) =
+∞∑

ν=−∞
anνe

2πiνnx,
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and thus:

∑

n>1

∫ 1

0
R2

nf(x)dx =
∑

n>1

+∞∑

ν=−∞
a2

nν =
∑

n>1

∑

ν>1

a2
nν

=
∑

k>1

a2
kd(k),

where d(k) is the number of divisors of k. But it is well known (see for example
[18, Theorem 315 page 260]) that:

d(k) = kδ, for all positive δ.

Therefore
∑

n>1

∫ 1
0 R

2
nf(x)dx < +∞, if

∑

k>1

a2
kk

δ < +∞, for some δ > 0.

Consider now the integral

∫ 1

0

∫ 1

0

[f(x+ t) − f(x− t)]2

tr
dtdx.

This integral is obviously finite, by condition (12), if we suppose r < 1 + ε.
Further by Parseval relation we have

∫ 1

0

[
f(x+ t) − f(x− t)

]2
dx = 4

+∞∑

ν=−∞
a2

ν sin2 (2πνt).

Therefore

∫ 1

0

∫ 1

0

[
f(x+ t) − f(x− t)

]2

tr
dtdx = 4

πf∑

ν=−∞
a2

ν

∫ 1

0

sin2 (2πνt)

tr

> C
+∞∑

ν=−∞
a2

νν
r−1.

Thus we get
∑

n>1

∫ 1

0
R2

nf(x)dx < +∞,

which easily leads to Rnf(x) → 0 for almost all x, and this is exactly the
assertion of Theorem 6.
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The authors made two interesting comments. First, it is not possible to
replace in the integral appearing in (12),

[
f(x+ t)−f(x)

]2
by
[
f(x+ t)−f(x)

]p
with p < 2. The second comment concerns the following averages:

∀n > 1, An(f) =
1

n

n∑

k=1

Rk(f). (13)

When replacing Riemann sums by their averages An(f), assumption (12) can
be essentially weakened. Indeed [31, Theorem 3, page 378],

7 Theorem. Under the condition

∫

T

∫

T

[
f(x+ t) − f(x)

]2

t| log t
2 |

dtdx <∞ (14)

the sequence {An(f), n > 1} converges a.e. to
∫

T
f dm.

Note, that condition (14) is satisfied if, for instance

∫

T

[
f(x+ t) − f(x)

]2
dx = O

(
1

log2 | log t|

)
, (15)

which is essentially less restrictive than (12). This result is generalized for p < 2.
One can find in [31, Theorem 4, page 387]

8 Theorem. Under the condition

∫

T

|f(x+ t) − f(x)| dx = O

(
1

| log t|s
)

(s > 1) (16)

the sequence {An(f), n > 1} converges a.e. to
∫

T
f dm. This is true in particular

if f is nondecreasing and ∫

T

|f(x)|p dx <∞, (17)

for some p > 1 .

Finally, the authors conjecture that the expressions An(f) converge a.e. for
every f ∈ L2(T). This is a famous open conjecture. Related to that conjecture
a difficult Theorem of Bourgain [5, Theorem 1.10, page 100] asserts

9 Theorem. Let f ∈ L2(T). Then Rn(f) has logarithmic density :

1

logN

N∑

n=1

1

n
Rn(f) →

∫

T

f dm a.e. (18)
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Marcinkiewicz and Salem have also observed that some arithmetical proper-

ties necessarily intervene in the study of the problem. Let f =
∑

p prime

cpep with

cp → 0 as p tends to infinity. Then, Rn(f)(x) = 0 a.e. if n is not a prime num-
ber, and Rn(f)(x) = cnen + c−ne−n otherwise. Consequently, Rn(f)(x) → 0
uniformly, outside a measurable set of x’s of zero measure. But, we may have f
essentially bounded in no interval, which is rather surprising. Next, considering
the expressions Rp(f) for p prime only, they proved that (page 384),

∑

p

∫

T

|Rpf(x)|2 dx 6 2

∞∑

ν=1

|cν |2p(ν) (19)

where
f ∼

∑

ν∈Z

cνeν , co = 0, (20)

and p(ν) indicates the number of primes dividing ν. Since p(ν) = O
(

log ν
log log ν

)
,

it follows that Rp(f)(x) → 0 a.e. whenever

∞∑

ν=3

|cν |2
log ν

log log ν
<∞, (21)

The latter condition is satisfied in particular if

∫

T

[f(x+ t) − f(x)]2 dt = O

(
1

log2 1
t

)
, (22)

which is a much weaker condition than (12), as we can easily see. We also men-
tion the following criterion due to Salem [52, page 60] providing a sufficient
condition for the convergence a.e. of the Riemann sums Rni(f) along a given se-
quence of integers (ni)i>1 if the integral modulus of continuity of f is sufficiently
smooth.

10 Theorem. Assume that
∫

T

|f(x+ t) − f(x)| dx = O

(
1

| log t|1+ε

)
(ε > 0), (23)

and let (ni)i>1 be an increasing sequence of positive integers.
Then limk→∞Rnk

(f) =
∫

T
f dm a.e. whenever

∑

k>1

(
1

log nk

)1+δ

<∞, (24)

for some δ < ε.
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In [66] Yano has established a similar result.

11 Theorem. Let f ∈ L1(T).

1) Assume that f ∈ Lip(α, p), 0 < α 6 1, p > 1, and
∑

k n
−α
k < +∞. Then,

Rnk
(f) →

∫

T

fdm a.e.

2) If
∫

T
|f(x+t)−f(x)|dx = O

(
log−s (t−1)

)
and

∑
k log−s(nk) < +∞ for some

s > 1. Then,

Rnk
(f) →

∫

T

fdm a.e.

Related to this result, Takahashi [55] proved in the opposite direction, that
if (nk)k>1 is a sequence of primes, then there exists a function f and a real
sequence (hk)k>1 such that limk→+∞Rnk

f(x+ hk) fails to exist for almost all
x.

Some other authors were more interested in trying to find conditions on
the Fourier coefficients. For instance in [54], the author solved the problem of
restoration of the harmonics Cn(f) = an(f) cos (2πnx) + bn(f) sin (2πnx) from
Rn(f), where an(f), bn(f) are the Fourier coefficients of a continuous function
f . Further, in [58, page 230] the following result has been proved :

12 Theorem. Let f be a function which is integrable in (0, 2π), with period
2π and with Fourier series f ∼ a0

2 +
∑

n>1(an cosnx+ bn sinnx). Assume that

lim
n→+∞

∑

ν>1

(
|anν − an(ν+1)| + |bnν − bn(ν+1)|

)
= 0.

Then for almost all x, there exists a sequence of positive integers (mk)k>1 (de-
pending on x) such that

lim
k→+∞

Rmk
(f)(x) =

∫ 2π

0
f(t)dt and lim

k→+∞
k

mk
= 1.

The condition on the Fourier coefficients is satisfied in particular if, for
example,

∑
ν>1(|an − an+1| + |bn − bn+1|) < +∞, or if the sequences (an) and

(bn) are nonincreasing. This result forms a complement to the Theorems of
Marcinkiewicz and Zygmund and Ursell.

In a second paper [59], Tsuchikara has considered functions of the following
type:

ft(x) =
∑

ϕn(t)cnen(x),
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where (ϕn(t)) is a sequence of independent Rademacher functions. Assume that
the following condition is satisfied:

∑

n>0

|cn|2 log |n| < +∞.

Then for almost all t, the sequence of Riemann sums associated to ft converge
almost everywhere. Further, if the Fourier coefficients of f are monotonic, the
previous condition is enough to ensure the convergence almost everywhere of
the Riemann sums associated to ft.

Also, by considering functions with monotonic Fourier coefficients, Pannikov
[35] and [36] has given the following generalization of Theorem 12.

13 Theorem. Let f be a real-valued, 1-periodic function on R, such that

f(x) =
a0

2
+
∑

n>1

(an cos (2πnx) + bn sin (2πnx)).

1) If ak ↓ 0 and bk ↓ 0 then limn→+∞Rn(f) = C in measure for some constant
C.

2) Moreover if f ∈ L2(0, 1) then (1) holds almost everywhere and C =
∫ 1
0 fdm.

By using lacunary sequences, the author gives some generalizations of the
above fact.

Another important result concerning Fourier series and Riemann sums is
given in [34, page 546]. Let f ∈ L(0, 2π) be 2π-periodic and everywhere equal
to the sum of its Fourier series, i.e.

f(x) = lim
N→+∞

N∑

n=−N

cne
inx.

Define for all n > 1,

rn =
2π

n

n∑

k=1

f

(
2πk

n

)
−
∫ 2π

0
f(x)dx.

Then the following Theorem is established.

14 Theorem.

1) If q > 1 and cn + c−n = O(n−q), then rn = O(n−q).
2) cn + c−n may be O(n−1) without rn being O(n−1).
3) If q > 1, rn = O(n−q) and cn + c−n = O(n−s) for some s > 1, then

cn + c−n = O(n−q).
4) If r1 = r2 = · · · = 0 then cn + c−n = O(n−q) may be false for every q > 1.

The proofs of 1) and 2) are easy and self-contained. For 3) and 4) they use
properties of some arithmetical functions, like the Möbius function.
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4 Breadth and dimension

These results are essentially due to Baker [2], Dubins-Pitman [11], Révesz-
Ruszla [48] and Bugeaud-Weber [6]. Introduce prealably the following definition

15 Definition. Let A ⊂ L1(T). A sequence S = {nk, k > 1} of positive
integers is called a Â-sequence if for every f ∈ A

lim
k→+∞

Rnk
(f) =

∫

T

fdm a.e.

Introduce the following notation due to Baker [2]: L is the class of Lebesgue
integrable functions, and M is the class of bounded measurable functions. Given
two arbitrary sequences of positive integers, S1 and S2, we denote by S1 ∨ S2

the new sequence obtained by ordering the set of positive integers {[s1, s2], s1 ∈
S1, s2 ∈ S2}, where [s1, s2] denotes the least common multiple of s1 and s2
according to the natural order.

16 Theorem. (Theorem 2.1, page 192).

If S1 = (mk) and S2 = (nk) are two M̂-sequences, then the sequence S1∨S2

is again an M̂-sequence.

The proof of this result relies upon the following important property for
Riemann sums:

Rm(Rn(f)) = R[m,n](f). (25)

Recall the notion of Σ-sequences introduced by Cassels [7] in 1950.

17 Definition. Let µk be the number of fractions j
mk

(0 < j < mk) which

are not equal to l
mq

(l integer, q < k). We say, that (mk) is a Σ-sequence, if the
following condition is satisfied:

lim inf
n→+∞

1

n

n∑

k=1

µk

mk
> 0.

The interest of this notion lies in the fact that if (mk) is a Σ-sequence, then
the system of inequalities

{mkx} < ψ(k), (k = 1, 2, . . . ),

where ψ is a non increasing function, possesses an infinity of solutions for almost
all x, whenever the following series

∑
k>1 ψ(k) is divergent. Conversely, there

exists an example of decreasing function ψ such that the series
∑

k>1 ψ(k) is
convergent, and for which the previous system of inequalities has only finitely
many solutions for almost all x. Baker’s proof is partially based on this property.
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It is interesting to observe that almost all sequences are Σ-sequences, although
it is easy to exhibit some which are not. We give a second result due to Baker
(Theorem 3.1, page 194).

18 Theorem. Let (mk) be a Σ-sequence such that lim inf
k→+∞

k−1 logmk = 0.

Then (mk) is not a L̂-sequence.

Baker, however, suggested that the assumption of (mk) being a Σ-sequence is
not likely to be well adapted to this problem, and also established the following
remarkable result (Theorem 3.2, page 197):

19 Theorem. Let ǫ > 0. Assume that (mk) is a sequence such that:

∀k > 1, mk = O
(
exp (k

1
2 (log k)−

7
2
−ǫ)
)
.

Then (mk) is not a L̂-sequence.

Now, introduce a generalization of the notion of a chain used by Dubins-
Pitman [11]:

For sets of positive integers S1, . . . ,Sd, put

[S1, . . . ,Sd] = {[n1, . . . , nd] | ni ∈ Si, i = 1, . . . , d} , (26)

where [n1, . . . , nd] denotes the l.c.m. of n1, . . . , nd.

Let S be a set of positive integers. By the dimension of S, we mean the
least positive integer d, such that S is a subset of [S1, . . . ,Sd] for some choice of
chains S1, . . . ,Sd. Jessen’s Theorem was extended by Dubins and Pitman [11],
who proved

20 Theorem. If S has dimension d and f ∈ L(log+ L)d−1, then

m

{
x | lim

S∋n→∞
Rn(f)(x) =

∫

T

f dm

}
= 1. (27)

Recall that L(log+ L)d−1 denotes the set of Lebesgue measurable functions
on T such that ∫

T

|f |(log+ |f |)d−1 dm <∞,

where it is understood, that log+ x = loge x if x > 1 and equals 0 for 0 < x 6 1.
A partial result (d = 2, f bounded) was proved by Baker [2].

The proof of that result consists of associating a converse d-martingale
bounded in L logd−1 L to the sequence S. Next, one proves the result by us-
ing a suitable extension to converse martingales of a maximal inequality for
martingales with several parameters.
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By considering the example of sequence of dimension two given by Jessen,
namely the sequence S = {2i3j , i > 1, j > 1}, the authors also showed that it
is not possible to improve Theorem 20, replacing L logL by L.

Recently, Nair [33] suggested a more elementary proof avoiding the use of
martingale theory. His argumentation is based on dominated estimates [22, page
50], Baker’s observation on property (25) for Riemann sums, and an induction
argument on the dimension of S, which need a correction. In [6], it is shown that
Nair’s idea is however tractable. In the same paper, it is also proved that for
no d > 2 can L(log+ L)d−1 in Theorem 20 be replaced by L(log+ L)d−2, which
solves a conjecture by Dubins and Pitman [11]. For d = 2, this assertion is
due to Baker. The proof of the general case consists of modifications of Baker’s
arguments, which are based on an elementary but rather technical lemma.

Introduce the following definition, which first appeared in [11]:

21 Definition. We say that a set K of integers has breadth at most d if the
least common multiple of every finite subset of K is the least common multiple
of at most d elements of that subset. The least such d is called the breadth of
K and, if no such d exists, we say that K has infinite breadth.

Rudin’s Theorem can be reformulated as follows: If (nk) is a strictly increas-
ing sequence of integers with infinite breadth, then there exist bounded measur-
able functions f on T such that Rnk

(f) does not converge almost everywhere. In-
deed, as (nk) has infinite breadth, for every r > 2, there exist k1, . . . , kr such that
nki

does not divide the least common multiple of nk1, . . . , nki−1
, nki+1

, . . . , nr,
for 1 6 i 6 r.

There exist sets of integers, which are neither of infinite breath, nor finite
dimension, and consequently the a.e. convergence properties of Riemann sums
along these sets are not known. Such a sequence has been given explicitely by
L. Dubins and J. Pitman [11, Section 3b]. Denote by p1 < p2 < · · · < pk < · · ·
the sequence of primes and consider the set E1 of all numbers of the type
p1 . . . pj−1 p̌j pj+1 . . . pk, for k > 2 and 1 6 j 6 k, where the symbol ˇ means
that pj is excluded. In [6, Theorem 2], the authors exhibit a sequence (nk) for
fixed d, with infinite dimension and finite breadth which is not a L(log+ L)d-
sequence. The sequence is built as follows: let l be a positive integer. With the
above notation, consider the set El of all integers n ranged in increasing order,
such that

n = pa1
1 . . . p

aj−1

j−1 p̌jpj+1 . . . pk,

for k > 2, 1 6 j 6 k and l > a1 > · · · > aj−1 > 1. Then El has infinite
dimension and breadth not exceeding l+ 1. The proof of this result relies upon
the following extension [6, Lemma 1.5], of a Theorem of Baker.
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22 Lemma. If the sequence (nk) satisfies the growth condition

nk = O
(
exp k1/(2d+5)

)
,

then (nk) is not a L(log+ L)d-sequence.

In this paper, we also find the following result (proposition 3, page 11) con-
cerning a sequence of finite breath and infinite dimension, namely the sequence
E1.

23 Proposition. Let f =
∑∞

ν=0 aνeν, where (aν)ν>0 ∈ ℓ2 satisfies

∞∑

ν=0

a2
ν

(
log l

log log l

)
< +∞.

Then,

m

{
lim

E1∋n→∞
Rn(f) =

∫

T

f dm

}
= 1.

Concerning the averages along E1, writing E1 = {nk, k > 1},

m

{
lim

N→∞
1

N

N∑

k=1

Rnk
(f) =

∫

T

f dm

}
= 1,

holds for all f ∈ L2(T).

The first part of the proposition is a spectral type result in the sense of
Marcinkiewicz-Salem. Since this proposition in some sense constitutes a break
with respect to the set of results mentioned above, we briefly indicate the proof.
The leading idea will consist in comparing the behavior of the Riemann sums
along E1 with the one of the Riemann sums along some chain.

Proof. Let t > 0 and k0 be fixed. For f ∼∑ alel, we put

∆j
k(f) = Rp1···p̌j ···pk+1

(f) −Rp1···pk+1
(f).

Then

m

{
sup

16j6k+1, k>k0

|∆j
k(f)| > t

}
6

1

t2

∑

16j6k+1
k>k0

∑

p1···p̌j ···pk+1|l
(pj ,l)=1

a2
l .

Given an arbitrary number l, if k2 > k1 > k0 are such that

p1 · · · p̌j1 · · · pk1+1| l, pj1 6 | l, p1 · · · p̌j2 · · · pk2+1 |l, pj2 6 | l,
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then j1 = j2. Thus defining k(l) to be the index corresponding to the smallest
j such that pj does not divide l, we get

m

{
sup

16j6k+1 k>k0

|∆j
k(f)| > t

}
6

1

t2

∑

l>p1···pk0

(k(l) − k0 − 1)a2
l .

But as l > p1 · · · pk(l)−2, we have k(l) = O
(

log l
log log l

)
, which allows us to conclude

the first half of the proposition. For the second part, observe that if we denote

Cj, N (l) = Card {j 6 k + 1, k 6 N | pj 6 |l, p1 · · · p̌j · · · pk+1|l} ,

then

∫



1

N2

∑

j6k+1
k6N

∆j
k(f)




2

dm =
1

N4

∞∑

l=0

a2
lCj, N (l)2 6

(N − k(l))2

N4
6

1

N2
·

Therefore,

∑

N>1

∫



1

N2

∑

j6k+1
k6N

∆j
k(f)




2

dm < +∞,

which combined with Jessen’s Theorem implies:

lim
N→∞

1

N2

∑

j6k+1
k6N

Rp1···p̌j ···pk+1
(f) =

∫
f dm,

and this easily allows us to get the second half of the proposition. QED

In [48], Révész and Ruzsa have considered this problem in a wider arith-
metical setting, apparently independent from the papers published by Baker
and Dubins-Pitman. To this end, they introduced a new notion:

24 Definition. A sequence S of positive integers has Rudin-dimension d
when the following property holds: There exists sets Sl = {nk1, . . . , nkl

} ⊂ S
such that,

∀i ∈ [1, l], nki
6 | [nk1, . . . , nki−1

, nki+1
, . . . , nkl

],

if and only if l 6 d.
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Then, a sequence of Rudin-dimension 1 is a chain, whereas a sequence of in-
finite Rudin-dimension is simply a Rudin sequence. That notion is in fact equiv-
alent to the notion of breadth, since a sequence S is of finite Rudin-dimension
d, if and only if, it has a breadth equal to d. Using this definition they have
given another proof of Theorem 7 , but also the following interesting result:

25 Theorem. If S1 and S2 have Rudin-dimensions α and β respectively,
then the Rudin-dimension γ of the sequence S1 ∨ S2 satisfies

γ 6 α+ β.

Since one can find sequences for which the latter inequality is in fact an
equality, this result is also optimal. Observe that a sequence of integers which is
built from a given set of d primes, is of Rudin-dimension d. One could believe,
in view of this result, that any sequence with large dimension can be built by
means of sequences of smaller dimension. This is in turn wrong. The authors
showed in [48] the existence of a sequence of dimension 3 which cannot be
represented by means of a finite number of chains. The proof is based on Van
der Waerden’s Theorem. In addition, they have established an important link
between the density of a sequence and its Rudin-dimension. This is the object
of the next statement.

26 Theorem. Let S be a sequence of integers with Rudin-dimension equal
to d. If S(n) = Card ([1, n] ∩ S), then there exists a positive constant C such
that for all n > 1,

S(n) < C(log n)d.

5 The method of Bourgain

This section is devoted to the results based on a powerful method discovered
by Bourgain in [4] for disproving the almost everywhere convergence of sequences
of operators. This method is often referred to as Bourgain’s entropy condition,
and gives a unified way of solving different problems as:

(1) Does there exist a bounded function f on [0, 1[ such that the Riemann
sums diverges?

(2) Khinchine’s problem: Does there exist a bounded function f on T such that
the averages 1

n

∑n
j=1 f(jx) diverge? This was first solved [27] by Marstrand

by different techniques.

(3) The Bellow problem: Let (ak) be a sequence of real numbers which is
converging to zero. Does there exist a bounded function f on the real line
such that the following average 1

n

∑n
k=1 f(x+ ak) diverges a.e.?
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Recall first the entropy criteria of Bourgain. For this, we need to introduce
the following useful notion. Let H be an arbitrary Hilbert space, the canonical
Gaussian process {Za, a ∈ H} is defined as follows :

∀a, b ∈ H, EZa = 0, E < Za, Zb >=< a, b > .

A countable subset A of H is said to be Gaussian bounded (GB) if the
supremum E (supa∈A Za) is finite. This is a fine notion of compactness in a
Hilbert space, and it is well approximated by using metric entropy. Now, we
state a first criterion ( [4, Proposition 1], see also [62, Theorem 4.1.1])

27 Theorem. Let (X,A, µ) be a probability space with a complete σ-algebra
A. Let {Sn, n > 1} be a sequence of L2(µ)-contractions. Assume that there exists
a sequence of positive isometries {Tj , j > 1} of L2(µ), preserving 1, commuting
with the sequence {Sn, n > 1} and satisfying the mean ergodic Theorem in L1(µ)
:

∀f ∈ L∞(µ), lim
J→∞

J−1
∑

j6J

Tjf =

∫
fdµ. (28)

Moreover, assume for some p ∈ [2,∞)

∀f ∈ Lp(µ), sup
n>1

|Sn(f)| <∞, µ− a.e.

Then for any f ∈ Lp(µ), the set Cf = {Sn(f), n > 1} is a GB subset of L2(µ).
In particular, there exists a constant C depending on the sequence {Sn, n > 1}
such that

∀f ∈ Lp(µ), sup

{
ε
√

logNf (ε), ε > 0

}
6 C‖f‖2, (29)

where Nf (ε) denotes the minimal number of hilbertian balls of radius δ centered
in Cf enough to cover Cf .

It is worth noticing here, that the entropy numbers estimate is actually
optimal. The next criterion is the one most used by ergodicians. It concerns the
case L∞(µ) (see [4, Proposition 2], and also [62, Theorem 4.2.1] for a detailed
account)

28 Theorem. Let {Sn, n > 1} be a sequence of L2(µ)-L∞(µ) contractions.
Assume there exists a sequence {Tj , j > 1} of positive L2(µ)-isometries preserv-
ing 1, commuting with the sequence {Sn, n > 1}, and satisfying (28). Moreover,
assume

∀f ∈ L∞(µ), µ
{
(Sn(f))n>1

}
converges = 1.
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Then for any δ > 0,

C(δ) = sup
f∈L∞(µ), ||f ||2=1

Nf (δ) <∞. (30)

With the help of this criterion Bourgain has recovered Rudin’s Theorem.
Indeed, for every r > 2, there exist k1, . . . , kr such that for 1 6 i 6 r, nki

does not divide the least common multiple of nk1, . . . , nki−1
, nki+1

, . . . , nr. Hence,
there are p1, . . . , pr distinct primes such that

vpi(nki
) > vpi(nkj

), whenever i 6= j,

where vp denotes the p-adic valuation.
Put N = lcm(nk1 , . . . , nkr)/(p1 . . . pr) and notice that nki

does not divide N
for 1 6 i 6 r. Consider the set of integers

E = {Npα1
1 . . . pαr

r | αi ∈ {0, 1}}

and the function
f = 2−r/2

∑

n∈E

e2iπnx.

Then
Rnks

(f) = 2−r/2
∑

n∈(E∩NpsZ)

e2iπnx,

and, for 1 6 s 6= t 6 r,

||Rnks
(f) −Rnkt

(f)||2 = 1/
√

2.

This shows that C(1/
√

2) = ∞ and so achieves the proof.
A slight improvement of this result using the following notion, was given

in [1]. Assume (X,A, µ) is a non-atomic Lebesgue probability space.

29 Definition.

1) A sequence {Sn, n > 1} of linear operators is said to be strong sweeping out
if given ǫ > 0 there is a set B with m(B) < ǫ such that :

− lim
n→+∞

Sn1B(x) = 1 and lim inf
n→+∞

Sn1B(x) = 0 a.e.

2) Let 0 < δ ≤ 1. A sequence {Sn, n > 1} of linear operators is said to be
δ − sweeping out if given ǫ > 0 there is a set B with m(B) < ǫ such that:

− lim
n→+∞

Sn1B(x) > δ a.e.
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Notice that the first point of this definition is stronger than the second one.
The proof of Rudin, as well as the previous one, shows that the Riemann sums
are at least 1

2 -sweeping out. But in [1] the authors proved (Theorem A.2, page
62) by using several ideas which were given by Rudin in his construction, that
the Riemann sums even have the strong sweeping out property.

Following the method introduced by Bourgain, some other authors (see [44],
[45], [46], [51]) have given new results on particular averages of Riemann sums,
namely:

For U = (nk)k>1 a sequence of positive integers put

AU
N (f) =

1

N

N∑

k=1

Rnk
(f), (31)

and

BU
N (f) =

1

σN

N∑

k=1

λkRnk
(f), σN =

N∑

k=1

λk, (32)

where (λk)k>1 is a sequence of positive reals such that
∑

k>1 λk = +∞.
It is obvious, that for the study of these means, U has been chosen in the

sequences for which we know, that the Riemann sums are not convergent. For
example, U may be the whole sequence of integers or a Rudin sequence. In the
particular case when U is the sequence P = (pi)i>1 of prime numbers, Ruch and
Weber have proved the following statement (Theorem 1.3 in [51]). Put,

∀N > 1, AP
N (f) =

1

N

N∑

k=1

Rpk
(f) (33)

and introduce for all N > 1, α > 1 the Césarò averages

Cα
N (f) =

1

Γα
N

N∑

k=1

Γα−1
N+1−k Rpk

(f), (34)

where Γα
N =

(α+ 1) · · · (α+N − 1)

(N − 1)!
·

30 Theorem.

a) For each 2 6 p < ∞, there exists an f ∈ Lp(T) such that for every α > 1,
the sequence {Cα

N (f), N > 1} does not converge almost everywhere.

b) There exists a bounded measurable f such that the sequence {AP
N (f),N > 1}

does not converge almost everywhere.
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For proving this proposition, we shall need the following Lemma.

31 Lemma. For any measurable f on T we have:

{AP
N (f), N > 1} converges a.e. ⇒ {MP

N (f), N > 1} converges a.e.,

where

MP
N (f) =

1

N

2N∑

i=N+1

Rpi(f).

Although it is very immediate, this Lemma is useful in the sense, that
it seems to be much easier to prove the divergence of the moving averages(
MP

N (f)
)
N>1

. Let us now give some ideas of the proof of the part b), which
among other things uses Theorem 28.

Let u be a fixed integer and s, t two other integers such that

2 6 s < t 6 u+ 1.

For all j > 1, put N2j = P2j+1 · · ·P2j+1 and define:

E = Eu = {Nα1
1 · · ·Nαu

u , αi ∈ {0, 1}}

f(x) = fu(x) =
1

|Eu|
1
2

∑

n∈Eu

en(x).

By observing that

∀n ∈ E, ∀j ∈ [1, s − 1], ∀i ∈ [2j + 1, 2j+1], pi|n ⇐⇒ Nj|n

we may write:

A2s(f) =
1

|E| 12
∑

n∈E

1

2s

( 2s∑

i=1

δpi|n

)
en =

1

|E| 12
∑

n∈E

1

2s

(s−1∑

j=1

2jδNj |n

)
en.

And so,

‖A2s −A2t‖2
2 =

1

|E|
∑

n∈E

[ 1

2s
(

s−1∑

j=1

2jδNj |n) − 1

2t
(

t−1∑

j=1

2jδNj |n)
]2

=
1

|E|
[
(

1

2s
− 1

2t
)2
∑

n∈E

(

s−1∑

j=1

2jδNj |n)2 + (
1

2t
)2
∑

n∈E

(

t−1∑

j=s

2jδNj |n)2

−2
1

2t
(

1

2s
− 1

2t
)
∑

n∈E

(
s−1∑

j=1

2jδNj |n)(
t−1∑

j=s

2jδNj |n)
]



On Riemann sums 25

Estimating the three sums appearing in the above expression leads to

‖A2s −A2t‖2
2 >

(
1

2
√

3

)2

.

So, for all δ 6 1
2
√

3
we get,

N({As(f), s > 1}, δ) = +∞.

and this completes the proof. In [45], Ruch extends these results to general
weighted averages. Using nearly the same methods, he has shown

32 Proposition. Let P = (pi)i>1 be the sequence of primes. There exists a
bounded measurable function f on the torus such that the sequence of averages

BP
N (f) =

1

σN

N∑

i=1

λkRpi(f), σN =
N∑

k=1

λk→ + ∞,

does not converge almost everywhere.

Theorem 9 in section 3 clearly shows, that it is not possible to generalize this
result when replacing the sequence P by any Rudin sequence. Further in [44],
the author gives the following example of a sequence of integers for which the
usual averages of Riemann sums converge. Let (kl)l>1 be a sequence of integers
which has density zero, i.e.

1

N

∑

16k6N, k∈(kl)

1 → 0 when N → +∞,

and define the sequence U = (nk)k>1 by

nk =

{
2k if k 6= kl

pkl
if k = kl

where pkl
is a prime number in [2kl , 2kl+1]. It is easy to see, that U is a Rudin

sequence. Further, by comparing the averages of Riemann sums along the se-
quence U and the sequence (2k)k>1 and using Jessen’s Theorem, we can prove
that the sequence {AU

N (f), N > 1} converges for all bounded function on the
torus. So Rudin’s result is no longer true, when we take averages of Riemann
sums.

In [46], The following result concerning Marcinkiewicz-Zygmund’s conjecture
is also proved. The proof relies upon a strategy worked out by Bourgain.
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33 Theorem. Let 0 < ǫ1 < 1, ǫ2 > ǫ1 and consider a sequence (Nl)l>1 of
positive integers satisfying

∀l > 1, N1+ǫ1
l < Nl+1 < N1+ǫ2

l . (35)

Then,

∀f ∈ L2(T), ANl
(f) =

1

Nl

Nl∑

n=1

Rn(f) →
∫

T

fdm a.e.

The interest of this theorem lies in the fact, that it shows the validity of
the conjecture when considering hypergeometric subsequences, like for instance
(22l

)l>1. The techniques involved in the proof, however, does not seem to give
any more. We give a brief sketch of the proof. A standard argumentation reduces
the problem to showing the existence of a maximal inequality, namely:

|| sup
l>1

ANl
(f)||2 6 C||f ||2 (∀f ∈ L2(T)).

Observe that if f ∼∑ f̂(k)ek, then

ANl
(f) =

∑ d(k,Nl)

Nl
f̂(k)ek,

with d(k,Nl) = Card{1 6 n 6 Nl, n|k}. As the estimation of these quantities
makes the proof of the maximal inequality difficult, this sequence of multipliers

is replaced by another one which is noted by (µ
(Nl)
k ). Let χz denote the indicator

function of zZ, and denote by P the set of primes and P∗ = ∪j>1Pj . Clearly

d(k,N) =
N∑

n=1

∏

z∈P∗

z 6 | n

(1 − χz(n)).

Consider the multipliers

µN
k =

∏

z∈P∗, z6N

z 6 | n

(1 − 1

z
) =

∏

z∈P∗, z6N

|µ̂z(k)|2,

where

|µ̂z(k)|2 = (1 − 1

z
) +

1

z
χz(k),



On Riemann sums 27

and µz is the probability measure on T defined by

µz =

(
1 − 1

z

) 1
2

δ0 +
1

z

(
1 −

(
1 − 1

z

) 1
2

)(
δ0 + δ 1

z
+ · · · + δ z−1

z

)
.

Define now

A∗f = sup
l>1

∣∣∣∣
∑ d(k,Nl)

Nl
f̂(k)ek

∣∣∣∣ , and A∗
1f = sup

l>1

∣∣∣
∑

µ
(Nl)
k

∣∣∣ .

The choice of multipliers and a Theorem by Rota [43] ensure that

||A∗
1f ||2 6 C1||f ||2,

so that,

||A∗f ||2 6 C1||f ||2 + sup
k∈Z


∑

l>1

∣∣∣∣
d(k,Nl)

Nl
− µ

(Nl)
k

∣∣∣∣
2



1
2

||f ||2.

A very precise evaluation of the quantity
∣∣∣d(k,Nl)

Nl
− µ

(Nl)
k

∣∣∣ allows us to show, that

the previous series converges uniformly in k, and so to obtain the Theorem.

6 Connection with Number Theory

It seemed necessary for us to include a section in this presentation, devoted
to the important work of Mikolás, [28], [29], [30] regarding on the one hand,
the convergence of averages associated to Farey sequences of a periodic function
f with those of the Riemann sums of f , and on the other hand, the error of
approximation made in this convergence (for a class of functions with bounded
derivative) with Riemann Hypothesis (RH). This work is still motivating number
theorists. One can refer for instance to the recent paper of Yoshimoto [67],(see
also [23]). We shall start, by discussing the link between Farey sequences and
Riemann sums, and we will recall some estimates concerning classical arithmetic
functions: the Euler function, the Möbius function, useful for our purpose. For
the clarity of the exposition, we will display the arguments concerning the build-
ing of this link. At the end of this section we will give some other results, which
are connecting Riemann sums with Number Theory, and especially with the
Prime Number Theorem.

Let x > 1, we denote by Fx = { k
n , 0 < k 6 n 6 x, (k, n) = 1} the

Farey sequence of order x. The ν-th term is denoted ρx
ν or ρν , when there is no
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confusion. The number of these fractions is

Φ(x) =

[x]∑

n=1

ϕ(n) (n > 1),

where ϕ(n) is the Euler function defined by:

ϕ(n) = Card {m 6 n, (m,n) = 1}, n > 1.

Also, let µ be the Möbius function:

µ(n) =





1 if n = 1

0 if p2|n
(−1)k if n = p1 . . . pk.

From the formula 1
ζ(s) =

∑∞
n=1

µ(n)
ns , s > 1, we can classically estimate Φ (see

for example [18, page 287]):

Φ(x) =
3

π2
x2 +O(x log x). (36)

Recall also, that [18, page 270]

M(x) =
x∑

n=1

µ(n) = o(x), and
x∑

n=1

|µ(n)| =
6

π2
+O(

√
x). (37)

For h an arbitrary real valued function defined on [0, 1], we note the associ-
ated Riemann sums by

Rn(h) =
1

n

n∑

k=1

h(
k

n
). (38)

The link between Farey sequences and Riemann sums established by Mikolás
is deduced via the Möbius inversion formula [18, page 234]. The following proof
of this link, shorter than the original one, has been given by Gerald Tenenbaum
in a private communication. By the Möbius inversion formula

∑

d|n
µ(d) =

{
1 if n = 1

0 if n > 1
(39)
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we get
∑

16ν6Φ(x)

h(ρν) =
∑

16a6b6[x], (a,b)=1

h(a/b)

=
∑

16a6b6[x]

h(a/b)
∑

d|(a,b)

µ(d)

=
∑

16m6n6[x]

h(m/n)
∑

16d6[x]/n

µ(d)

=
∑

16n6[x]

∑

16m6n

h(m/n)M([x]/n)

=
∑

16n6[x]

nRn(h)M([x]/n).

Thus for any real A it is easy to deduce

1

Φ(x)

∑

16ν6Φ(x)

h(ρν) −A =
1

Φ(x)

∑

16n6[x]

n(Rn(h) −A)M([x]/n). (40)

So we see that if Ru(h) → A as u→ ∞, then

1

Φ(x)

Φ(x)∑

ν=1

h(ρν) → A, (41)

as x → ∞, provided that we have an suitable criterion for matrix summation
method. The relevant criterion is the following result due to Toeplitz (see [21,
page 75])

34 Lemma. Let t1, t2, . . . , tn be a sequence of reals converging to 0, and let
(ak,l, k, l = 1, 2, . . . be an array of reals satisfying the following conditions

(1) ∀l, lim
k→∞

ak,l = 0,

(2) S(k) = |ak,1| + |ak,2| + . . . + |ak,k| = O(1).

Then, the sequence t
′

k = (ak,1t1 + ak,2t2 + . . .+ ak,ktk)k>1 converges to zero.

We show that conditions (1) and (2) are indeed satisfied:

(1) for all fixed n

∣∣M(x
n)
∣∣

Φ(x)
6

x

Φ(x)
≃ π2

3x
→ 0, (x→ +∞),

(2)
x

Φ(x)

[x]∑

n=1

n
∣∣∣M(

x

n
)
∣∣∣ 6

x2

Φ(x)
≃ π2

3
, (x→ +∞).

We therefore deduce the following Theorem.
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35 Theorem. Let h be such that the Riemann sums Rn(h) converge to
a (finite) real A as n tends to infinity. Then, the associated Farey averages
converge to A:

Fnh =
1

Φ(x)

Φ(x)∑

ν=1

h(ρx
ν) → A.

And so, if limn→∞Rn(h) =
∫ 1
0 h(t)dt, then

lim
n→∞

Fnh =

∫ 1

0
h(t)dt.

What will interest us in the sequel, is the study of the error of approximation

1

Φ(x)

Φ(x)∑

ν=1

h(ρx
ν) −

∫ 1

0
h(t)dt, (42)

and its connection with (RH). For this, we will suppose that h is a function
which has bounded derivate in [0, 1]. In this case (this immediately implies that

d
[
Rd(h) −

∫ 1
0 h(t)dt

]
= O(1)), Mikolás showed that

Φ(x)∑

ν=1

h(ρx
ν) − Φ(x)

∫ 1

0
h(t)dt = O(x log x). (43)

This result may easily be improved. By using the following relation (see [24]
or [25] II page 176)

Φ(x)∑

ν=1

(
ρx

ν − ν

Φ(x)

)2

= O(1) (44)

and writing that

Φ(x)∑

ν=1

h(ρx
ν) =

Φ(x)∑

ν=1

(
h(ρx

ν) − h(
ν

Φ(x)
)

)
+

Φ(x)∑

ν=1

h(
ν

Φ(x)
)

we have

Φ(x)∑

ν=1

h(ρx
ν) − Φ(x)

∫ 1

0
h(t)dt = O(1)

Φ(x)∑

ν=1

∣∣∣∣ρ
x
ν − ν

Φ(x)

∣∣∣∣+O(1)

and so by applying the estimate Φ(x) ≍ x2 and Cauchy-Schwarz’s inequality,
we obtain

Φ(x)∑

ν=1

h(ρx
ν) − Φ(x)

∫ 1

0
h(t)dt = O


x




Φ(x)∑

ν=1

(
ρx

ν − ν

Φ(x)

)2



1
2


 . (45)
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But, by means of Franel’s identity (see [15] or [25] II page 173)

Φ(x)∑

ν=1

(
ρx

ν − ν

Φ(x)

)2

=
1

12Φ(x)





[x]∑

a=1

[x]∑

b=1

M(
x

a
)M(

x

b
)
(a, b)2

ab
− 1



 , (46)

and a result by Tchudakov (see [56]) on the error of approximation in the Prime
Number Theorem

π(x) −
∫ x

2

du

log u
= O

(
xe−c1(log x)γ

)
, (47)

more precisely by using its analogue for the Möbius function (see [12])

M(x) = O
(
xe−c2(log x)γ

)
, (48)

where γ ∈]12 ,
11
21 [, while c1 = c1(γ), c2 = c2(γ) are constants, one gets the

following estimation, much better than (44).

Φ(x)∑

ν=1

(
ρx

ν − ν

Φ(x)

)2

= O
(
xe−c3(log x)γ

)
. (49)

On the other hand under (RH) we have the well-known relations, the first
implying the second

M(x) = O
(
x

1
2
+c4

log log log x
log log x

)
, (50)

Φ(x)∑

ν=1

(
ρx

ν − ν

Φ(x)

)2

= O
(
x

1+c5
log log log x

log log x

)
. (51)

We can therefore deduce the following Theorem

36 Theorem. Assume that h has a bounded derivative. Then

Φ(x)∑

ν=1

h(ρx
ν) = Φ(x)

∫ 1

0
h(t)dt +O

(
xe−c(log x)γ

)
,

where γ ∈]12 ,
11
21 [, and c = c(γ) is a constant.

And if (RH) is true, then for every ǫ > 0

Φ(x)∑

ν=1

h(ρx
ν) = Φ(x)

∫ 1

0
h(t)dt +O

(
x

1
2
+ǫ
)
.

Conversely, if h has a bounded derivative and
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(1)
∑Φ(x)

ν=1 h(ρ
x
ν) = Φ(x)

∫ 1
0 h(t)dt +O

(
x

1
2
+ǫ
)

(2) F (s) =
∑∞

n=1
1
ns

(
nRn(h) − n

∫ 1
0 h(t)dt

)
is regular and has no zero in

the strip ℜ(s) > 1
2 ,

then (HR) is true.

As an application, and by means of the theory of Dirichlet series, Mikolás
showed

37 Theorem. Let f ∈ C3([0, 1]) such that f
′′′

(t) is not identically 0, and

∣∣∣f ′

(1) − f
′

(0)
∣∣∣

∫ 1
0 |f ′′′

(t)| dt
>

3ζ(3)

2π
≈ 0, 574 . . . ,

then (HR) is equivalent to :

Φ(x)∑

ν=1

f(ρx
ν) = Φ(x)

∫ 1

0
f(t)dt+O

(
x

1
2
+ǫ
)
.

Examples are given by f(t) = exp (λt)

(
λ 6= 0, |λ| < 2π

3ζ(3)

)
, or by the

function f(t) = cos λt
(
0 < λ 6

π

2

)
. The proof consists in establishing condi-

tion (2) of Theorem 36, under the assumptions made. For proving that F has
no zero in the strip ℜ(s) > 1

2 , Mikolás use Euler-Maclaurin sum-formula to de-

velop nRn(h) − n

∫ 1

0
h(t)dt. This allows to represent F as a difference of two

Dirichlet series, and reduces the study of the zeroes of F to finding good bounds
for these two Dirichlet series.

Notice, that Yoshimoto [67] recently showed that the constant 3ζ(3)
2π can be

slightly improved by √
3

6

[
π2 +

2

3
log 2 − 2

3

]
·

Gerald Tenenbaum has established the following improvement of the first
part of Theorem 36. Denote

B1(u) = u− [u] − 1

2
(52)

the first Bernoulli function.

38 Lemma. Let h an absolutely continuous function on [0, 1]. Then we have
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for all N > 1

∑

16ν6Φ(N)

h(ρν) = Φ(N)

∫ 1

0
h(t)dt +

1

2
{h(1) − h(0)}

+
∑

16n6N

M(N/n)

∫ 1

0
B1(nt)h

′(t)dt.

(53)

Indeed by (40) we have

Rn(h) =
1

n

∫ 1

0
h(t)d[nt] =

1

n

∫ 1

0
h(t)d(nt− 1

2
−B1(nt))

=

∫ 1

0
h(t) − 1

n

∫ 1

0
h(t)dB1(nt)

=

∫ 1

0
h(t) +

h(1) − h(0)

2n
+

1

n

∫ 1

0
B1(nt)h

′(t)dt.

Now applying (40) for h such that, h(1) = 1 and h(t) = 0 for t ∈ [0, 1[ we get

∑

16n6N

M(N/n) = 1 (N > 1).

From these two results we obtain (53).

Let c ∈]0, 1
2 [ and Rc : [1,+∞[→ [1,+∞[ a growing function such that

(i) xc/Rc(x) is asymptotically growing;

(ii) M(x) 6 x/Rc(x) for x > 1.

By the Vinogradov-Korobov estimation of the error term in the Prime Number
Theorem, for all c ∈]0, 1

2 [ we may choose

Rc(x) = ea(log x)3/5/(log2 3x)1/5

with a a positive constant. Moreover under (RH), we may choose

Rc(x) = xc.

Then, see for example [57], we have

M(x) 6 x
1
2
+b/ log2 x (x > 3),

where b is a positive constant. With this notation we get the following result.
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39 Theorem. Let h an absolutly continuous function on [0, 1] such that
h′ ∈ L2[0, 1]. We have uniformly for all N > 1

1

Φ(N)

∑

16ν6Φ(N)

h(ρν) =

∫ 1

0
h(t)dt +O

(
1

NRc(N)

)
. (54)

Let e(u) = e2πiu. It is well-known that

B1(t) =
i

π

∑

k∈Z∗

e(kt)

k
.

Introducing the Fourier coefficients,

cm =

∫ 1

0
e(−mt)h′(t)dt,

by Parseval identity we get

∫ 1

0
B1(nt)h

′(t)dt =
1

iπ

∑

k∈Z∗

ckn

k
.

Denoting now c∗m = |cm|+ |c−m| and τ(m) the number of divisors of m in [1,N ]
we obtain

∑

16n6N

M(N/n)

∫ 1

0
B1(nt)h

′(t)dt 6 N
∑

16n6N

∑

k>1

c∗kn

knRc(N/n)

6 N
∑

m>1

c∗m
m

∑

n|m, n6N

1

Rc(N/n)

6 N
∑

m>1

c∗m
m

∑

n|m, n6N

(m
N

)c (N/n)c

Rc(N/n)

6 N
∑

m>1

c∗m
m1−cN c

τ(m)N c

Rc(N)

6
N

Rc(N)

∑

m>1

c∗mτ(m)

m1−c
.

The Cauchy-Schwarz inequality implies


∑

m>1

c∗mτ(m)

m1−c




2

6
∑

m>1

(c∗m)2
∑

m>1

τ(m)2

m2−2c
< +∞.
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Thus, by (53) we get the result.

It is possible to give the same result by supposing that for some q ∈ [1, 2[ h′

satisfies
∑

m∈Z
|cm(h′)|q < +∞.

Before ending this section, we indicate some other results established by
several other authors, linking Riemann sums with the Prime Number Theo-
rem. At first, we quote the thorough paper of Wintner [65]. Let f be an ev-
erywhere finite function on (−∞,+∞) with period one and having a finite
Lebesgue integral on [0, 1]. Write the Fourier series f ∼ ∑∞

1 gm(x), where
gm(x) = cme(mx) + c−me(−mx) and c0 = 0 . With this notation, we have
Rn(f) ∼ ∑∞

1 gnm(x). So, if the Fourier series of f converges to f everywhere,
then that of Rn(f) will converge to Rn(f) everywhere. Hence, formally one
has gn(x) =

∑∞
1 µ(m)fnm(x) where µ is the Möbius function. The author in-

vestigates the convergence of this last formula, which represents the term of
the Fourier series of f in terms of the equidistant Riemann sums. It is shown
that the series converges for every x if f satisfies a Lipschitz condition of order
greater than 1

2 , and that it need not always converge, even if the Fourier series
converges absolutely. Moreover, Wintner obtains the following interesting, nec-
essary and sufficient condition for the analyticity of f in [0, 1]: For every integer
n and every real x and for some constants K and q < 1

∣∣∣∣Rn(f)(x) −
∫ 1

0
f(t)dt

∣∣∣∣ 6 Kqn.

In [3, page 181], the authors deduce the following special case from the above
result.

40 Theorem. Let f be a real step function on ]0, 1],

f(x) = an throughout (
1

n+ 1
,
1

n
], n = 1, 2, · · ·

Suppose the special sequence of Riemann sums

1

n

n∑

k=1

f(
k

n
), n = 1, 2, · · ·

converges. Then, so does the improper Riemann integral
∫ 1
0+ f(t)dt, and to the

same limit.

From this Theorem, the authors deduce the Prime Number Theorem in a
rather simple fashion. For this, let for every real x > 1,

Ψ(x) =
∑

log p,
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where the sum is taken over all ordered pairs (p,m) for which p is a prime and
m a natural number satisfying pm 6 x. Define

f(x) = Ψ(x−1) − [x−1].

Denoting the number of positive divisors of k by d(k), we have for n > 1,

n∑

k=1

d(k) =
n∑

k=1

∑

j|k, j>1

1 =
n∑

k=1

[n
k ]∑

j=1

1 =
n∑

k=1

[n
k

]
· (55)

A classical result of Dirichlet therefore yields, for n > 1 (γ being Euler’s con-
stant),

n∑

k=1

[n
k

]
= n log n+ (2γ − 1)n +O(

√
n). (56)

Moreover, we also have

n∑

k=1

Ψ
([n
k

])
= n log n− n+O(1 + log n), n = 1, 2, · · · (57)

In view of the two equalities (56) and (57), we obtain function f that Rn(f) →
2γ. Applying Theorem 38, we now get that

∫ 1
0+ f(t)dt converges. Then it is easy

to deduce, that so does the integral
∫ 1
0+(Ψ(t−1) − t−1)dt. Therefore,

lim
x→+∞

Ψ(x)

x
= 1,

from which the Prime Number Theorem follows in an elementary way.
In [53], Selvaraj has given a much easier proof of the preceding result by

using a Theorem of Landau [26, page 568]. Let us give the ideas of that proof.
Let g(x) = f( 1

x), where f(x) = a[ 1
x
] throughout (0, 1] is exactly the function f

which is defined in Theorem 38. Put also

G(x) =
∑

k6x

g(
x

k
) =

∑

k6x

f(
k

x
)·

For 0 < ε < 1,

∫ 1

ε
f(x)dx =

∫ 1

ε
g(

1

x
)dx =

∫ 1
ε

1

1

t2
g(t)dt

=

∫ 1
ε

1

1

t2

∑

k6t

µ(k)G(
t

k
)dt =

∑

k61
ε

∫ 1
ε

k

µ(k)

t2
G(

t

k
)dt,
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where µ denotes the Möbius function. Since G(x) = G([x]),

G(x)

x
=

1

[x]

∑

k6[x]

f(
k

[x]
) · [x]

x
,

and thus

lim
x→+∞

G(x)

x
= lim

n→+∞
1

n

n∑

k=1

f(
k

n
) = L.

Hence, G(x) = Lx + o(x) as x → +∞. Now, using the fact that
∫ +∞
k

1
t dt

diverges, we have by applying a result of Landau [26, page 568]

∫ 1

ε
f(x)dx =

∑

k61
ε

µ(k)

k

∫ 1
ε

k

(
L

t
+ o

(
1

t

))
dt = L · S(

1

ε
) + o

(
S(

1

ε
)

)
,

where

S(
1

ε
) =

∑

k61
ε

µ(k)

k

∫ 1
ε

k

1

t
dt =

∑

k61
ε

µ(k)

k
log

1

ε
−
∑

k61
ε

µ(k)

k
log k

= log
1

ε
·
(

1

log 1
ε

)
−
∑

k61
ε

µ(k)

k
log k.

Therefore, as ε→ 0+,

∫ 1

ε
f(x)dx = L (o(1) − (−1)) + o(1),

and ∫ 1

0+

f(x)dx = L

which is exactly the wanted result.

7 Other type of Riemann sums

In this section, we are concerned with Riemann sums defined in a slightly
different way than in (1), namely

Mnf(x) =
1

n

n∑

k=1

f

(
k + x

n

)
, n = 1, 2, · · · (58)
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or

M̃nf(x) =
1

n

n∑

k=1

f

(
k − x

n

)
, n = 1, 2, · · · (59)

It is easy to see, that we have the following properties: For all n > 1 and
x ∈ [0, 1],

Mnf(x) = Rnf
(x
n

)
, (60)

and

M̃nf(x) = Rnf

(−x
n

)
· (61)

Even though the difference with the usual Riemann sums does not seem so
important, it brings dramatic effects on the results. Let us show these differences.
Notice, that if f a Riemann integrable function, the averages (Mnf)n>1 and

(M̃nf)n>1 converge to the integral of f . This is easy to check. To our knowledge,
the first important results on these sums were given by Chui [9], who considered
Riemann integrable functions. In [9], he proved the following result:

41 Theorem. Let f be a Riemann integrable function on [0, 1]. If f is

absolutely continuous on [0, 1], then M̃nf(1
2) −

∫ 1
0 f(t)dt = o

(
1
n

)
. Moreover, if

f(0) = f(1), then M̃nf(x) −
∫ 1
0 f(t)dt = o

(
1
n

)
, for all x in [0, 1].

In [10], he generalized this by proving some new Theorems. In a first The-
orem (Theorem 1 page 279), the author gave some results which were already
known.

42 Theorem.

a) If f is a Riemann integrable function on [0, 1], then

M̃nf(x) −
∫ 1

0
f(t)dt = o(1), for each x ∈ [0, 1].

b) If f is a function of bounded variation on [0, 1], then

M̃nf(x) −
∫ 1

0
f(t)dt = O

(
1

n

)
, for each x ∈ [0, 1].

c) If f is is absolutely continuous on [0, 1], then

M̃nf

(
1

2

)
−
∫ 1

0
f(t)dt = o

(
1

n

)
.
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d) If f is differentiable on [0, 1] and its derivative f ′ is of bounded variation on
[0, 1], then ∣∣∣∣M̃nf

(
1

2

)
−
∫ 1

0
f(t)dt

∣∣∣∣ 6
T (f ′)
8n2

, for all n,

where T (f ′) is the total variation of f ′ on [0, 1].

Result a) is an easy consequence of the convergence for the Riemann inte-
grable function. The proofs of b), and of the weaker and somewhat different
forms of c) and d) are also given in [42]. Moreover, b) is also proved in [9], see
Theorem 41. But, in [10] Chui gives a unified way of proving b), c) and d). The
interest in this proof is the use of the saw-tooth functions which are defined by:

vn(t) =
n∑

k=1

χ k− 1
2

n

(t) − nt, (62)

where for 0 6 s 6 1, χs denotes the characteristic function of the closed interval
[s, 1]. For each n, these function verify, vn(0) = vn(1) = 0, and vn lies between

−1
2 and 1

2 and is linear with the exception of n unit jumps at the points
k− 1

2
n , k =

1, · · · , n. It is noted by the author, that the saw-tooth functions vn(t) plays a
role in the study of the convergence of the operators defined in (58) and (59)
similar to the role of the functions e2πint in the study of Fourrier series. The
difficulty, in working with the functions vn(t) is, that they are not orthogonal.
However, they still satisfy some interesting properties as it is established in the
following lemma.

43 Lemma. Let m and n positive integers such that the quotient m
n is an

odd integer. Then ∫ 1

0
vn(t)vm(t)dt =

n

12m
·

In particular ∫ 1

0
vn(t)2dt =

1

12
,

for all positive integers n.

Using these properties, Chui established some other results (Theorem 2,3,4
and 5 page 280) that we summarize in the following Theorem.

44 Theorem.

a’) Let (εn)n>1 be a sequence of positive reals which converges monotonically to
zero. Then there exists a Riemann integrable function f on [0, 1] such that

M̃nf(0) −
∫ 1

0
f(t)dt 6 εn, for all n.
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b’) There exist a positive number ε0, an increasing function f of total variation
less than one, and a sequence of positive integers (nk)k>1 such that:

nk

(∫ 1

0
f(t)dt− M̃nk

f

(
1

2

))
6 ε0 for all k.

c’) Let (εn)n>1 be any sequence of positive reals converging to zero. Then, there
is an absolutely continuous f on [0, 1] such that

nk

(∫ 1

0
f(t)dt− M̃nk

f

(
1

2

))
6 ε0 for all k,

where (nk)k>1 is some sequence of positive integers tending to infinity.

d’) If f is twice differentiable and f ′′ is bounded and almost everywhere contin-
uous on [0, 1], then

lim
n→+∞

n

(∫ 1

0
f(t)dt− M̃nf

(
1

2

))
=

1

24

∫ 1

0
f ′′(t)dt =

f ′(0) − f ′(1)
24

.

Moreover if f ′(0) = f ′(1) then M̃nf(1
2) −

∫ 1
0 f(t)dt = o( 1

n2 ).

Notice that a’), b’) and c’) (in Theorem 44) implies that a), b) and c) (in
Theorem 42) cannot be improved.

Following the same methods, Petrovič has studied in [40]

M̃ ′
nϕ(x) =

2π

n

n−1∑

k=0

ϕ

(
2π(k − x)

n

)
, n = 1, 2, · · · (63)

for 0 6 x 6 1 and ϕ a 2π-periodic function. He proved that

45 Theorem.

1) If ϕ =
∑

m>1 bm sin (mx) with bm ↓ 0, then there exists a constant C(x)
such that ∣∣∣M̃ ′

nϕ(x)
∣∣∣ 6 C(x)bn, for x ∈ [0, 1].

2) If ϕ = 1
2a0 +

∑
m>1 am cos (mx) with am ↓ 0, and x 6= 0 mod 2π,

then there exists a constant C(x) such that
∣∣∣M̃ ′

nϕ(x)πa0

∣∣∣ 6 C(x)an, for 0 < x < 1.

3) Consequently, if ϕ = 1
2a0 +

∑
m>1 am cos (mx) +

∑
m>1 bm sin (mx)

with am ↓ 0 and bm ↓ 0, then

M̃ ′
nϕ(x) → πa0, for 0 < x < 1.
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In [41], Petrovič proved nearly the same results by considering the averages

M ′
nϕ(x) =

2π

n

n−1∑

k=0

ϕ

(
2π(k + x)

n

)
, n = 1, 2, · · · (64)

for 0 6 x 6 1 and ϕ a 2π-periodic function.
But, in some way he gave the main result in [39], where he studied averages

defined as in (58).

46 Definition. Let f be a measurable and periodic real-valued function on
the real line with period one. If, for some increasing sequence (nk)k>1 of integers
and almost all x, the limit limk→+∞Mnk

f(x) exists and is equal to c, then c is
called a partial integral of f .

Using this definition, the author established

47 Theorem. There is a non decreasing function f in (0, 1) with two dif-
ferent partial integrals.

This result announces in a certain way those of Fominykh and Pannikov.
In the study of averages as defined in (58),(59), (63) or (64), it is natural to

ask about the almost everywhere convergence, as we did in the case of the usual
Riemann sums. More precisely, do Jessen’s and Rudin’s Theorems carry over
to these new averages, and is there any relation between their convergence and
the convergence of the usual Riemann sums? Fominykh was the first author to
study such questions. In [13], he proved the following results (Theorem 1 page
86, Theorem 2 page 87, Theorem 3 page 88, Theorem 4 and 5 page 90 and
Theorem 6 page 92).

48 Theorem. Suppose f ∈ Lp(0, 1), where 1 6 p 6 +∞. Then
∣∣∣∣
∣∣∣∣Mn(f) −

∫ 1

0
f(x)dx

∣∣∣∣
∣∣∣∣
p

6 2ωp(
1

n
, f),

where ωp(
1
n , f) is the modulus of continuity in Lp(0, 1).

The author noticed, that it is impossible to improve the order of the estimate.
Moreover, by relation (60) this result remains true for the usual Riemann sums.
He also proved, that in the case p = 1, 2 is the best constant possible. As a
simple consequence of this Theorem, he obtained (this result is also true for the
sequence (Rnf)n>1):

49 Theorem. Suppose f ∈ L(0, 1). If the increasing sequence (nk)k>1 sat-
isfies the condition

∑
k>1 ω1(

1
nk
, f) < +∞, then for almost all x ∈ [0, 1]

lim
k→+∞

Mnk
f(x) =

∫ 1

0
f(t)dt.
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Moreover, he stated:

50 Theorem.

1) Suppose f ∈ L2(0, 1). If the modulus of continuity ω2(δ, f) = O(δε) for
some ε > 0. Then for almost all x ∈ [0, 1]

lim
n→+∞

Mnf(x) =

∫ 1

0
f(t)dt.

2) Suppose f ∼ a0
2 +

∑
k>1 ak cos (2πkx) +

∑
k>1 bk sin (2πkx), such that:

limn→+∞(|an| + |bn|) = 0,
∑

n>1(|an+1 − an| + |bn+1 − bn|) < +∞.

Then

lim
n→+∞

Mnf(x) =
a0

2
, for any x ∈ [0, 1]

In [14], the author established the following important Theorem (Theorem
1, page 69).

51 Theorem. For any sequence (nk)k>1 and any ε > 0, there exists a
function f which is the characteristic function of an open set A in [0, 1] for
which m(A) 6 ε but limk→+∞Mnk

f(x) = 1 for any x ∈ [0, 1].

Notice, that this result clearly shows that Jessen’s result is no longer true
when considering the averages (Mnf)n>1. Let us give a sketch of the proof. This
theorem is a consequence of the following lemma:

52 Lemma. Suppose a sequence (nk)k>1 and a number δ are given. There
exists then a function g, which is the characteristic function of an open set A, a
natural number q, and a set E ⊂ [0, 1], m(E) > 1−δ that satisfy the conditions:

∫ 1

0
g(x)dx = δ,

and for any x ∈ E there exists k (1 6 k 6 q) for which:

Mnk
f(x) = 1.

By using this lemma the author defines increasing numbers ki, functions fi

nonnegative on [0, 1] and sets Bi ⊂ [0, 1] with Lebesgue measure greater than
1 − δi, where δi = ǫ

2i+1 , such that the following conditions are fulfilled:

∫ 1

0
fi(x)dx = δi, (65)
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and for any x ∈ Bi there exists k (ki 6 k 6 ki+1) for which:

Mnk
fi(x) = 1. (66)

Suppose now, that f(x) = supk fk(x). Using (65), it is easy to check that∫ 1
0 f(x)dx < ε. Moreover, for the points of the set B = limk Bk we have by

(66)
lim

k→+∞
Mnk

f(x) = 1. (67)

Denote A = [0, 1] \ B. Thus, since for all i > 1, m(Bi) > 1 − δi, we have
m(A) = 0. Therefore, if we set f(x) = 1 on all the sets

Ani =

{
x ∈ [0, 1], x =

y + k

n
, y ∈ A, 0 6 k < ni

}
,

relation (67) will be fulfilled on the entire interval [0, 1].
In the same paper, Fominykh also established the two following results. Let

(nk)k>1 be a sequence of positive integers. Let α(k) denote the number of term
in (nk)k>1 which are divisors of k and put

αm = max
2m−26k<2m−1

α(k),

∆tf = f(x+ t) − f(x),

Ω(t) =

∫ 1

0
(∆tf)2dx.

53 Theorem. If
∑

m>2

αmΩ

(
1

2m

)
< +∞,

then

lim
k→+∞

Mnk
f(x) =

∫ 1

0
f(t)dt, for almost all x ∈ [0, 1].

As noticed by the author, this result remains true for the usual Riemann
sums, and thus implies a Marcinkiewicz-Salem result (see for example Theorem
6).

Nearly at the same time, Pannikov gave also a proof of Theorem 51. In fact,
he proved something more (see [37, page 504])

54 Theorem. For any sequence (nk)k>1 and any ε > 0,there exists a func-
tion f which is the characteristic function of an open set A on [0, 1] for which
m(A) 6 ε and

lim
k→+∞

1

nk

nk∑

j=1

f(x+
y + j

nk
) = 1,

for almost all pairs (x, y).
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It is easy to check that Theorem 51 is a consequence of this result. Let us
give a quick sketch of the proof.

Let

fε(x+ 1) = fε(x) =

{
1, if 0 < x < ε,

0, otherwise,
(68)

and

f(x) = sup
s
f ε

2s



( 2s+1∏

l=2s+1

nl

)
x


 (69)

Then f is the characteristic function of an open set in [0, 1] which satisfies the
condition : ∫ 1

0
f(x)dx 6

+∞∑

s=1

∫ 1

0
f ε

2s
(x)dx =

+∞∑

s=1

ε

2s
= ε.

Moreover, it is easy to check that for each natural number m such that 2s +1 6

m 6 2s+1, s = 1, 2, · · · , we have

1

nm

nm∑

j=1

f ε
2s

(( 2s+1∏

l=2s+1

nl

)(y + j

nm

))
= f ε

2s

(( ∏

2s+16l62s+1

l 6=m

nl

)
y

)
. (70)

Indeed, if g is periodic with period 1
n , n ∈ N∗, then

1

n

n∑

j=1

g

(
y + j

n

)
= g

( y
n

)
·

It follows from equation (69) that

f(x) > f ε
2s



( 2s+1∏

l=2s+1

nl

)
x


 , s = 1, 2, · · · (71)

Then, by using (68), (70) and (71), we get for arbitrary s ∈ N∗ and 2s + 1 6

m 6 2s+1,

µ

{
y ∈ (0, 1),

1

nm

nm∑

j=1

f
(y + j

nm

)
= 1

}

> µ



y ∈ (0, 1),

1

nm

nm∑

j=1

f ε
2s



(

2s+1∏

l=2s+1

nl

)(y + j

nm

)

 = 1





= µ

{
y ∈ (0, 1), f ε

2s

(( ∏

2s+16l62s+1

l 6=m

nl

)
y

)
= 1

}
=

ε

2s
,
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where µ denotes the Lebesgue measure on [0, 1].

Therefore, by summing over m

∑

m>3

µ

{
y ∈ (0, 1),

1

nm

nm∑

j=1

f
(y + j

nm

)
= 1

}
> +∞.

Notice that this leads directly to the Theorem 51.

Now, for arbitrary x

∑

m>1

µ

{
y ∈ (0, 1),

1

nm

nm∑

j=1

f
(
x+

y + j

nm

)
= 1

}
= +∞,

and thus

∑

m>1

µ⊗ µ

{
(x, y) ∈ (0, 1)2,

1

nm

nm∑

j=1

f
(
x+

y + j

nm

)
= 1

}
= +∞.

Since the sets involved in the above sum are independent, then by virtue of
Borel-Cantelli lemma the assertion of Theorem 54 follows.

In [38], Pannikov also established the following result.

55 Theorem. For every α > 0 there is an open set A ⊂ [0, 1], with m(A) <
α and for which its characteristic function

fA(x) =
a0

2
+
∑

k>1

(ak cos (2πkx) + bk sin (2πkx)) ,

satisfies the following conditions:

lim
n→+∞

n−1
n−1∑

j=0

fA(x+
y + j

n
) = 1,

for almost all pairs (x, y);

lim
n→+∞

n−1
n−1∑

j=0

fA(
y + j

n
) = 1,

for almost all y, and

∑

k>2

(a2
k + b2k)k

(1−ε) log 2
log log k < +∞, for all ε > 0.
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Let us finally indicate another line of results concerning numerical analysis.
The idea is to of approach the integral

∫ 1
0 f(x)dx by Riemann sums defined rel-

ative to random subdivisions. As a typical result, we may mention the following
one due to Kahane

56 Theorem. [20, page 1073]

Assume that f ∈ Lp[0, 1] with p > 2 and suppose that the points x
(n)
k are

chosen independently and at random from the intervals I
(n)
k =

[
k−1
n , k

n

]
, k =

1, . . . n. Then,

1

n

n∑

k=1

f(x
(n)
k ) −→

∫ 1

0
f(x)dx,

almost everywhere.

8 Concluding remarks

Riemann sums are classical objects for most of the mathematicians. But
their connections with many fields of the mathematics does not always seem so
obvious. In the above discussion we were mainly interested in the convergence
almost everywhere of these sums. Through this study, we could establish their
impact on analysis, ergodic theory and number theory. Even if there are many
interesting and important areas that are related to Riemann sums, but that we
have mentioned only briefly, or in some cases, not at all, the point of view we
chose allowed us to find some interesting and still open problems. Most of them
are associated with deep arithmetical properties of subsequences. For example
the conjecture of Marcinkiewicz-Salem, which is a still unsolved and probably
very difficult question. It is clear, that there are many interesting questions that
remain in this area, and it seems that the more we discover, the more questions
arise.

Acknowledgements. The authors thanks G. Tenenbaum for useful re-
marks concerning Section 6.

Final Note: Recent advances concerning Marcinkiewicz-Salem conjecture have
been obtained since the writing of this survey, by the second named author.
In [63], the validity of Marcinkiewicz-Salem conjecture for the randomly sampled
trigonometric system is proved. In [64], a very sharp sufficient condition for the
convergence almost everywhere of averages of Riemann sums is obtained. Results
concerning the Littlewood-Paley square function associated to these averages
are also established. These results are conforting the validity of Marcinkiewicz-
Salem conjecture.
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[40] A. J. Petrovič: Riemann sums for functions that are expanded in trigonometric series
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[42] G. Pólya, G. Szegö: Aufgaben und Lehrsätze aus der Analysis, Band I: Reihen, Inte-
gralrechnung, Funktionentheorie, p.37, Springer, Berlin, 1925; second edition, 1954.



On Riemann sums 49

[43] G. C. Rota: An “Alternierende Verfahren” for general positive operations, Bull. Am.
Math. Soc., 58, 1962, p. 85–102.

[44] J. J. Ruch: Contribution a l’étude des sommes de Riemann , Prépublication de l’I.R.M.A,
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