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Abstract. Groups which can be written as a product G = AB of two of its subgroups A and
B have been studied by many authors. A particular role in such investigations play groups of
the form G = AB = AM = BM where M is a normal subgroup of G and A∩M = B∩M = 1.
It turns out that there is a close connection between groups of this form and some nearrings,
especially so called local nearrings, so that many problems concerning such nearrings can be
reduced to questions about these groups. In the following we will discuss different aspects of
this connection and, in addition, consider in detail certain structural questions arised in the
case of almost cyclic subgroups A and B.

Keywords: factorized group; derivation; local nearring; multiplicative group.

MSC 2000 classification: MSC 2000 classification: Primary 16N20, 16U60. Secondary
20M25

1 Introduction

Let G = AB = {ab | a ∈ A, b ∈ B} be a group factorized by two subgroups A
and B and let N be a normal subgroup of G. Then AN ∩BN = N(A∩BN) =
N(B ∩ AN) = (A ∩ BN)(B ∩ AN) (see [1], Lemma 1.1.4). This means that
many problems about factorized groups can be reduced to groups of the form
G = AB = AM = BM where M is a normal subgroup of G.

IfM is abelian, then the intersections A∩M and B∩M are normal subgroups
of G and so the subgroup C = (A ∩M)(B ∩M) is normal in G. Passing to
the factor group G/C, we arrive at a group G = AB = AM = BM with
A ∩ M = B ∩ M = 1. In this case A and B are complements to M in the
semidirect product G = M ⋊ A, and M is a so-called radical A-module whose
properties were in detail described by the author in [33] and can also be found
in [3]. Although in the general case A ∩M and B ∩M need not be normal in
G, the groups of the form G = M ⋊ A = M ⋊ B = AB with a not necessarily
abelian normal subgroup M and complements A and B have also some special
properties and so are of interest. In what follows these groups will be called
triply factorized. It turns out that they appear in a natural way during the
study of nearrings, especially local nearrings. In the following we will discuss
some aspects of a connection between such groups and nearrings. The reader is
referred to the book by B. Amberg, S. Franciosi and F. de Giovanni [1] for many
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results about factorized groups and to the books by J. Clay [6], J. Meldrum [22]
or G. Pilz [27] for terminology, definitions and basic facts of nearrings.

2 Products of groups close to be abelian

It seems intuitively clear that the structure of a group G = AB factorized
by two subgroups A and B should somehow be determined by that of the fac-
tors A and B. Unfortunately, without additional assumptions on G there exist
only some few results in this direction. The first of them, obtained by a surpris-
ingly simple commutator calculation more that fifty years ago, is a well-known
theorem of Itô [17].

1 Theorem. If G = AB and the subgroups A and B are abelian, then the
group G is metabelian, i.e. its derived subgroup G′ is abelian.

Since here G′ coincides with the commutator subgroup [A,B], the proof is
reduced to verifying the relation [a, b]x

−1y−1
= [a, b]y

−1x−1
for all a, x ∈ A and

b, y ∈ B which is equivalent to the relation [a, b][x, y] = [x, y][a, b] (see also [1],
Theorem 2.1.1 for details).

Almost all results concerning the structure of the group G = AB with
abelian subgroups A and B are based on this theorem. One of the first is due
to P. Cohn [8] who proved that in the case of infinite cyclic subgroups A and B
there exists a non-trivial normal subgroup of G which is contained in A or B.
A complete description of this case can be found in [31].

A first generalization of Itô’s theorem for the case of central-by-finite sub-
groups A and B was obtained by N. Chernikov [5] after twenty five years.

2 Theorem. If G = AB is a group with central-by-finite subgroups A and
B, then G is soluble-by-finite.

The original proof of this theorem was also expounded in [1], Theorem 2.2.5.
Since central-by-finite groups are finite-by-abelian by Schur’s theorem, the fol-
lowing ”non-symmetrical” generalization of D. Zaitsev [39] should be seen in
relation with Theorem 2.

3 Theorem. Let the group G = AB be factorized by an abelian subgroup A
and a finite-by-abelian subgroup B. Then G is soluble-by-finite. Moreover, if the
subgroup B is nilpotent with derived subgroup B′ of order n, then G is soluble
with derived length at most 2 + 3 logn.

This theorem was in fact derived by Zaitsev as a corollary from his more
general result concerning groups factorized by an abelian subgroup A and an
FC-subgroup B. Taking the center Z(B) of B and developing Itô’s approach for
the commutator subgroup [A,Z(B)], he established in [39] the following criterion
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for the nonsimplicity of such factorized groups. Recall that an FC-group is a
group in which all conjugacy classes are finite.

4 Theorem. Let G = AB be a group factorized by an abelian subgroup A
and an FC-subgroup B. If the center of B is non-trivial, then G contains a
non-trivial normal FC-subgroup.

As an application, from this criterion and a well-known theorem of Kegel
and Wielandt about solubility of finite groups factorized by two nilpotent sub-
groups (see [1], Theorem 2.4.3) it follows that every group factorized by an
abelian subgroup and a locally nilpotent FC-subgroup is hyperabelian, i.e it has
an ascendant series of normal subgroups with abelian factors. Detailed proofs
of these results can also be found in [1], Section 7.3.

Some other result in this direction was later proved by Jabara [12].

5 Theorem. Let G = AB be a group factorized by an elementary abelian
2-subgroup A and a periodic subgroup B without elements of even order. If B
is hypercentral, i.e. it has an ascendant central series, then G is hyperabelian;
moreover, if B is soluble with derived length d, then G has derived length at
most 2d.

It should be noted that the theorems listed above are ones of the few results
on factorized groups G = AB with conditions imposed on subgroups A an B
and without further restrictions (like solubility or finiteness conditions) on G.

In connection with Itô’s theorem the following conjecture seems to be nat-
ural.

6 Conjecture. Every group G = AB with abelian-by-finite subgroups A
and B is metabelian-by-finite.

In such a form this conjecture was formulated by J. Wilson in [37] and
confirmed him for the case when the group G = AB is soluble-by-finite and
minimax. As a question, Conjecture 6 is also contained in the book of B. Amberg,
S. Franciosi and F. de Giovanni (see [1], Question 3). It was verified for linear
groups by the author [32] (observe that every soluble-by-finite and minimax
group is in fact linear) and for residually finite groups by J. Wilson (see [38]
or [1], Theorem 2.3.4). However, without these restrictions on G untill recently
there were no results known in this direction.

3 Linear products of abelian-by-finite groups

In this section it will be shown that the above conjecture is valid in the case
of linear groups. It is assumed that the reader knows some basic definitions and
simplest statements about linear algebraic groups and their Zariski topology. All
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of them can be found for instance in chapters 5 and 14 of the book of B.A.F.
Wehrfritz [36].

7 Theorem. Let the linear group G = AB be the product of two abelian-
by-finite subgroups A and B. Then G is metabelian-by-finite.

Recall that for each linear group G there exist a positive integer n and an
algebraically closed field F such that G can be viewed as a subgroup of the
group GL(n, F ) of all invertible n× n matrices over F . Let Ḡ be the closure of
G in the Zariski topology of GL(n, F ) and let (Ḡ)0 be the connected component
of Ḡ containing 1. It is well-known that (Ḡ)0 is a normal subgroup of finite index
in Ḡ and so if G0 = G ∩ (Ḡ)0, then Ḡ0 = (Ḡ)0.

8 Lemma. Let the linear group G = AB be the product of two subgroups A
and B. If G0, A0 and B0 are the connected components containing 1 of G, A
and B, respectively, then G0 ⊆ Ā0B̄0.

Proof. Clearly the subgroups A0 and B0 are contained in G0 and there
exist elements a1, . . . , an ∈ A and b1, . . . , bn ∈ B such that

G =
n⋃

i=1

aiA0B0bi.

It is easy to see that, for each i, either G0 ∩ aiA0B0bi = ∅ or aiA0B0bi ⊆ G0.
Therefore

G0 =
m⋃

j=1

aijA0B0bij

and hence

Ḡ0 =

m⋃

j=1

aijA0B0bij .

As Ḡ0 = (Ḡ)0, this implies that Ḡ0 = A0B0. Obviously aij Ā0B̄0bij ⊆ Ḡ0 and
either

aij Ā0B̄0bij ∩ aikĀ0B̄0bik = ∅

or
aij Ā0B̄0bij = aikĀ0B̄0bik .

By [36], Lemma 14.9, the set Ā0B̄0 contains a non-empty open subset U of its

closure Ā0B̄0 = A0B0 = Ḡ0. Since the intersection U ∩ aUb is non-empty for all
a, b ∈ Ḡ0 and the subgroup Ḡ0 is connected, it follows that aij Ā0B̄0bij = Ā0B̄0

for every j and so

G0 =
m⋃

j=1

aijA0B0bij ⊆
m⋃

j=1

aij Ā0B̄0bij = Ā0B̄0,
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as claimed. QED

The following lemma is another generalization of Itô’s theorem obtained by
a similar approach.

9 Lemma. Let G be a group and A, B its abelian subgroups. If H is a
subgroup of G contained in the set AB, then H is metabelian.

Proof. It suffices to show that for any elements g, h, x, y of H the commu-
tators [g, h] and [x, y] are permutable. Since H = H−1 ⊆ BA, it follows that
every element g ∈ H can be written in the form g = agbg = b̄gāg for some
elements ag, āg of A and bg, b̄g of B. Therefore

[g, h] = [agbg, ahbh] = [ag, ahbh]bg [bg, ahbh] = [ag, bh]bg [bg, ah]bh =

[b−1
g (agbg), bh][bg, b

−1
h (ahbh)] = [b−1

g (b̄gāg), bh][bg, b
−1
h (b̄hāh)] = [āg, bh][bg, āh].

Similarly [x, y] = [āx, by][bx, āy] for some elements āx, āy of A and bx, by of
B. Hence it remains to check that the commutators [āg, bh] and [āx, by] are
permutable.

Indeed, we have

āxbhā
−1
x = āxa

−1
h (ahbh)(ā−1

x b̄−1
x )b̄x = āxa

−1
h (hx−1)b̄x =

(āxa
−1
h ahx−1)(bhx−1 b̄x) = a0b0

with a0 = āxa
−1
h ahx−1 ∈ A and b0 = bhx−1 b̄x ∈ B. Next

byāgb
−1
y = by b̄

−1
g (b̄gāg)(b

−1
y a−1

y )ay = by b̄
−1
g (gy−1)ay =

(by b̄
−1
g b̄gy−1)(āgy−1ay) = b1a1

with b1 = by b̄
−1
g b̄gy−1 ∈ B and a1 = āgy−1ay ∈ A. Thus

[āg, bh]ā
−1
x b−1

y = [āg, a0b0]
b−1
y = [byāgb

−1
y , b0] = [b1a1, b0] = [a1, b0]

and similarly

[āg, bh]b
−1
y ā−1

x = [b1a1, bh]ā
−1
x = [a1, āxbhā

−1
x ] = [a1, a0b0] = [a1, b0].

Therefore [āg, bh]ā
−1
x b−1

y = [āg, bh]b
−1
y ā−1

x and so [āg, bh][āx,by ] = [āg, bh], as desired.
QED

Proof. of Theorem 7. Since the subgroups A and B of the group G =
AB ≤ GL(n, F ) are abelian-by-finite, their connected components A0 and B0

containing 1 are abelian. Let Ā0 and B̄0 be the closures of A0 and B0 in
the Zariski topology of GL(n, F ). Then Ā0 and B̄0 are abelian subgroups of
GL(n, F ) and G0 ≤ Ā0B̄0 by Lemma 8. Hence the subgroup G0 is metabelian
by Lemma 9 and so the group G is metabelian-by-finite. QED
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4 On products of cyclic-by-finite groups

The following theorem proved in [4] is a first result confirming Conjecture
6 in the case when no additional assumptions on the group G = AB with
abelian-by-finite subgroups A and B are given.

10 Theorem. Let the group G = AB be the product of two subgroups A and
B each of which has a cyclic subgroup of index at most 2. Then G is metacyclic-
by-finite and soluble.

Recall that the structure of the finite group G = AB satisfying the hypoth-
esis of Theorem 10 was investigated by B. Huppert [16], W. Scott [29] and V.
Monakhov [23, 24]. In particular, in [23] it was shown that in this case G is
soluble.

It is easy to see that up to isomorphism there exists only one non-abelian
infinite group with a cyclic subgroup of index 2, namely the infinite dihedral
group. As dihedral groups have ”enough” involutions, i.e. elements of order 2,
an essential role in the proof of Theorem 10 is played by the well-known fact
that every two involutions of a group generate a dihedral subgroup. A key role
of involutions can partly be illustrated by the proof of the following lemma
describing a situation in which infinite cyclic subgroups of the factors A and B
of the group G = AB are permutable.

11 Lemma. Let G be a group of the form G = AB with infinite dihedral
subgroups A and B whose intersection A ∩ B is of order 2. If <a> and <b>
are the cyclic subgroups of index 2 of A and B, respectively, then <a><b>=<
b><a>.

Proof. If c is the involution of A ∩ B, then cac = a−1 and cbc = b−1, so
that for all integers m,n the elements amc and cbn are involutions of G. Assume
that the element ambn is also an involution for some non-zero m,n and show
that then both m and n must be odd integers.

Indeed, otherwise one of the involutions amc or cbn is a conjugate of c because
a2kc = akca−k and cb2k = b−kcbk for every integer k. Since (amc)(cbn) = ambn =
(ambn)−1 = (cbn)(amc), this implies that c is centralized by an involution which
is different from c. On the other hand, <c>= A∩B and NA(A∩B) = A∩B =
NB(A∩B), so that NG(A∩B) = NA(A∩B)NB(A∩B) = A∩B. Therefore the
subgroup <c> is self-centralized and this means that both m and n are odd,
as desired.

Show now that the subgroups < a > and < b > are permutable. As every
element of G can uniquely be written in one of the forms amcbn or ambn for some
m,n, it suffices to prove that for any integers k, l,m, n the equality blak = amcbn

is impossible.

Indeed, in the other case for some k, l,m, n the following equalities hold:
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blakb−n = amc, a−mblak = cbn and b−lamb−n = akc. As the elements amc,
cbn and akc are involutions, this implies the equalities blakb−n = bna−kb−l,
a−mblak = a−kb−lam and b−lamb−n = bna−mbl which can be rewritten in the
form a−kbn−l = bl−nak, am−kb−l = blak−m and amb−l−n = bl+na−m. There-
fore the elements a−kbn−l, am−kb−l and amb−l−n are involutions and hence the
integers k, m − k and m must simultaneously be odd by proved above. But
if k and m are odd, then m − k is even and this contradiction completes the
proof. QED

Considering Theorem 10, one suspects that the following conjecture is valid.

12 Conjecture. Every group G = AB with cyclic-by-finite subgroups A
and B is metacyclic-by-finite.

It seems that a main problem here is to prove that G is soluble-by-finite
because in this case G is polycyclic-by-finite by a theorem of Lennox, Roseblade
and Zaitsev (see [1], Theorem 4.4.2). Since each cyclic-by-finite group contains
a finite normal subgroup modulo which it is either cyclic or infinite dihedral,
for this purpose it suffices to consider the case when at least one of these sub-
groups is finite-by-dihedral and so has ”enough” involutions. Indeed, if both
subgroups A and B are finite-by-cyclic, then they are central-by-finite and thus
the group G = AB is soluble-by-finite by Theorem 2. This gives a hope to
confirm Conjecture 12 developing arguments used for the proof of Theorem 10.

5 Triply factorized groups with

cyclic-by-finite complements

In this part Conjecture 12 will be verified for a special case of triply factorized
groups G = M ⋊ A = M ⋊ B = AB with a periodic normal subgroup M . The
above remarks concerning this conjecture show that M must be finite if it is
soluble-by-finite. Bearing in mind a subsequent application of these groups in
studying of local nearrings, we will restrict here our attention to the case when
M is a p-group. The following theorem gives for this case the same answer.

13 Theorem. Let G = M ⋊A = M ⋊B = AB be a triply factorized group
whose subgroups A and B are cyclic-by-finite. If the normal subgroup M is a
p-group, then it is finite.

The proof of this theorem is divided in several lemmas. The first of them is
elementary and describes the structure of cyclic-by-finite groups.

14 Lemma. Let A be a cyclic-by-finite group. Then either A is central-
by-finite or A contains a finite normal subgroup K such that the factor group
A/K is infinite dihedral. Moreover, in the second case there exist elements a of
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infinite order and c of finite order of A such that A = (K⋊ <a>) <c> with
c2 ∈ K and c−1ac = a−1x for some x ∈ K where x = 1 for the subgroup K of
odd order.

The next lemma is an immediate consequence of Theorem 2 and the remarks
concerning Conjecture 12.

15 Lemma. Let G = M ⋊ A = M ⋊ B = AB be a triply factorized group
with a periodic normal subgroup M and cyclic-by-finite subgroups A and B. If
M is soluble-by-finite or A is central-by-finite, then M is finite.

The following lemma deals with the case when M is a 2-group.

16 Lemma. Let G = M ⋊ A = M ⋊ B = AB be a group satisfying the
hypothesis of Theorem 13 and let A∩B = 1. If M is an infinite 2-group and A
contains no subgroup of order 4, then there exists an infinite abelian subgroup
Z of M normalized by a subgroup of finite index of G.

Proof. The subgroup A is not central-by-finite by Lemma 15 and so it
contains a finite normal subgroup K of odd order and an infinite cyclic subgroup
<a> such that A = K⋊(<a> ⋊ <c>) for some involution c ∈ A with ac = a−1

by Lemma 14. As MK = M(B ∩ (MK)) and M <a>= M(B ∩ (M <a>)),
there exist a finite normal subgroup L of B and elements y ∈M and b ∈ B such
that MK = ML, ay = b and <b>= B ∩ (M <a>). Furthermore, there exists
an involution d ∈ B such that M <c>= M <d> and cx = d for some x ∈M .
Clearly then B = L⋊ (<b> ⋊ <d>) with bd = b−1 and the elements y, x are
non-trivial because A ∩B = 1.

Show first that every element z ∈ M can be written in the form uamcbmdv
or ua−mbmv for some elements u ∈ K and v ∈ L such that uv ∈ M and some
integer m. As G = AB, the element z has to coincide with one of the ele-
ments uamcbndv, uamcbnv, uambndv or uambnv for some elements u ∈ K and
v ∈ L and some integers m,n. Clearly the elements amc ∈ A and bnd ∈ B
are involutions for any m,n and so the elements uamc ∈ A and bndv ∈ B
are of finite order. Therefore the equalities z = uamcbnv or z = uambndv
are excluded. Indeed, otherwise there are non-zero integers m,n such that
bn = (amc)u−1zv−1 ∈ (MK)(amc) or am = u−1zv−1(bnd) ∈ (MK)(bnd) from
which m = n = 0. But then z = ucv or z = udv and hence c = u−1zv−1 ∈
MK or d = u−1zv−1 ∈ MK which is not the case. Thus z can coincide
only with elements uamcbndv or uambnv for some m,n. Since ay = b and
so amym = bm for some element ym ∈ M and since cx = d, the equality
z = uamcbndv = uamcanyncxv = (uam−nv)(v−1cyncxv) implies the inclusion
uam−nv = z(v−1cyncxv)

−1 ∈ M which is possible only if m = n and uv ∈ M .
Similarly, from z = uambnv = uam+nynv it follows that m = −n and uv ∈ M .
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Thus

M = {uamcbmdv, ua−mbmv | m ∈ Z}, u ∈ K, v ∈ L, uv ∈M},

as desired.

Show next that there exist infinitely many positive integers m such that
the elements a−mbm ∈ M are involutions. Clearly we may assume that M
does not satisfy the minimal condition for abelian subgroups because other-
wise it is a Chernikov 2-group by a result of Shunkov [30]. Then there exist
an infinite elementary abelian subgroup E of M and two elements u ∈ K
and v ∈ L with uv ∈ M such that E contains the elements uamcbmdv or
ua−mbmv for infinitely many integers m. Assume that m < n and both elements
uamcbmdv and uancbndv belongs to E. Then uamcbmdv = v−1bmdamcu−1 and
so (v−1bmdamcu−1)(uancbndv) = (v−1db−m)(am−nbn−m)(bmdv) ∈ E. There-
fore the element am−nbn−m ∈ Ev−1db−m

is an involution for each n > m with
uancbndv ∈ E. Similarly, if both ua−mbmv and ua−nbnv are contained in E,
then am−nbn−m ∈ Ev−1b−m

for each n > m with ua−nbnv ∈ E.

Finally, let z = a−mbm be the involution of M in which the positive integer
m is minimal. If n is the least integer with n > m such that the element
a−nbn ∈ M is an involution, then from the equalities a−mbm = b−mam and
a−nbn = b−nan it follows that a−mbm−nan = a−nbn−mam and so the element
am−nbn−m = bm−nan−m is also an involution of M with 0 < n − m < n.
Therefore n − m = m by the choice of n and hence n = 2m. Arguing by
induction on n, this implies that for each k ≥ 1 the element a−kmbkm is an
involution of M . Since amz = bm and so a−kmbkm = za(k−1)m

· · · zam
z, it follows

that the involutions z, zam
, · · · , zakm

, · · · are permutable. Hence the subgroup
Z =<zakm

| k ∈ Z> is infinite abelian and normalized by the subgroups <am>
and <bm>. Thus Z is normalized by the subgroup <am, bm> whose index in
the group G = AB is finite by [1], Lemma 1.2.5, as desired. QED

The final lemma reduces the proof to the case when A contains no subgroups
of order 4.

17 Lemma. Let G = M ⋊ A = M ⋊ B = AB be a group satisfying the
hypothesis of Theorem 13 and let its normal subgroup M be infinite periodic. If
the subgroup A contains an involution i whose centralizer CA(i) in A is infinite,
then i is contained in a finite normal subgroup of G.

Proof. Clearly CA(i) is a subgroup of finite index inA and so the conjugacy
class {ia | a ∈ A} of i in A is finite. If the centralizer CM (i) of i in M is finite,
then the subgroup M is soluble-by-finite by a theorem of Shunkov [30] and so
finite by Lemma 15 which is not the case. Therefore CM (i) is infinite and hence
there exists an infinite subset A of A such that CM (i) = {aba | a ∈ A, ba ∈ B}.
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Clearly ba 6= ba′ if a 6= a′, so that the set {ba | a ∈ A} is also infinite. Since

iaba = i for each a ∈ A and thus ia = ib
−1
a , the set {ib

−1
a | a ∈ A} is finite

because so is the conjugacy class {ia | a ∈ A}. Therefore there exists an infinite
subset B of {b−1

a | a ∈ A} such that ib = ib
′

for all b, b′ ∈ B. Then the set
Bb−1 with b ∈ B is also infinite and centralizers i. Hence the centralizer CB(i)
is infinite and so has a finite index in B. But then the join <CA(i), CB(i)> is a
subgroup of finite index in G by [1, Lemma 1.2.5] and thus the conjugacy class
{ig | g ∈ G} of i in G is finite. Therefore the normal subgroup generated by this
class contains i and is finite by Dietzmann’s lemma. QED

Proof. of Theorem 13 Assume that the theorem is false and choose a
counterexample G = M⋊A = M⋊B = AB with an infinite p-subgroup M and
cyclic-by-finite subgroups A and B. Then A is not central-by-finite by Lemma
15 and so it contains a finite normal subgroup K such that the factor group
A/K is infinite dihedral. Since A and so B satisfies the maximal condition
on subgroups, the group G = AB satisfies the maximal condition on normal
subgroups by [1], Lemma 1.2.6. Therefore G contains a unique finite normal
subgroup N of maximal order. Passing to the factor group G/M∩N , one may be
assumed that M∩N = 1 and so [M,N ] = 1. Clearly in this case the intersection
A∩B ∩N is a normal subgroup of G. Factoring out this intersection, we arrive
at a group G = M ⋊ A = M ⋊ B = AB in which A ∩ B ∩ N = 1. Show that
then A and so B has no subgroup of order 4.

Indeed, otherwise the finite normal subgroup K of A contains an involution i
whose centralizer CA(i) is infinite. Hence i ∈ N by Lemma 17 and so i centralizes
M . Clearly i = xj for some x ∈ M and an involution j ∈ B, so that the
centralizer CB(j) is isomorphic to CA(i). Therefore j ∈ N by the same lemma
and thus x ∈ N . But then x = 1 and so i = j ∈ A ∩ B ∩ N , contrary to the
choice of G.

Thus A contains no subgroup of order 4 and hence its finite normal subgroup
K consists of all elements of odd order of A. Similarly B and its normal subgroup
L = B ∩ (KM) have the same property. Since the normalizers NA(K ∩ L) and
NB(K ∩ L) are of finite index in A and B, respectively, the normal closure of
the intersection K ∩ L in G is finite because the normalizer NG(K ∩ L) is of
finite index in G. Therefore K ∩L ⊆ N and so K ∩L = 1. This implies that the
intersection A∩B has no non-trivial elements of odd order and thus it must be
finite of order at most 2.

If A ∩ B is of order 2 and i is its involution, then NG(A ∩ B) = NA(A ∩
B)NB(A ∩ B) and thus the centralizer CG(i) is finite because so are the cen-
tralizers CA(i) and CB(i). But then the subgroup M is soluble-by-finite by the
above-mentioned theorem of Shunkov and so finite, contrary to the choice of
G. Hence A ∩ B = 1 and thus M is a 2-group. Indeed, since A contains an
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involution i and i = xj for some x ∈M and an involution j ∈ B, it follows that
<i, j >=<x> ⋊ <i>=<x> ⋊ <j>, so that the involutions i and j are con-
jugate in G = AB if M is a p-group with p 6= 2. But this is impossible because
otherwise iab = j for some a ∈ A and b ∈ B and so ia = jb−1

∈ A ∩B = 1.

Thus M is an infinite 2-group and therefore it contains an infinite abelian
subgroup Z whose normalizer NG(Z) is of finite index in G by Lemma 16.
Hence Z is subnormal in M and so its normal closure F in G is an infinite
nilpotent 2-subgroup. On the other hand, the factorizer X(F ) = AF ∩BF of F
in G = AB is a triply factorized group satisfying the hypothesis of Theorem 13
because X(F ) = F ⋊ (A ∩ BF ) = F ⋊ (AF ∩ B) = (A ∩ BF )(AF ∩ B) by [1],
Lemma 1.1.4. Therefore the subgroup F must be finite by Lemma 15 and this
contradiction completes the proof. QED

6 Semidirect products of groups and derivations

Throughout this section let A be a group acting on a group M , i.e. a homo-
morphism from A into the automorphism group Aut(M) of M is given, and let
G = M ⋊A be the semidirect product of M by A.

A mapping δ : A → M is a derivation (or 1-cocycle) from A into M if
(ab)δ = (aδ)bbδ for all elements a, b ∈ A.

For instance, for each m ∈ M the mapping δ : a 7→ [a,m] = m−am with
a ∈ A is a derivation from A into M which is called inner. Since aδ = aδ1δ

and 1δ = (aa−1)δ = (aδ)a−1
(a−1)δ, it follows that 1δ = 1 and (a−1)δ = aδ−a−1

.
Therefore the kernel Ker δ = {a | aδ = 1, a ∈ A} of δ is a subgroup of A. On
the other hand, the image Im δ = {aδ | a ∈ A} of A in M under δ need not be
a subgroup of M . If for some subgroup N of M there exists a subgroup C of A
such that N = {cδ | c ∈ C}, then we will say that N is a derivation image of
C. Clearly if A acts trivially on M , then every derivation δ : A → M is in fact
a homomorphism from A into M .

It is well-known that the derivations from A into M correspond to the com-
plements to M in G = A ⋉ M (see for instance [1], p. 107, or [28], p. 304).
The following theorem describes some properties of these derivations in terms
of complements to M in G = M ⋊A.

18 Theorem. Let A be a group acting on a group M and G = M ⋊ A. If
δ : A → M is a derivation and B = {aaδ | a ∈ A}, then B is a complement to
M in G and the following statements hold:

1) The derivation δ is inner if and only if B is conjugate to A in G.

2) Ker δ = A ∩B and in particular δ is injective if and only if A ∩B = 1.
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3) The derivation δ is surjective if and only if G = AB. In other words, M
is a derivation image of A if and only if G = M ⋊ A = M ⋊ B = AB is
a triply factorized group.

Proof. If δ is inner, then there exists m ∈ M such that aδ = m−am for
every a ∈ A. Therefore aaδ = a(m−am) = am and hence B = Am. Conversely,
if B = Am for some m ∈ M and a ∈ A, then am = bbδ for some b ∈ A. Since
a−1bbδ = a−1am ∈M , this implies a−1b = 1 and so aδ = m−am. This proves 1).

Now, if aδ = 1 for some a ∈ A, then a = aaδ ∈ A ∩B, so that Ker d ⊆ A ∩B.
On the other hand, if a ∈ A ∩B, then a(a−1(a−1)δ) ∈ B and so (a−1)δ ∈
B ∩M = 1. Therefore aδ = 1 and hence A ∩B ⊆ Ker d. This proves 2).

Finally, let δ be a surjective derivation, a ∈ A and m ∈M . Then m = bδ for
some b ∈ A and so am = abδ = (ab−1)(bbδ) belongs to the set AB. Therefore
G = AB. Conversely, if this equality holds, then m = bccδ for some elements
b, c of A and so bc ∈ A ∩M = 1. Hence m = cδ and this implies 3). QED

Examples. 1. (J. Lawrence [19].) Let D be a division ring and D∗ its
multiplicative group acting on the additive group of D by the right multi-
plication. Then every derivation from D∗ into D is inner. In other words,
each function δ : D∗ → D such that (xy)δ = (xδ)y + yδ must be of the
form xδ = c(x− 1) for a fixed element c ∈ D.

2. Let M be a group whose automorphism group Aut(M) contains a non-
abelian free subgroup F freely generated by a set S. If the cardinality
of M is not exceeded that of S, then there exists a surjective derivation
δ : F →M from F onto M .

Indeed, using the functional equation (xy)δ = (xδ)yyδ for x, y ∈ F , one can
extend every surjective mapping δ : S →M to a surjective derivation δ from F
onto M . QED

Although two complements A and B to M in G = M ⋊ A = M ⋊ B need
not be conjugate in general, they are isomorphic and so conjugate in an HNN-
extension of G. The following assertion describes this situation in detail.

19 Proposition. Let A and B be two complements to M in G = M ⋊ A
and let <u> be an infinite cyclic group. Denote by M⋆<u> the free product
of M and <u>. Then the action of A on M can be extended to that of A on
M⋆<u> so that the subgroups A and B are conjugate in the semidirect product
(M⋆<u>) ⋊A by the element u, that is Au = B.

Proof. Clearly for each element a ∈ A there exists a unique elementm ∈M
such that am ∈ B. The mapping δ : A → M defined by the rule aδ = m is a
derivation from A into M because (a1a)

δ = (aδ
1)

aaδ for all a, a1 ∈ A. Therefore
B = {aaδ | a ∈ A}. Put ua = u(aδ)−1 for each a ∈ A. As it is easily verified,
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this allows to extend the action of A on M to that of A on M⋆<u> and so to
consider the semidirect product (M⋆<u>)⋊A. Since au = aaδ for each a ∈ A,
this implies that Au = B, as desired. QED

In particular, if the subgroup M is abelian, then the commutator subgroup
[M,< u>] coincides with the derived subgroup of the free product M⋆< u>
and so is normal in the semidirect product (M⋆< u >) ⋊ A. Since the factor
group M⋆<u> /[M,<u>] is isomorphic to the direct product M× <u>, the
following statement is an immediate consequence of Proposition 19.

20 Corollary. If in the semidirect product G = M ⋊ A the normal sub-
group M is abelian and B is a complement to M in G, then there exists an
automorphism u of G such that G⋊ <u>= (M× <u>) ⋊A and B = Au.

7 Bijective derivations

In this section A is a group acting on a group M and δ : A→M is a deriva-
tion from A into M . The following assertion which is an immediate consequence
of Theorem 18 characterizes bijective derivations in terms of triply factorized
groups.

21 Proposition. A derivation δ : A → M is bijective if and only if in the
semidirect product G = M ⋊ A there exists a complement B to M in G such
that G = M ⋊A = M ⋊B = AB and A ∩B = 1.

22 Example. Let R be a radical ring, i.e. an associative ring whose set of
all elements forms a group under the adjoint multiplication r ◦ s = r + s+ rs
with r, s ∈ R which is called the adjoint group of R and denoted by R◦. Clearly
R◦ acts on R by the rule rs = r+ rs for all r, s ∈ R and the identity mapping ι
on R determines a bijective derivation from R◦ onto R. Thus the additive group
of every radical ring is a bijective derivation image of the adjoint group of this
ring. QED

Clearly if M is a bijective derivation image of A, then its structure is in-
creasingly influenced by the structure of A. Below we consider some simple cases
when the structure of M can completely be determined by A. A description of
groups factorized by two infinite cyclic subgroups with trivial intersection given
in [31] leads to the following result.

23 Proposition. If the group A is infinite cyclic and the derivation δ : A→
M is bijective, then the group M is either infinite cyclic or infinite dihedral.
Moreover, if A =<a> and aδ = x ∈ M , then the group G = M ⋊ A is one of
the following:

a) G =<x> × <a> with M =<x>;
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b) G = (<b> ⋊ <x>)⋊ <a> with M =<b, x | (bx)2 = x2 = 1>, ba = b−1

and xa = bx.

If the group A is finite cyclic, then the structure of its bijective derivation
imageM is in general more complicated. For the case when A is a cyclic p-group,
it can easily be derived from [31], Lemma 6, where a complete description of
triply factorized groups G = M⋊A = M⋊B = AB with A∩B = 1 is contained.

24 Lemma. Suppose the group A is cyclic of order pn and the derivation
δ : A → M is bijective. Then the group M is cyclic for p > 2 and either cyclic
or dihedral or generalized quaternion for p = 2. Moreover, if A =< a > and
aδ = x ∈M , then the semidirect product G = M ⋊A is one of the following:

a) G =< x > ⋊ < a > with M =< x | xpn
= 1 > and xa = x1+pm

, where
1 ≤ m ≤ n except for the case p = 2 ,n ≥ 2 in which 2 ≤ m ≤ n;

b) G = (<b> ⋊ <x>)⋊ <a> with M =<b, x | b2
n−1

= x2 = (bx)2 = 1>,
ba = b1+2m

and xa = bx, where 2 ≤ m ≤ n;

d) G = (< b >< x >)⋊ < a > with M =< b, x | b2
n−1

= 1, b2
n−2

= x2 =
(bx)2>, ba = b1+2m

and xa = bx−1, where 2 ≤ m ≤ n− 1.

Finally, the following assertion describes bijective derivation images of di-
hedral and generalized quaternion 2-groups. It is derived from [2], Lemma 5.6,
and [34], Lemma 8.

25 Lemma. Let δ : A → M be a bijective derivation from the group A of
order 2n ≥ 4 onto M . If A is dihedral or generalized quaternion and <a> is
the Frattini subgroup of A, then < a >δ=< aδ > except for the case n = 4 in
which <a>δ can also be an elementary abelian subgroup of M . In particular,
the group M either contains a cyclic subgroup of index 4 or is a group of order
16.

8 Nearrings

A (left) nearring (R,+, ·) is a set R with two binary operations + and ·
such that (R,+) is a not necessarily abelian group, (R, ·) is a semigroup and ·
satisfies the left distributive law with respect to +, i.e. r · (s + t) = r · s + r · t
for all elements r, s, t of R.

As usual, the group (R,+) is called the additive group of (R,+, ·) and de-
noted by R+. Its neutral element is denoted by 0. Furthermore, if r ∈ R and n
is a positive integer, then r · n or rn means r + · · · + r︸ ︷︷ ︸

n

. It is easy to verify that
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r · 0 = 0 and r · (−s) = −(r · s), so that r(sn) = (rs)n for all r, s of R and all
n ∈ Z.

Note that from the definition of (R,+, ·) it does not follow that 0 · r = 0 for
each r ∈ R. A nearring (R,+, ·) in which 0 ·r = 0 = r ·0 for every r ∈ R is called
a zero-symmetric nearring. If (R, ·) is a semigroup with an identity element 1,
i.e. r · 1 = 1 · r = r for every r ∈ R, then (R,+, ·) is called a nearring with
identity element 1. In this case the set of all invertible elements of (R, ·) is a
group which will be called the multiplicative group of R and denoted by R∗.

The concepts of a subnearring and a nearring homomorphism are defined
by the same way as for rings. In particular, if λ is a nearring homomorphism
of (R,+, ·), then its kernel Kerλ is a subnearring of (R,+, ·) whose additive
subgroup is normal in R+.

A subnearring I of (R,+, ·) is an ideal of (R,+, ·) if I = Kerλ for some λ.
It can simply be verified that

I is an ideal of R if and only if its additive group I+ is a normal subgroup
of R+ and for any elements r, s ∈ R and a ∈ I the inclusions ra ∈ I and
(r + a)s− rs ∈ I hold.

For each ideal I of (R,+, ·), the factor nearring (R/I,+, ·) is the factor
group R+/I+ with multiplication (r + I) · (s + I) = rs + I for all r, s ∈ R
and the mapping r 7→ r+ I determines a natural nearring homomorphism from
(R,+, ·) onto (R/I,+, ·) whose kernel is I.

In ring theory, left or right ideals of a ring are introduced as subgroups of
its additive group which are invariant under the left or right multiplication by
any element of this ring. For a nearring (R,+, ·), the same definition leads to
notions of left or right R-subgroups of R. For instance, for every r ∈ R the set
rR = {rs | s ∈ R} is a right R-subgroup of R. Furthermore, a subgroup M of
R+ is called an (R,R)-subgroup of R, if M is both a right and a left R-subgroup.
Note that in general there is no direct connection between (R,R)-subgroups and
ideals of R.

Obviously every right or left R-subgroup of R is even a subnearring of R. It
is easy to see that for every non-empty subset X of R the (right) annihilator

AnnR(X) = {r ∈ R | xr = 0 for all x ∈ X}

of X in R is a normal subgroup of the group R+. Moreover, if R is zero-
symmetric, then AnnR(X) is a right R-subgroup of R+. Furthermore, it follows
from the left distributive law that for each x ∈ R the mapping r 7→ xr, r ∈ R,
determines an endomorphism of R+ whose kernel coincides with AnnR(x) and
its image with xR. If in particular x = 0, then AnnR(0) and 0 ·R form subnear-
rings of R which are called the zero-symmetric part and the constant part of R
and denoted by Ro and Rc, respectively. Clearly if R is a nearring with identity
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element 1, then 1 ∈ Ro and R∗
o = Ro∩R

∗ because for each r ∈ R∗ the equality
0 · r = 0 implies 0 · r−1 = 0. Furthermore, Ro∩Rc = 0 and R = Ro+Rc because
r = (r − 0 · r) + (0 · r) for each r ∈ R.

26 Lemma. Let R be a nearring with unity 1. Then the set 1 + Rc is a
subgroup of R∗ isomorphic to the additive group R+

c and R∗ = R∗
o(1 +Rc) with

R∗
o ∩ (1 +Rc) = 1.

Proof. If s, t ∈ Rc, then (1 + s)(1 + t) = 1 + s+ t and so (1 + s)(1− s) =
(1 − s)(1 + s) = 1. Therefore 1 + Rc is a subgroup of R∗ and the mapping
1 + s 7→ s determines an isomorphism from this subgroup onto R+

c .
Since every element u ∈ R∗ can uniquely be written in the form u = r+ s =

r(1+ s) with r ∈ Ro and s ∈ Rc, this implies that r = u(1− s) ∈ R∗ ∩Ro = R∗
o

and hence R∗ has the required factorization. QED

The following lemma is concerned with conditions under which AnnR(X) is
an ideal of R. As usual, for any two subsets X and Y of R we put XY = {xy |
x ∈ X, y ∈ Y }.

27 Lemma. Let R be a nearring and X a non-empty subset of R. If XR ⊆
X, then AnnR(X) is an ideal of R.

Proof. If r, s ∈ R, a ∈ AnnR(X) and x ∈ X, then x((r + a)s − rs) =
(xr + xa)s − xrs = xrs − xrs = 0 and so (r + a)s − rs ∈ AnnR(X). Next, if
XR ⊆ X, then xr ∈ X and x(ra) = (xr)a = 0, so that ra ∈ AnnR(X). As
AnnR(X) is normal in R+, it is an ideal of R. QED

Examples. 1 . Every additive (not necessarily abelian) group A with
multiplication a · b = b for all a, b ∈ A forms a nearring (A,+, ·) which
will be called a constant nearring. Obviously every subgroup of the group
A is a left A-subgroup and so a subnearring of (A,+, ·) and every normal
subgroup of A is an ideal of (A,+, ·). On the other hand, A itself is the
only right A-subgroup of A because aA = A for each a ∈ A.

2 . Let A be an additive group and Map(A) the set of all mappings from
the group A into itself. For each α ∈ Map(A) and every a ∈ A, let aα

denote the image of a under α. Define the sum α+β and the product α ·β
of two mappings α and β of Map(A) by the rules aα+β = aα + aβ and
aα·β = (aα)β for every a ∈ A. Then it is easily verified that (Map(A),+, ·)
is a nearring with identity element ι which is the identity mapping on A.

Clearly the multiplicative group Map(A)∗ of (Map(A),+, ·) consists of all
bijective mappings of Map(A).

If A has at least two elements, then the nearring (Map(A),+, ·) is not zero-
symmetric and the subsets

Mapo(A) = {α ∈ Map(A) | 0α = 0}
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and
Mapc(A) = {α ∈ Map(A) | aα = 0α for all a ∈ A}

form the zero-symmetric and constant parts of (Map(A),+, ·). QED

9 Embeddings

Let R be a nearring, regarded as a subgroup of an additive group A. For
each r ∈ R and every a ∈ A, we define a mapping r̂ ∈ Map(A) by the rule

ar̂ =

{
ar if a ∈ R
r if a /∈ R.

It is easy to see that r̂ + s = r̂ + ŝ and r̂s = r̂ŝ for any r, s ∈ R, so that the
mapping r 7→ r̂, r ∈ R, determines a nearring homomorphism from R into
(Map(A),+, ·). Thus the kernel Ker ˆ = {r | r̂ = 0, r ∈ R} is an ideal of R
and the image R̂ is a subnearring of (Map(A),+, ·). This homomorphism can
be viewed as a natural representation of R in Map(A) leaving invariant the
zero-symmetric and constant parts of R. Indeed, the following equalities are
immediately verified.

28 Lemma. It holds R̂ ∩ Mapo(A) = R̂o and R̂ ∩ Mapc(A) = R̂c.

If Ker ˆ = 0, the natural representation of R in Map(A) is faithful and so
R can be identified with R̂. Clearly this is the case when A properly contains
R. If A = R, then Ker ˆ = AnnR(R) and so the natural representation of R in
Map(R) is faithful if and only if AnnR(R) = 0.

This leads to the following result which is well-known (see [27], Theorem
1.86 or [6], Theorem 1.3.27).

29 Proposition. Every (zero-symmetric) nearring can be embedded into a
(zero-symmetric) nearring with an identity element

Proof. Indeed, if R 6= 0 is a nearring and A is the direct sum of two copies
of R, then Lemma 28 shows that the natural representation of R in Map(A)
gives a desirable embedding. QED

It is well-known that any ring can be viewed as an ideal in a ring with
identity element. Unfortunately, this is not always possible for nearrings.

As for constant nearrings, the following holds.

30 Lemma. Let R be a constant nearring. Then R̂ = Mapc(R) and so R
can be regarded as the constant part of Map(R).

Proof. Indeed, if r, s ∈ R, then rŝ = rs = s = 0 · s = 0ŝ. Therefore
ŝ ∈ Mapc(R). Conversely, if α ∈ Mapc(R) and 0α = s, then rα = 0α = s = rŝ

for each r ∈ R. Hence α = ŝ ∈ R̂, as desired. QED
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A subnearring S of R is generated by a subset X of S if S is the smallest
subnearring of R containing X. In what follows let < X >ad and < X >mul

denote the subgroup of R+ and the subsemigroup of (R, ·) generated by X,
respectively.

31 Lemma. Let R be a nearring, X a subset of R and Y =<X>mul. For
each integer n ≥ 1, we put X1 =<Y >ad and Xn+1 =<Xn, XnY >ad. If S is
the subnearring of R generated by X, then S =

⋃∞
n=1Xn.

Proof. It is easy to see thatXn ⊆ S for every n ≥ 1 and the union
⋃∞

n=1Xn

is a subgroup of R+. Show that this union is also a subsemigroup of (R, ·) and
so a subnearring of R which must coincide with S. Clearly it suffices to verify
that XnXn ⊆ X2n for each n ≥ 1.

Indeed, let r, s ∈ Xn. If s ∈ X1, then s = y1 + · · · + ym for some elements
y1, . . . , ym of Y and so rs = ry1 + · · · + rym ∈<XnY >ad⊆ Xn+1. Arguing by
induction on n, we may assume that for all t ∈ Xn−1 the inclusion rt ∈ X2n−1

holds true. Since Xn =<Xn−1, Xn−1Y >ad, it follows that s = t1 + u1y1 + · · ·+
tm + umym for some elements t1, u1, . . . , tm, um of Xn−1 and y1, . . . , ym of Y .
Therefore rs = rt1 + (ru1)y1 + · · · + rtm + (rum)ym ∈ <X2n−1, X2n−1Y >ad =
X2n, as desired. QED

32 Lemma. Let N be a nearring with identity element 1, R its subnearring
and S the subnearring of N generated by the union R∪{1}. Then RS = R and
the right annihilator AnnS(R) of R in S is an ideal of S.

Proof. Put S1 =<R,1>ad and Sn+1 =<Sn, SnR>ad for each integer n ≥
1. Then S = ∪∞

n=1Sn by Lemma 31. Furthermore, RS1 = R and so R(S1R) ⊆ R.
By induction on n, this implies that RSn = R for each n ≥ 1 and thus RS = R.
Now it follows from Lemma 27 that AnnS(R) is an ideal of S. QED

10 Construction subgroups

Let R be a nearring with identity element 1 and V its additive subgroup.
Following P. Hubert [15], V will be called a construction subgroup of R if the
set 1 + V is a subgroup of the multiplicative group R∗ of R. Since in this case
1 + V = (1 + V )2 = 1 + V + (1 + V )V , it follows that (1 + V )V ⊆ V . In
particular, if R is a ring, then (1 + V )V = V + V 2 and so V 2 ⊆ V . Thus in
the ring case V is a subring of R. However in the general case the construction
subgroup V need not be a subnearring of the nearring R.

Examples. 1 . Let R be a ring with identity element 1 and S a subring
of R. Then S is a construction subgroup of R if and only if S is a radical
subring of R. Indeed, S = S◦ if and only if the set A = 1+S is a subgroup
of R∗.
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2 . Let R be a constant nearring, identified with the constant part of the
nearring Map(R) by Lemma 30. Then R is a construction subgroup of
Map(R). Indeed, if ι is the identity mapping on R, then A = ι+ Mapc(R)
is the set of all translations on R and so A is an isomorphic to R multi-
plicative subgroup of Map(R)∗. QED

Construction. If R is a nearring with identity element 1 and R∗ is its
multiplicative group, then for each s ∈ R∗ the mapping r 7→ s−1r with r ∈ R
determines an automorphism of the additive group R+. Therefore R∗ becomes
a group of automorphisms of R+ if its action on R+ is defined by the rule
rs = s−1r for every r ∈ R and s ∈ R∗.

Let A be a subgroup of R∗ and let M and N be A-invariant subgroups of
R+ such that N is normal in M . Then the action of A on the factor group
M/N is induced by that of R∗ on R+, so that (m+N)a = a−1m+N for every
m ∈M and a ∈ A. Hence one can construct the semidirect product G(M,N,A)
of M/N by A. To avoid a confusion, we shall look at G(M,N,A) as a group of
all pairs (a,m+N) with a ∈ A and m ∈M which are multiplied by the rule

(b, l +N)(a,m+N) = (ba, a−1l +m+N) for all a, b ∈ A and l,m ∈M.

Then the pair (1, N) is the identity element of G(M,N,A) denoted by 1 and
the groups A and M/N are identified with the subgroups {(a,N) | a ∈ A} and
{(1,m+N) | m ∈M} of G(M,N,A), respectively.

Suppose now that M is a construction subgroup of R and A = 1 + M .
Then the mapping δ : a = (1 + m)−1 7→ −m + N with m ∈ M determines a
surjective derivation from A onto M/N . Indeed, if l ∈ M and b = (1 + l)−1,
then b−1a−1 = (1 + l)(1 +m) = 1 + l+ (1 + l)m and ab = (1 + l+ (1 + l)m)−1,
so that (ab)δ = −(1 + l)m − l + N = b−1(−m + N) + (−l + N) = (aδ)b + bδ.
Hence it follows from Theorem 18 that

B = {((1 +m)−1,−m+N) | m ∈M}

is a subgroup of G(M,N,A) such that B∩M = 1, A∩B = {(1+m,N) | m ∈ N}
and

G(M,N,A) = (M/N) ⋊A = (M/N) ⋊B = AB

is a triply factorized group.
If in particular N = 0, then the group G(M, 0, A) = M ⋊ A = M ⋊ B =

AB is a triply factorized group with A ∩ B = 1. Clearly G(M, 0, A) is the
subgroup of G(R+, 0, R∗) consisting of all pairs (a,m) with a ∈ A and m ∈
M . In what follows, G(R) will be written instead G(R+, 0, R∗) and called the
group associated with the nearring R. Similarly, G(M) = G(M, 0, A) if M is a
construction subgroup of R and A = 1 +M .
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Conversely, as it was shown by P. Hubert in [15], every triply factorized
group G = M ⋊ A = M ⋊ B = AB with A ∩ B = 1 can be identified with a
group G(V ) for some construction subgroup V of Map(M).

Indeed, using Proposition 19, the group G can be extended to a group <
G, u>=<M,u> ⋊A such that uA = uM and Au = B. Then CA(u) = 1 because
Au ∩ A = 1. For convenience, in the following we apply for A and <G, u> the
multiplicative notation and for <M,u> additive. In these notations uA = u+M
and <G, u> consists of the elements ax with a ∈ A and x ∈<M,u> which are
multiplied by the rule (ax)(by) = (ab)(xb + y) for all b ∈ A and y ∈<M,u>.
Thus for each m ∈ M there exists a unique a ∈ A such that ua = u −m and
hence M = {−u+ ub | b ∈ A}.

Define now a mapping γ : A→ Map(M) by the rule

(−u+ ub)γ(a) = −u+ ua−1b for all a, b ∈ A.

Then γ is a group monomorphism fromA into the multiplicative group Map(M)∗

because γ(1) = ι is the identity mapping on M , Ker γ = 1 and γ(ac) = γ(a)γ(c)
for all a, c ∈ A.

33 Lemma. Let U = Im(γ) and V = −ι + U . Then V is a group with
respect to addition and so a construction subgroup of Map(M). Furthermore,
the mapping β : M → V given by

−u+ ub 7→ −ι+ γ(b−1) for each b ∈ A

is a group isomorphism.

Proof. Clearly for every a, c ∈ A there exists d ∈ A such that

(−u+ ua−1
) − (−u+ uc−1

) = −u+ ud−1
.

Thus it suffices to check that (−ι+ γ(a)) − (−ι+ γ(c)) = −ι+ γ(d). Indeed,

(−u+ ub)(−ι+γ(a))−(−ι+γ(c)) = (−ub + u) + (−u+ ua−1b)+

+(−uc−1b + u) + (−u+ ub) = −ub + ua−1b − uc−1b + ub =

(−u+ ud−1
)b = −ub + u− u+ ud−1b = (−u+ ub)−ι+γ(d),

as desired. QED

It is similarly verified that the mapping

am 7→ (γ(a), β(m))

with a ∈ A and m ∈ M determines a group isomorphism from G onto G(V ).
As a summary, we obtain the above-mentioned result of P. Hubert.
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34 Theorem. If G = M ⋊ A = M ⋊ B = AB is a triply factorized group
with A ∩ B = 1, then the nearring Map(M) contains a construction subgroup
V isomorphic to M such that A is isomorphic to ι + V ⊆ Map(M)∗ and G is
isomorphic to the group G(V ).

11 Local nearrings

Let R be a nearring with identity element 1 6= 0, and let LR be the set of all
elements of R which are not right invertible in R, i.e. LR = {r ∈ R | rR 6= R}. If
LR = 0, then R is a nearfield, i.e. every non-zero element of R is right invertible
an so invertible. In particular, every division ring can be regarded as a special
case of a nearfield.

Following C. Maxson [21], the nearring R will be called local, if LR forms a
subgroup of the additive group of R.

It should be noted that this definition is slightly distinct from the original
definition given by Maxson who supposed that R is zero-symmetric. This means
that the subgroup LR always contains the constant part Rc of R, so that in
particular every nearfield is zero-symmetric.

The following properties of LR were in fact established by C. Maxson in [21]
for the zero-symmetric case. The general case was considered in [2], Lemma 3.2.

35 Lemma. Let R be a local nearring. Then the following statements hold:

1) the elements of LR do not have left inverses in R and R = LR ∪R∗;

2) RLRR = R, i.e. LR is an (R,R)-subgroup of R;

3) every proper left or right R-subgroup of R is contained in LR;

4) the set 1 + LR is a subgroup of R∗, i.e. LR is a construction subgroup of
R.

Examples. 1 . Every local ring R is a zero-symmetric local nearring
whose subgroup LR coincides with the Jacobson radical of R.

2 . For a group A, the nearring Map(A) is local if and only if A is of or-
der 2. In this case the subgroup of all non-invertible elements of Map(A)
coincides with its constant part Mapc(A).

3 . The set xF [[x]] of all power series without constant terms over a field F
under the usual operations of componentwise addition of power series and
their composition given by

(
∞∑

i=1

aix
i) ◦ (

∞∑

j=1

bjx
j) =

∞∑

i=1

bi(
∞∑

j=1

ajx
j)i
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is a nearring P = (xF [[x]],+, ◦) with identity element x. It can be verified
that the element

∑∞
i=1 aix

i is invertible in P if and only if a1 6= 0. Hence
the additive subgroup x2F [[x]] is the set of all non-invertible elements of
P , so that P is a local nearring with LP = x2F [[x]].

4 . (C. Lyons and G. Peterson [20].) If G is a finite p-group and A is a
p-group of automorphisms of G containing the group Inn(G) of inner au-
tomorphisms of G, then the subnearring of Map(G) generated by A is
local.

5 . Let R be a local nearring whose additive group R+ is abelian. Then the
collection

Aaff (R) = {α ∈ Map(R) | xα = ax+ b, a, b ∈ R}

of all affine transformations of R under the operations of pointwise addi-
tion and function composition forms a nearring A = Aaff (R) with iden-
tity element ι where xι = x. Clearly Ao = {α ∈ A | xα = ax, a ∈ R} and
Ac = {α ∈ A | xα = b, b ∈ R}. In particular, both the zero-symmetric and
constant parts of A, regarded as subnearrings of A, are isomorphic to R.
Furthermore, an element α ∈ A is invertible in A if and only if xα = ax+b
for some a ∈ R∗ and b ∈ R. On the other hand, if LR is the subgroup of
all non-invertible elements of R, then

LA = {α ∈ A | xα = ax+ b, a ∈ LR, b ∈ R}

is the subgroup of all non-invertible elements of A. As R = R∗∪LR , it fol-
lows that A = A∗∪LA and so the nearring A of the affine transformations
of R is local. QED

It is clear that if LR is an ideal of R, then the factor nearring R/LR is a
nearfield. However, it is unknown at present whether for every local nearring
R the subgroup LR is an ideal of R. The following proposition shows that in
solving this problem it suffices to restrict oneself to the case of zero-symmetric
local nearrings.

36 Proposition. A nearring R with an identity element is local if and only
if its zero-symmetric part Ro, regarded as a subnearring of R, is local. Moreover,
in this case the subgroup LR is an ideal of R if and only if the intersection LR∩Ro

is an ideal of Ro.

Proof. If R is local, then R = LR ∪ R∗ by Lemma 35.1) and so Ro =
(Ro ∩LR) ∪ (Ro ∩R

∗). Since Ro ∩R
∗ = R∗

o, the subnearring Ro is also local. It
is also obvious that if LR is an ideal of R, then the intersection LR ∩ Ro is an
ideal of Ro.
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Conversely, let Ro be a local subnearring of R and R∗
o its multiplicative

group. If Lo is the subgroup of all non-invertible elements of Ro, then Ro =
Lo ∪ R

∗
o and so R = Ro + Rc = (Lo + Rc) ∪ (R∗

o + Rc). Clearly Lo + Rc is an
additive subgroup of R+ because 0 · (−c+ x+ c) = −c+ 0 · x+ c = 0 for each
c ∈ Rc and x ∈ Lo. Furthermore, R∗ = R∗

o(1 + Rc) = R∗
o + Rc by Lemma 26.

Therefore R is a local nearring with LR = Lo + Rc. Furthermore, if Lo is an
ideal of Ro, then LR is an ideal of R by [2], Lemma 3.3. QED

Each local nearring can also be characterized as a nearring R with identity
element whose multiplicative group R∗ additively generates R and acts transi-
tively by left multiplication on the set of all elements outside a proper subgroup
of R+. Recall that a group G acting on a set X is called transitive if for every
two elements x, y ∈ X there exists an element g ∈ G such that xg = y.

37 Proposition. Let R be a nearring with identity element and G(R) =
R+⋊R∗ the group associated with R. Then R is local if and only if R is additively
generated by R∗ and there exists a proper subgroup L of R+ such that in the
group G(R) the set R \ L is R∗-invariant and the action of R∗ on R \ L is
transitive.

Proof. Indeed, if R is a local nearring with the subgroup LR of all non-
invertible elements of R, then R = LR ∪ R∗ by Lemma 35.1), so that R is
generated by R∗ and the set R \ LR in G(R) has desired properties.

Conversely, let R be a nearring with identity element 1 which is additively
generated by R∗, and let L be a proper subgroup of R+ such that in the group
G(R) the set R \ L is R∗-invariant and the action of R∗ on R \ L is transitive.
Then there exists an element x ∈ R such that R∗x = R\L. If x is non-invertible
in R, then every element of R∗x is so. Therefore in this case R∗ ⊆ L and hence
R = L, contrary to the assumption. Thus x ∈ R∗ and so R∗ = R∗x = R \ L
which means that the nearring R is local. QED

12 Nearfields

According to the above definition, if F is a nearfield, then F = F ∗∪{0} and
so for every two non-zero elements x, y ∈ F there exists exactly one element
a ∈ F ∗ such that a−1x = y, namely a = xy−1. In other words, the action of F ∗

on F+ by left multiplication is sharply transitive. It turns out that a nearfield
is essentially the same as a group with an automorphism group acting sharply
transitive on its non-trivial elements.

38 Proposition. Let G be a group and A a group of automorphisms of
G. If A acts sharply transitive on the non-trivial elements of G, then up to
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isomorphism there exists only one nearfield F whose group G(F ) = F+ ⋊ F ∗

associated with F is isomorphic to the semidirect product of G by A.

Proof. Clearly two nearfields E and F are isomorphic if and only if their
associated groups G(E) and G(F ) are so. Therefore it suffices to show that such
a nearfield exists. Let G be written additively with neutral element 0 and let i
be a non-zero element of G. Since A is sharply transitive on G, it follows that
G = iA ∪ {0} and for every a, b ∈ A the equality ia = ib holds if and only if
a = b. Define an operation ”·” on G by the rule 0 · ia = ia · 0 = 0 and ia · ib = iba

for all a, b ∈ A. It is easy to see that this operation is associative and so (G, ·) is
a semigroup with identity element i. Show next that the operation ”·” satisfies
a left distributive law with respect to addition.

Indeed, for each c ∈ A either ib + ic = id for some d ∈ A or ib + ic = 0 and
then ic = −ib. Therefore in the first case ia · (ib + ic) = ia · id = ida = (id)a =
(ib + ic)a = iba + ica = ia · ib + ia · ic and in the second one ia · (ib + ic) = ia · 0 =
0 = iba − iba = iba + (−ib)a = iba + ica = ia · ib + ia · ic, as desired.

Thus the group G forms a nearring under addition and the multiplication
given by the operation ”·”. Since ia · ia

−1
= ia

−1a = i, this implies that every
non-zero element of the nearring (G,+, ·) is invertible and so F = (G,+, ·) is a
required nearfield. QED

It turns out that the additive structure of nearfields and usual fields are
identical. This follows from the following result obtained by B.H. Neumann [25],
J. Zemmer [41], et al.

39 Theorem. The additive group of every nearfield is abelian and so it is
either an elementary abelian p-group for some prime p or a torsion-free divisible
group.

A detailed account of results concerning nearfields can be found in the book
of H. Waehling [35]. Some of them are contained in the following theorem. Recall
that an element d of a nearring R is said to be distributive if (r+ s)d = rd+ sd
for all r, s ∈ R.

40 Theorem. Let F be a nearfield with identity element 1 and x, y ∈ F .
Then

1) if x2 = 1, then either x = 1 or x = −1;

2) (−1)x = x(−1);

3) (−x)y = −xy = x(−y);

4) the set D of all distributive elements of F is a division subring of F ;

5) if the multiplicative group F ∗ of F has an abelian subgroup of finite index,
then the additive group of D is a subgroup of finite index in F+.
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First examples of non-commutative nearfields were given by L. Dickson
(1905). The smallest of them is a non-commutative Dickson nearfield coupled
to the Galois field F9 of order 9.

41 Example. Define on the field F9 = F (+, ·) a new operation ∗ as follows:
for all a, b ∈ F we put

a ∗ b =

{
ab , if a4 = 1, and
ab3, otherwise.

Then a simple calculation shows that R = F (+, ∗) is a nearfield with quaternion
multiplicative group. QED

The finite nearfields were classified by H. Zassenhaus [40]. His proof provides
one of the first deep group theoretical classifications which can for instance be
found in the books of M. Hall [11], Chapter 20, or H. Waehling [35], Chapter
4. We state these results here as a theorem. As usual, SL(2, p) and Cn denote
special linear groups of degree 2 over fields with p elements and cyclic groups
of order n.

42 Theorem. Let F be a finite nearfield. Then F is of order pn for some
prime p and n ≥ 1 and its multiplicative group F ∗ is either metacyclic or iso-
morphic to one of the following seven groups:

1) SL(2, 3),

2) SL(2, 3) × C5,

3) a subgroup O(2, 7) of order 48 of the group SL(2, 7),

4) O(2, 7) × C11,

5) SL(2, 5),

6) SL(2, 5) × C7,

7) SL(2, 5) × C29.

Actually, Zassenhaus proved more than it is necessary to characterize the
finite nearfields. He essentially characterized the groups of fixed-point-free auto-
morphisms of finite groups. Furthermore, he shown that for each finite sharply
2-transitive permutation group G there exists a finite nearfield F such that G
is isomorphic to the group G(F ) associated with F . Recall that a permutation
group G acting on a set X is called sharply 2-transitive, provided that for every
two pairs (x1, x2) and (y1, y2) of elements of X with x1 6= x2 and y1 6= y2 there
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exists exactly one g ∈ G such that xg
i = yi for i = 1, 2. The question whether ev-

ery sharply 2-transitive permutation group can be realized as a group associated
with a nearfield is still open.

The following important result was obtained by M. Pettet [26].

43 Theorem. An infinite nearfield whose multiplicative group is a finite
extension of an FC-group is a commutative field.

13 Local nearrings: the general properties

Almost all results of this section can be found in [2], Section 3, and concern
the further properties of the subgroup LR of a local nearring R. The most part
of them pertains to the question under which conditions LR is an ideal of R.
Clearly in this case the subgroups LR and 1+LR must be normal in the additive
group R+ and the multiplicative group R∗, respectively.

On the other hand, it turns out that if the subgroup 1 + LR is normal in
R∗, then the converse is valid.

44 Lemma. Let R be a local nearring. Then LR is an ideal of R if and only
if 1 + LR is a normal subgroup of the multiplicative group R∗ of R.

Unfortunately, it is unknown at present whether LR is a normal subgroup of
R+. It is easy to see that in the other case LR must coincide with its normalizer
NR+(LR) in R+. Indeed, if LR 6= NR+(LR), then there exists some r ∈ R∗ such
that LR + r = r + LR. Multiplying this equality from the left on the element
sr−1 for each s ∈ R, we have LR + s = s+ LR which means that LR is normal
in R+.

In contrast to Lemma 44, it is also unclear whether LR is an ideal of R
provided that LR is a normal subgroup of R+. Nevertheless, the case under
consideration is much better than general. Indeed, the following assertion shows
that in this case there exists a local subnearring N of R containing LR as an
ideal.

45 Proposition. Let R be a local nearring and let LR be a normal subgroup
of the additive group R+ of R. Then the union N = LR∪NR∗(1+LR) is a local
subnearing of R and LR is an ideal of N .

Recall that an element r of a nearring R is said to be nilpotent if there
exists a positive integer n such that rn = 0. Clearly in this case 0 · r = r · 0 = 0,
so that every nilpotent element is zero-symmetric. If S is a subset of R and
Sm = (Sm−1)S for each integer m ≥ 2, then S is called nilpotent, provided that
Sm = 0 for some m ≥ 2, and S is nil if every element of S is nilpotent.

46 Lemma. Let R be a local nearring whose subgroup LR is nil. Then LR

is an ideal of R.
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Proof. It suffices to prove that for every r, s ∈ R and each a ∈ LR the
element t = (r + a)s− rs belongs to LR.

Suppose the contrary and let n be the least positive integer such that an = 0.
Then t ∈ R∗ and n > 1, so that an−1 6= 0. Since an−1t = an−1(r+a)s−an−1rs =
(an−1r + an)s − an−1rs = an−1rs − an−1rs = 0, this implies an−1 = 0 · t−1 =
a · (0 · t−1) = an = 0, contrary to the choice of n. QED

Note that the subgroup LR can be nil only if the local nearring R is zero-
symmetric. The following special case of [22], Theorem 5.38, gives some condi-
tions under which this subgroup is a nilpotent subset of R (but not necessarily
a nilpotent subgroup of R+ !).

47 Proposition. Let R be a zero-symmetric local nearring satisfying the
minimal condition on right R-subgroups. Then the subgroup LR is a nilpotent
subset of R.

As a consequence of the above results, a wide class of local nearrings whose
subgroups of non-invertible elements are always ideals can be determined. It
turns out that every finite local nearring has this property.

48 Corollary. If R is a local nearring satisfying the minimal condition on
right R-subgroups, then LR is an ideal of R.

Proof. If R is zero-symmetric, then the subgroup LR is a nilpotent subset
of R by Proposition 47 and so LR is an ideal of R by Lemma 46. The general
case follows now from Lemma 36. QED

Turn now to the additive structure of local nearrings. An additive not nec-
essarily abelian group A will said to be π-divisible for some set of primes π if for
every element a ∈ A and each prime p ∈ π the equation px = a has a solution
in A. If π coincides with the set of all primes, then A is called divisible which
means that the equation nx = a has a solution for every non-zero integer n. As
usual, p′ denotes the set of all primes distinct from the prime p.

49 Lemma. Let R be a local nearring. Then the subgroup LR contains a
left R-subgroup M such that M is normal in R+ and the factor group R+/M is
either a p-group of prime exponent p or a divisible torsion-free group. Moreover,
both R+ and LR are either p′-divisible groups whose elements of finite order are
p-elements or divisible torsion-free groups, respectively.

In particular, the periodic case of this lemma we state here as a corollary.

50 Corollary. Let R be a local nearring with identity element 1 satisfying
one of the following statements:

1) the additive group R+ is periodic, or

2) the subgroup LR is periodic and non-trivial.
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Then R+ is a p-group of finite exponent for some prime p.

Proof. Indeed, if statement 1) holds, then R+ is a p-group for some p by
Lemma 49 and so 1 · pn = 0 for some n. Therefore Rpn = 0, as desired.

Now let statement 2) hold and 0 6= x ∈ LR. Then the right annihilator
AnnR(x) = {r ∈ R | xr = 0} is a normal subgroup of R+ and the factor group
R+/AnnR(x) is isomorphic to the subgroup xR of R+. Since both AnnR(x) and
xR are contained in LR by Lemma 35, the group R+ is periodic and so it is a
p-group of finite exponent by 1). QED

On the other hand, it was proved by P. Hubert [13] that every p-group of
finite exponent can be embedded in the additive group of a local nearring.

As another application of Lemma 49, we have also the following assertion.

51 Corollary. Let R be a local nearring whose subgroup LR has finite index
in the additive group R+ of R. Then LR is a normal subgroup of R+.

Proof. Indeed, the subgroup LR contains a normal subgroupM of R+ such
that the factor group R+/M is either a p-group for some prime p or a divisible
torsion-free group by Lemma 49. Since LR/M is a subgroup of finite index in
R+/M , it is subnormal in R+/M and hence LR is subnormal in R+. Thus LR

is normal in R+ by the remarks made after Lemma 44. QED

In connection with the above results the following conjecture seems to be
valid.

52 Conjecture. If R is a local nearring whose subgroup LR is of finite
index in the additive group of R, then LR is an ideal of R.

In particular, it follows from Proposition 45 that this conjecture is true if
LR has a prime index in R+.

It turns out that for every infinite local nearring R which is not a nearfield
the subgroup LR must be infinite.

53 Lemma. Let R be a local nearring whose subgroup LR is finite and
non-zero. Then R is finite.

Proof. The right annihilator AnnR(LR) =
⋂

a∈LR
AnnR(a) of LR in R has

finite index in R+ because LR is finite and aR ⊆ LR for every a ∈ LR by Lemma
35. Hence, if R is infinite, the intersection R∗ ∩AnnR(LR) is non-empty and so
LR · r = 0 for some r ∈ R∗. But then LR = {0 · r−1} and thus LR = 0, contrary
to the hypothesis of the lemma. Therefore R must be finite, as desired. QED

The final result of this section concerns the structure of the subgroup LR

of a finite local nearring R. Recall that R+ is a p-group for some prime p by
Corollary 50 and so R is of order pn for some positive integer n As above, if G
is a group, then Φ(G) denotes the Frattini subgroup of G.
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54 Theorem. Let R be a finite local nearring of order pn with identity
element 1 and let G(R) = R+ ⋊R∗ be the group associated with R. Then H =
R+ ⋊ (1 + LR) is the normal Sylow p-subgroup of G(R) and LR = R+ ∩ Φ(H).
In particular, if the subgroup LR is non-abelian, then its center is non-cyclic.

Proof. Note first that LR is an ideal of R by Corollary 48 and so 1+LR is a
normal p-subgroup of R∗ by Lemma 44. Therefore H is a normal p-subgroup of
G(R) and the factor groups G(R)/H and R∗/(1+LR) are isomorphic. Since the
factor nearring R/LR is a nearfield of order pm for some positive integer m ≤ n,
its multiplicative group is of order pm −1 and isomorphic to R∗/(1+LR). Thus
G(R)/H is of order pm − 1 and so H is the Sylow p-subgroup of G(R). Show
next that LR = R+ ∩ Φ(H).

For convenience, we shall look at G(R) as a group of all pairs (t, r) with
t ∈ R∗ and r ∈ R which are multiplied by the rule (u, s)(t, r) = (ut, t−1s + r)
for all t, u ∈ R∗ and r, s ∈ R. Then the pair (1, 0) is the identity element of
G(R) denoted by 1 and the groups R+, R∗, LR and 1 + LR are identified with
the subgroups M = {(1, r) | r ∈ R}, A = {(t, 0) | t ∈ R∗}, L = {(1, s) | s ∈ LR}
and U = {(u, 0) | u ∈ 1 + LR} of G(R), respectively. In this notation we have
to prove that L = M ∩ Φ(H).

As H = M⋊U is a p-group, its Frattini subgroup Φ(H) contains the derived
subgroup H ′. Put e = (1,1). Then e ∈ M , eU = eL and M = eA ∪ L because
R = R∗ ∪ LR by Lemma 35. This implies L = e−1eU = [e, U ] ⊆ H ′ and hence
L ⊆M ∩ Φ(H).

Conversely, the additive group of the nearfield R/LR and so the factor group
M/L is abelian by Theorem 39. Furthermore, the subgroup A acts transi-
tively on M/L and hence M/L is a minimal normal subgroup of the factor
group G(R)/L. As H/L is a normal p-subgroup of G(R)/L, its Frattini sub-
group Φ(H/L) = Φ(H)/L intersects trivially the subgroup M/L. Therefore
M ∩ Φ(H) ⊆ L and so M ∩ Φ(H) = L.

Finally, as it has been proved by B. King [18], every non-abelian normal
subgroup of a finite p-group contained in its Frattini subgroup has a non-cyclic
center. This implies in particular that if the subgroup LR is non-abelian, then
its center is non-cyclic. QED

14 Local nearrings with cyclic-by-finite

multiplicative group

In this final part the results about triply factorized groups are applied for
studying local nearrings whose multiplicative groups are close to cyclic groups.
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55 Lemma. If R is a local nearring whose multiplicative group R∗ is poly-
cyclic-by-finite, then the additive group of R is a p-group for some prime p.

Proof. Let P be a subnearring of R generated by its identity element
1, so that P is a homomorphic image of the ring Z of integers. Then P is a
commutative subring of R and the intersection LR ∩ P is an ideal of P such
that the factor ring P/LR ∩ P is a field. If S = 1 + (LR ∩ P ), then S is a
subsemigroup of R∗ and therefore the ring of quotients PS = PS−1 is a local
subring of R.

If P is isomorphic to Z, then PS is a local subring of the field Q of rational
numbers and so the multiplicative group P ∗

S must contain a free abelian sub-
group of infinite rank. However P ∗

S ⊆ R∗ and this implies a contradiction. Hence
P is finite and so isomorphic to the residue ring Z/pnZ for some n ≥ 1. Thus
1 · pn = 0 and so R+ is a group of exponent pn. QED

56 Theorem. Let R be a local nearring whose multiplicative group R∗ has
a cyclic subgroup of finite index. Then R is finite of order pn for some prime p
and a positive integer n.

Proof. Since the group LR of all non-invertible elements of R is a con-
struction subgroup of R by Lemma 35.3), the group G(LR) = LR ⋊ (1 + LR)
associated with LR is a triply factorized group G = M⋊A = M⋊B = AB with
subgroups A and B isomorphic to 1+LR and a normal subgroup M isomorphic
to LR. As 1+LR is a subgroup of R∗, the subgroups A and B are cyclic-by-finite
and the subgroup M is a p-group of finite exponent by Lemma 55. Therefore M
is finite by Theorem 13 and so either LR = 0 or the nearring R is also finite by
Lemma 53. Thus R is infinite only if it is a nearfield. Since an infinite nearfild
with cyclic-by-finite multiplicative group is a commutative field by Theorem 43,
it is a field of prime characteristic which is finitely generated as a ring and so
must be finite by Hilbert’ Nullstellensatz. This contradiction shows that R is
finite, as desired. QED

In conclusion some classification results about finite local nearrings with
multiplicative groups close to cyclic will be given. Finite rings with cyclic mul-
tiplicative groups were classified by R. Gilmer in [9]. An analogous result for
local nearrings was obtained by A. Gorodnik [10].

57 Theorem. Let R be a local nearring whose multiplicative group R∗ is
cyclic. If R is not a local ring, then its additive group R+ is abelian of order 8
and one of the following statements holds.

1) R+ =<1> ⊕ <r> with 1 · 4 = r · 2 = 0, LR =<1 · 2> ⊕ <r> and the
semigroup (R, ·) satisfies the relations:

(1 + r)r = r + 1 · 2 and r2 = r · 2 = (1 · 2 + r)r = 0.
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2) R+ =<1> ⊕ <r1> ⊕ <r2> with 1 · 2 = r1 · 2 = r2 · 2 = 0, LR =<r1>
⊕ <r2> and the semigroup (R, ·) satisfies the relations:

(1 + r1)r1 = r2, (1 + r2)r1 = r2,
(1 + r1)r2 = r1, (1 + r2)r2 = r1

and
rirj = (r1 + r2)ri = 0 for all 1 ≤ i, j ≤ 2.

In particular, the subgroup LR has a zero multiplication and R∗ = 1 + LR.

A description of local nearings with dihedral multiplicative groups was begun
by B. Amberg, P. Hubert and the author in [2] and completed by P. Hubert in
his dissertation [14].

58 Theorem. Let R be a local nearring whose multiplicative group R∗ is
dihedral. Then the additive group of R is either a 3-group of order at most 9 or
a 2-group of order at most 16 and the subgroup LR is abelian.

It was shown by J. Clay and C. Maxson [7] that a generalized quaternion
group cannot be the additive group of any nearring with identity element. On
the other hand, the local nearrings whose multiplicative group is generalized
quaternion were recently described by S. Di Termini and the author in [34].
Recall that an abelian p-group is said to be of type (pn1 , . . . , pnk) with posi-
tive integers n1, . . . , nk if it is the direct product of k cyclic groups of orders
pn1 , . . . , pnk , respectively.

59 Theorem. Let R be a local nearring whose multiplicative group R∗ is
generalized quaternion. Then the following statements hold.

1) The group R∗ is either quaternion of order 8 or generalized quaternion of
order 16.

2) The additive group R+ of R is abelian of one of types (3, 3), (2, 2, 2, 2),
(2, 2, 4), (2, 2, 2, 2, 2) and (2, 2, 2, 4).

3) The subgroup LR of all non-invertible elements of R is trivial if R+ is of
type (3, 3) and it is elementary abelian of index 2 in R+ otherwise.

Conversely, for each abelian group of type listed in statement 2) there exists
at least one R with additive group R+ of this type whose multiplicative group
R∗ is generalized quaternion.

Using some calculations made by means of a GAP-program based on the
package “SONATA, version 2.3” of computer algebra system GAP 4.4, it can
be shown that the number of non-isomorphic local nearrings R of order 16 with
quaternion group R∗ is divided in two halves: there exist 24 such nearrings with
R+ of type (2, 2, 2, 2) and as many with R+ of type (2, 2, 4).
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Examples. The following two examples of local nearrings of order 16 were
chosen by means of a GAP-program based on the package “SONATA, version
2.3” and now they can manually be verified.

1 . Let R be the nearring with identity 1 whose additive group R+ is abelian
of type (2, 2, 2, 2) with generators 1, r1, r2, r3 and the semigroup (R, ·)
satisfies the relations:

(1 + r2)r1 = r1, (1 + r3)r1 = r1,
(1 + r2)r2 = r1 + r2, (1 + r3)r2 = r2,
(1 + r2)r3 = r1 + r3, (1 + r3)r3 = r1 + r3,
r22 = r23 = r1 and r21 = rirj = 0
for all i 6= j, 1 ≤ i, j ≤ 3.

Then the subgroup L of R+ generated by the elements r1, r2, r3 consists
of non-invertible elements of R and the multiplicative subgroup of R∗

generated by the elements a, b is quaternion of order 8 and so must coincide
with R∗ because L ∩ R∗ = ∅ and L has the same order. Hence R∗ is the
quaternion group and R = L ∪R∗ is a local nearring with LR = L.

2 . Let R be the nearring with identity 1 whose additive group R+ is abelian
of type (2, 2, 4) with generators r1, r2,1 and the semigroup (R, ·) satisfies
the relations:

(1 + r1)r1 = 1 · 2 + r1, (1 + r2)r1 = r1,
(1 + r1)r2 = 1 · 2 + r2, (1 + r2)r2 = 1 · 2 + r2,
r1r2 = 0, r21 = r22 = r2r1 = 1 · 2,

(r1 + r2)r1 = 0, (r1 + r2)r2 = 1 · 2,
(1 · 2) · r1 = (1 · 2) · r2 = 0.

Then the subgroup L of R+ generated by the elements r1, r2,1 · 2 consists
of the non-invertible elements of R and the multiplicative group R∗ is
quaternion of order 8 because it is generated by the elements a = 1 + r1
and b = 1 + r2 which satisfy the relations a2 = b2 = −1 and b−1ab = a−1.
Thus R = L ∪R∗ is a local nearring with LR = L. QED

The final two examples of local nearrings of order 32 arose from studying
generalized quaternion groups of automorphisms of the abelian groups of type
(2, 2, 2, 2, 2) and (2, 2, 2, 4). Most calculations were also made with computer
algebra system GAP 4.4.

3 . Let R be the nearring with identity 1 whose additive group R+ is abelian
of type (2, 2, 2, 2, 2) with generators 1, r1, r2, r3, r4 and whose semigroup
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(R, ·) satisfies the relations:

(1 + r1)r1 = r4, (1 + r2)r1 = r1 + r2 + r3 + r4,
(1 + r1)r2 = r2 + r3 + r4, (1 + r2)r2 = r2 + r4,
(1 + r1)r3 = r3 + r4, (1 + r2)r3 = r3 + r4,
(1 + r1)r4 = r4, (1 + r2)r4 = r4 and

(ri + rj + rk)rl = (ri + rj + rk + rl)rm = 0 for all
1 ≤ i, j, k, l,m ≤ 4.

Then the group R∗ is generalized quaternion of order 16 and R = L∪R∗,
so that R is a local nearring with LR = L.

4 . Let R be the nearring with identity 1 whose additive group R+ is abelian
of type (2, 2, 2, 4) with generators r1, r2, r3 and 1 first three of which are
of order 2 and let the semigroup (R, ·) satisfies the relations:

(1 + r1)r1 = 1 · 2 + r1 + r3, (1 + r2)r1 = 1 · 2 + r1,
(1 + r1)r2 = r2 + r3, (1 + r2)r2 = 1 · 2 + r2,
(1 + r1)r3 = r1 + r2 + r3, (1 + r2)r3 = 1 · 2 + r1 + r2 + r3

and (ri + rj)rk = (ri + rj + rk)rl = 0 for all
1 ≤ i, j, k, l ≤ 4.

Then the subgroup L of R+ generated by the elements r1, r2, r3 coincides
with the set of all non-invertible elements of R and the multiplicative
group R∗ is generated by the elements a = 1+r1 and b = 1+r2 satisfying
the relations a8 = b4 = 1, a4 = b2 and b−1ab = a−1. Therefore the group
R∗ is generalized quaternion of order 16 and hence R = L ∪ R∗, so that
R is a local nearring with LR = L, as desired. QED
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[17] Itô N.: Über das Product von zwei abelschen Gruppen, Math. Z., 62 (1955), 400–401.

[18] King B. W.: Normal subgroups of groups of prime-power order, In: Proc. Second Intern.
Conf. on the Theory of Groups (Australian Nat. Univ., Canberra, 1973), 401–408. Lecture
Notes in Math., Vol. 372, Springer, Berlin, (1974).

[19] Lawrence J.: The cocycle equation in division rings, Aeq. Math., 22 (1981), 70–72.

[20] Lyons C.: Peterson, G., Local endomorphism near-rings, Proc. Edinburg Math. Soc., 31
(1988), 409–414.

[21] Maxson C. J.: On local near-rings, Math. Z. 106 (1968), 197–205.

[22] Meldrum J. D. P.: Near-rings and their links with groups. Pitman, London, (1985).

[23] Monakhov V. S.: The product of two groups, one of which contains a cyclic subgroup of
index ≤ 2, Mat. Zametki, 16 (1974), 285–295.

[24] Monakhov V. S.: On the product of two groups with cyclic subgroups of index 2, (Russian)
Vesti Akad. Navuk. Belarusi, Ser. Fiz-Mat. Navuk, no. 3 (1996), 21–24.

[25] Neumann B. H.: On the commutativity of addition, J. London Math. Soc. 15 (1940),
203–208.

[26] Pettet M. R.: Free actions on virtually FC-groups, Arch. Math. (Basel), 86 (2006),
26–30.

[27] Pilz G.: Near-rings. The theory and its applications. North Holland, Amsterdam, (1977).

[28] Robinson D. J. S.: A course in the theory of groups. Springer-Verlag, Berlin, (1982).

[29] Scott W. R.: Solvable factorizable groups, Illinois J. Math., 1 (1957), 389–394.

[30] Shunkov V. P.: Periodic groups with an almost regular involution, Algebra i Logika 11
(1972), 470–493.





Products of groups and local nearrings 211

[31] Sysak Ya. P.: Products of locally cyclic torsion-free groups, Algebra i Logika, 25 (1986),
672–686.

[32] Sysak Ya. P.: Products of almost abelian groups, In: Investigations of groups with re-
strictions for subgroups, (Russian), Akkad. Nauk Ukrain. SSR, Inst. Mat., Kiev, (1988),
81–85.

[33] Sysak Ya. P.: Some examples of factorized groups and their relation to ring theory, In:
Infinite Groups (1994) (Ravello), W. de Gruyter, Berlin (1996), 257–269.

[34] Sysak Ya. P., Di Termini S.: Local nearrings with generalized quaternion multiplicative
group, Ricerche Mat., 56 (2007), 61–72.

[35] Wähling H.: Theorie der Fastkörper. Thales Verlag, Essen, (1987).

[36] Wehrfritz B. A. F.: Infinite Linear Groups. Springer-Verlag, Berlin, (1973).

[37] Wilson J. S.: On products of soluble groups of finite rank, Comment. Math. Helv., 60
(1985), 337–353.

[38] Wilson J. S.: A note on products of abelian-by-finite groups, Arch. Math. (Basel), 54
(1990), 117–118.
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