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1 Introduction

At the conference Advances in Group Theory and Applications 2007 in
Otranto, Italy I was given the opportunity to present three lectures concerned
with the groups in the title of this paper. This paper represents an expanded
version of the lectures. As such, the paper is somewhat informal. Some sketch
proofs have been included, initially to give the audience (and now the reader)
some idea of how the theory of groups of finite rank has progressed. I wanted
to give a brief survey of some known results following my own preferences in
the subject which hopefully would convey some of the history of groups of finite
rank and which would also include work of various collaborators and myself.

Certainly many other mathematicians have done work on groups of finite
rank and most of these are not mentioned in this paper. I apologize to them
for any omissions and hope that I have correctly attributed results mentioned
here. It is appropriate here to also point the reader to the influential texts [36]
and [23] where more information can be found concerning groups of finite rank.
The paper [38] is also an excellent source for anyone wishing to learn much
more.

The topics of my talks were concerned, as the title implies, with the various
ranks of groups. The talks were meant to be quite general with some sketch
proofs, but accessible to the many students in the audience. The first talk was
concerned with the various definitions and examples and in it I discussed the-
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orems of Belyaev and Šunkov in locally finite groups. Section 2 contains this
material. In the second talk I discussed the general situation and included the
work of Baer and Heineken and also more recent work of N. S. Černikov. This
material is described in Section 3. Section 4 contains the material from the third
talk and is concerned with some recent developments in the subject.

2 Locally finite groups

An important concept in group theory is the rank of a group; since the word
rank is in rather common usage in mathematics some authors refer to the special
rank or the Prüfer rank of a group. Various people have studied groups of finite
rank and groups with related rank conditions and in this article I shall give a
brief history of the subject.

1 Definition. A group G has finite (or Prüfer or special) rank r if every
finitely generated subgroup of G can be generated by r elements and r is the
least integer with this property. If no such integer r exists then we say that the
group has infinite rank. We denote the rank of the group G by r(G).

Mal’cev first defined the rank of a group in [25]. In this paper Mal’cev also
defined the general rank of a group which we shall briefly discuss later. A further
influential paper of Mal’cev which will be mentioned often in this paper is [26].

Of course, when discussing groups in general we should see what the situation
is for abelian groups. The motivation for the following definition comes from
vector spaces.

2 Definition. Let G be abelian. A subset X of G is linearly independent if,
given distinct x1, . . . , xn in X and m1, . . . ,mn ∈ Z, then m1x1 + · · ·+mnxn = 0
implies mixi = 0 for all i.

In the torsionfree case this means that mi = 0 for all i.

3 Definition. Let G be abelian. The number of elements in a maximal
independent subset consisting of elements of infinite order is the 0-rank of G,
r0(G). The number of elements in a maximal independent subset consisting of
elements of p-power order is the p-rank of G, rp(G).

It is easy to see that if G abelian then two maximal linearly independent
subsets of G consisting of elements of infinite order (respectively prime power
order, for the same prime) have the same cardinality so that r0(G) and rp(G)
are well-defined. For an abelian p-group the p-rank and the rank coincide and
for a torsion-free abelian group this the 0-rank and the rank coincide. It is
easy to see that for each abelian group G, r(G) = r0(G) + max

p
{rp(G)}. An

abelian group G also has what is known as its total rank which is defined to
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be r̄(G) = r0(G) +
∑
rp(G), where the sum is taken over all primes p. Clearly

r(G) ≤ r̄(G), where generally the inequality is strict. We shall not discuss the
total rank further.

Throughout this paper T (G) will denote the torsion subgroup of G. When
G is locally nilpotent T (G) is the set of elements of finite order in G. In general
however the set of elements of finite order does not form a subgroup and in
this case T (G) will denote the unique maximal normal periodic subgroup of
the group G. It is very easy to see that if A,B ⊳ G are periodic then AB is
also periodic so T (G) is then well-defined in this case. For an abelian group G,
rp(G) = rp(T (G)) and r0(G) = r0(G/T (G)). Thus to determine r(G) in the
abelian case it is sufficient to know about the torsionfree case and the p-group
case, for p a prime. We note that Prüfer first defined the rank of an abelian
group in his 1924 paper [34].

Earlier we mentioned the general rank of a group G. A group G has general
rank R if every finite subset lies in a subgroup of G with R generators. If F is
the free group of rank n then this means that the general rank is n but F has
infinite special rank. Thus to say that a free group has rank n means that we
are referring to the general rank. We remark that if a group has general rank R
and special rank r then R ≤ r.

4 Example (General facts and examples).

(1) Cp∞ ,Q are locally cyclic groups, in the sense that every finitely generated
subgroup is cyclic, and hence have rank 1.

(2) Q ⊕ · · · ⊕ Q︸ ︷︷ ︸
n

has rank n since it a vector space of dimension n over Q so

has n linearly independent elements. Every set of n+1 elements is linearly
dependent so the rank is exactly n.

(3) If A is torsionfree abelian of rank r then A ∼= B where B ≤ Q ⊕ · · · ⊕ Q︸ ︷︷ ︸
r

.

Thus the torsionfree abelian groups of finite rank are known, in some
sense. However it is well-known that the subgroups of Q ⊕ · · · ⊕ Q︸ ︷︷ ︸

r

can be

rather complicated.

(4) If A is an abelian p-group then A has finite rank if and only if A has the
minimal condition if and only if A is Černikov. To see this write A = D⊕R,
where D is divisible and R is reduced. Then D is a direct sum of finitely
many Prüfer p-groups. If B is a basic subgroup of R then B is finite since
it is a direct sum of cyclic groups and hence R = B⊕L, for some subgroup
L. However since R/B is divisible and R is reduced it follows that L = 0
and hence R is finite, so that A has the required structure.
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(5) The class of groups of finite rank is closed under taking subgroups and
homomorphic images. It is also closed under extensions and if N ⊳ G then
r(G) ≤ r(N) + r(G/N), where it is easy to see that inequality holds in
general.

(6) In this way one shows that Černikov groups, polycyclic groups and soluble
minimax groups are all examples of groups of finite rank.

(7) There are also very complicated groups of finite rank. The so-called Tarski
monsters, infinite simple 2-generator groups with all proper subgroups
cyclic of prime order constructed by Ol’shanskii [31] (and also by Rips)
are of rank 2.

(8) It is very easy to see that if all finitely generated subgroups of G have
rank at most r then G has rank at most r. Hence L(Rr) = Rr, where L
is the usual local closure operation and Rr denotes the class of groups of
rank at most r.

(9) On the other hand if R is the class of groups of finite rank then it is not
true that L(R) = R since there are locally finite groups that are not of
finite rank, for example. The class of groups of finite rank does have the
property that if all countable subgroups of a group have finite rank then
G has finite rank. Thus the class R is countably recognizable. For if G
does not have finite rank, but every countable subgroup has finite rank
then there are finitely generated subgroups Hr whose minimal number of
generators is at least r. Then 〈Hr|r ≥ 1〉 is countable and hence has rank
s say. However Hs+1 is not s-generator, yielding a contradiction.

(10) At the conference I posed the question as to whether there was an un-
countable group of finite rank. We give an example, due to Obraztsov, in
Section 4. Such groups will have to be quite strange since as we shall see
later, for a very large class of groups it is known that a group of finite
rank in this class is countable. In his paper [25] Mal’cev gave an example
of an uncountable group with finite general rank.

The following problem is as yet unsolved.

• What is the structure of groups of finite rank?

We’ll start to answer this question, but given the examples of Ol’shanskii
we’ll need to restrict attention to some “sensible” classes of groups, such as
locally finite groups, soluble groups and so on. It is appropriate at this stage
however to broaden the scope of the investigation. Accordingly we give some
further definitions.
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5 Definition.

(i) A group G has finite abelian subgroup rank if rp(A) is finite for all p ≥ 0,
for all abelian subgroups A.

(ii) If there exists an integer rp, for each p, such that rp(A) ≤ rp for all abelian
subgroups A then G has bounded abelian subgroup rank.

(iii) A group G has finite abelian section rank (respectively bounded abelian
section rank) if every section of G has finite abelian subgroup rank (re-
spectively, bounded abelian subgroup rank).

(iv) A group G has uniformly bounded abelian subgroup rank if rp ≤ r for all
p ≥ 0.

The terminology employed here is due to Baer [1]. We shall also be interested
in groups all of whose abelian subgroups have finite rank as well as other rank
conditions. For the convenience of the reader a diagram of group classes is given
at the end of the paper. Of course there is no obvious reason why “finite abelian
subgroup rank” is closed under taking quotients since abelian subgroups in the
quotient don’t necessarily correspond to abelian subgroups in the original group.
Indeed if F is a free group of finite (general) rank then F has bounded abelian
subgroup rank since the abelian subgroups have rank 1, but since every group
is an image of a free abelian group the quotients of F will not generally have
finite abelian subgroup rank. A good example to also keep in mind here is the
group C2 × C3 × C3 × C5 × C5 × C5 × C7 × . . . which has bounded abelian
subgroup rank but itself does not have finite rank. Furthermore if p is a prime
the abelian subgroups of a free product G of elementary abelian groups of orders
p, p2, p3, . . . are either infinite cyclic or finite elementary abelian p-groups. Hence
the abelian subgroups of G have finite rank, but the group G is certainly not of
finite rank, nor does this group have bounded abelian subgroup rank.

Soluble groups with finite abelian section rank were called S0-groups by
Robinson in [35] and in their recent book [23] Lennox and Robinson call such
groups FAR-groups. Studying groups with finite abelian subgroup rank is con-
nected with the question:

• What properties does a group inherit from its abelian subgroups?

Such questions were first studied in the following papers (and in many others,
rather too numerous to mention here):

(1) O. J. Schmidt [40]: A soluble group in which each abelian subgroup satisfies
the minimal condition also satisfies the minimal condition.
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(2) S. N. Černikov [6]: A locally finite p-group in which each abelian subgroup
satisfies the minimal condition also satisfies the minimal condition.

(3) B. I. Plotkin [33] extended Schmidt’s results to radical groups.

Since generalized soluble groups have numerous abelian subgroups, classes of
generalized soluble groups are attractive classes in which to study the influence
of the abelian subgroups. On the other hand, if we restrict attention to the class
of locally finite groups then the structure of the abelian subgroups can have a
profound influence on the structure of the whole group as the following theorem
shows

6 Theorem. [Hall-Kulatilaka [16], Kargapolov [20]] If all abelian subgroups
of the locally finite group G are finite then G is finite.

We mention here the well known problem.

• If G is an infinite periodic residually finite group does G have an infinite
abelian subgroup?

The theory of groups of finite rank is particularly pleasing in the locally finite
case and it is to this theory that we turn. There is a big trade-off in at once
restricting ourselves to elements of finite order at the expense of dropping the
generalized solubility hypothesis that might be desirable. However the presence
of so many finite subgroups (and the power of the theory to be employed) is
evident even in Theorem 6 which requires the Feit-Thompson theorem [13].

Let us suppose then that G is a locally finite group with finite abelian
subgroup rank. Let P be a p-subgroup of G for some prime p and let A be
an abelian subgroup of P . Then A has finite rank and hence has the minimal
condition, so P is a locally nilpotent p-group with the minimal condition on
abelian subgroups. By the theorem of Černikov [6] mentioned above it follows
that P has the minimal condition also and hence G has min-p for all primes p.
The class of groups with min-p for all primes p has been studied for some time
and undoubtedly one of the highlights of infinite group theory in the past thirty
years is the following theorem.

7 Theorem. [Belyaev [4]] Let G be a locally finite group satisfying min-p
for all primes p. Then G is almost locally soluble.

This result had been conjectured for some time and can be compared to
a result of Šunkov to be mentioned later. It is important to realize that these
results of Šunkov and Belyaev were proved without recourse to the classification
of finite simple groups. We give a “ten line proof” of Theorem 7 using the
classification theorem. We observe roughly that Černikov p-groups H can be
compared according to their size, an invariant of H which is based on the rank





Certain rank conditions on groups 157

of the divisible part H0 of H and also the index |H : H0|. The interested reader
should consult [22] for the formal definition.

Proof of Theorem 7. Suppose there is a counterexample to the theorem.
The Feit-Thompson Theorem implies this counterexample contains elements
of order 2. Choose a counterexample, G, of minimal 2-size. Then G/O2′(G)
is locally soluble by the Feit-Thompson theorem, where O2′(G) = ∩{N |N ⊳
G and G/N is a 2′-group}. By employing a factor shifting argument it follows
that if O2′(G) is almost locally soluble then so is G.

So we may assume G = O2′(G) and that every proper normal subgroup
of G has smaller 2-size than G, and hence is almost locally soluble. Let N =∏
{M |M ⊳ G,M 6= G}. Then N involves no infinite simple groups so N is

almost locally soluble, by [22, Theorem 3.17], which tells us that in this situation
N/O2′,2(N) is finite.

Since N is a maximal normal subgroup of G it follows that G/N must be
infinite simple with min-p for all primes p. Hence there is a simple counterex-
ample to the theorem which we again call G. A result of Kegel [21] shows that
CFSG implies that a simple group with min-p for even a single prime p is linear.
Hence G is linear over a field of characteristic q, say and in this case the max-
imal q-subgroups of G must be finite. A corollary to the Brauer-Feit theorem
(see [43, 9.7]) then implies that G contains an abelian normal subgroup of finite
index contradicting the fact that G is infinite simple. The result follows. QED

8 Corollary. Let G be a locally finite group with finite abelian subgroup
rank. Then G is almost locally soluble.

Of course G need not have finite rank since C2×C3×C3×C5×C5×C5× . . .
has finite abelian subgroup rank.

What can be said if our locally finite group G has the stronger property that
all abelian subgroups have finite rank? This is the result of Šunkov that was
mentioned earlier.

9 Theorem. [Šunkov [41]] Let G be a locally finite group and suppose that
all abelian subgroups of G have finite rank. Then G has finite rank and is almost
locally soluble.

Proof. G has min-p for all primes p so G is almost locally soluble. Thus
the result follows if we know it for locally soluble groups. QED

The locally soluble case is the following result.

10 Theorem. [Gorčakov [15]] If G is a periodic locally soluble group all of
whose abelian subgroups have finite rank then G has finite rank

Gorčakov’s theorem itself depends upon
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11 Theorem. [Kargapolov [18]] Let G be a periodic locally soluble group of
finite rank. Then G/ρ(G) is abelian-by-finite with finite Sylow p-subgroups for
all primes p.

The theory of linear groups underpins much of this work. For example to
prove Theorem 11 let V be a chief factor of G so that V is a finite elementary
abelian p-group for some prime p. Thus V is a vector space over Zp, the field with
p elements. Then Ḡ = G/CG(V ) is a finite soluble irreducible group of linear
transformations of V of degree at most n = r(G). A Theorem of Mal’cev (see
Theorem 12 below) shows that Ḡ has a normal abelian subgroup of index f(n).
Then Ḡf(n) is abelian and hence (Gf(n))′ ≤ ρ(G), the Hirsch-Plotkin radical
of G. Thus G/ρ(G) is abelian-by-finite. Since G has min-p for all primes p, all
radicable subgroups lie in ρ(G) and hence the maximal p-subgroups of G/ρ(G)
are finite, using results concerning groups with min-p for all p.

The theorems of Mal’cev referred to above come from his influential paper
of 1951.

12 Theorem. [Mal’cev [26]]

(i) Let G be a soluble subgroup of GL(n, F ), for some algebraically closed
field F. Then there exists an integer valued function d(n) such that G has
a normal subgroup of index dividing d(n) which is conjugate in GL(n, F )
to a group of triangular matrices.

(ii) If G is an irreducible soluble group of linear transformations of a vector
space of finite dimension n over a field then there is an integer valued
function e(n) such that G has an abelian normal subgroup of index dividing
e(n).

It is quite pleasing how this result of Kargapolov’s was being obtained at
about the same time that the structure, at least of locally soluble groups with
min-p for all primes p, was being obtained.

3 Non-torsion groups

In the previous section we saw how locally finite groups behave when the
various rank conditions in which we are interested are placed on them. We now
remove the restriction of having all elements of finite order. The goal in this
section is to consider two major results, one due to Baer and Heineken [3], the
other due to N. S. Černikov [5].

First we note that if G is a torsionfree nilpotent group of rank r then G has
nilpotency class bounded by a function of r only. The easiest way to see this is
as follows: If N is a maximal normal abelian subgroup of G then N = CG(N) ≤
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Zr(G), by a result due to Čarin. Since N is a subgroup of a direct sum of r
copies of the rationals it follows that G/N can be embedded in the group of
r×r unitriangular matrices over Q and hence G/N has nilpotency class at most
r−1, whence G has class at most 2r−1. This observation is very useful in some
of the results that follow. An important initial result which is needed for the
Baer-Heineken theorem is the following result.

13 Theorem. [Mal’cev [26]] Let G be a locally nilpotent group. The abelian
subgroups of G have finite 0-rank if and only if G/T (G) is a torsionfree nilpotent
group of finite rank.

Periodic locally nilpotent groups with finite abelian subgroup rank are easily
seen to be hypercentral groups with Černikov p-components and such a group
G has finite rank if and only if each abelian subgroup has finite rank if and only
if the p-components have bounded rank. Notice however that such a group G
need not be nilpotent as the example of the locally dihedral 2-group shows.

A very deep theorem of Kargapolov [19] asserts that a soluble group whose
abelian subgroups have finite rank itself has finite rank. The results we now
describe are more general. Historically however the results in the soluble and
locally nilpotent cases were obtained first.

14 Definition.

(i) A group G is radical if it has an ascending normal series each factor of
which is locally nilpotent.

(ii) The upper Hirsch-Plotkin series {ρα(G)} of the group G is defined by

ρ0(G) = 1 (1)

ρ1(G) = Hirsch-Plotkin Radical of G (2)

ρα+1(G)/ρα(G) = ρ(G/ρα(G)) for ordinals α (3)

ργ(G) =
⋃

β<γ

ρβ(G) for limit ordinals γ. (4)

It is a well-known theorem of Hirsch [17] and also Plotkin [32] that the prod-
uct of the normal locally nilpotent subgroups of a group is also locally nilpotent,
the Hirsch-Plotkin radical of G. The class of radical groups, then, allows us to
talk about locally nilpotent groups and also soluble groups concurrently. It is
clear that a group G is radical if and only if its upper Hirsch-Plotkin series
terminates in G.

The most far reaching results obtained concerning groups with finite abelian
subgroup rank lie in the following theorem, published in 1972. As usual T (G)
is the unique maximal normal torsion subgroup of G.
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15 Theorem. [Baer-Heineken [3]] Let G be a radical group. Suppose that
T (G) has finite abelian subgroup rank and that the torsionfree subgroups of G
have finite rank. Then

(i) G is countable

( ii) G has bounded abelian section rank

(iii) G has an ascending series of characteristic subgroups with abelian factors.
In particular G is hyperabelian.

(iv) GF, the finite residual, is nilpotent

(v) T (G) is locally soluble

(vi) G/T (G) is soluble of finite rank and its abelian factors have finite torsion
subgroups.

As we remarked previously there are uncountable groups of finite rank. How-
ever in general even a locally soluble group with min-p for all primes p can be
uncountable, as exhibited by Baer [2]. It is interesting that even though we
only hypothesize knowledge concerning the subgroups of G we actually get in-
formation concerning the sections of G. This works essentially because if A/N
is an abelian p-subgroup of the subgroup T (G)/N then there is a maximal p-
subgroup P of T (G) such that A ≤ PN . Thus A/N has rank at most the rank
of P . The fact that T (G) is locally soluble is a consequence of Belyaev’s theo-
rem, Theorem 7, but this fact can be proved independently of that. Also GF is
the subgroup generated by all the radicable subgroups of G. During my talk I
asserted that G is also locally soluble, but it was pointed out to me that this is
not so clear. Thus although G is hyperabelian, there is the question:

• Is a group G satisfying the hypotheses of Theorem 15 locally soluble?

Much more can be said here and we list some of the other major points.

• T (G) has min-p for all primes p.

• T (G) has a radicable part (Kargapolov 1961).

• T (G) has conjugate maximal p-subgroups for all p (Šunkov [42]).

• T (G) is residually Černikov.

• H/T (G), the Hirsch-Plotkin radical of G/T (G), is nilpotent by Theo-
rem 13.
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• G/H is abelian-by-finite.

• H/T (G) is the join of the radicable subgroups of G/T (G).

Some issues that have to be addressed in the proof (which uses a massive
amount of established machinery) include

• We need to show that if G is a radical group with T = T (G) of finite
abelian subgroup rank and if A/T is free abelian of countable rank then
G has a free abelian subgroup of the same rank. Thus we have to show
that G/T (G) is well-behaved, from our point of view.

• To do this let 〈x1T, x2T, . . . 〉 be free abelian. Then some work is required
to show that X = 〈xi, xj〉 is polycyclic, for each i, j, and hence that X ′ is
finite. Then X/CX(X ′) is finite and a commutator argument can be used
to show that there are mi ∈ Z such that 〈xm1

1 , xm2
2 . . . 〉 is free abelian.

• Finite abelian subgroup rank sometimes passes to homomorphic images:
In general if A ⊳ G and A abelian then G/A has finite abelian subgroup
rank also. This follows with some effort from the previous item.

• G/T (G) has torsion subgroups of finite bounded order essentially because
this is true of the torsion subgroups of GL(n,Q), a result due to Schur in
1911 (see [43] for details).

We can now sketch the rest of the proof of Theorem 15. The upper central
series of H/T (G) is refined to one in which the factors are “rationally irre-
ducible”; here if L⊳ K are two terms of the refined series then K/L is rationally
irreducible if whenever M is a G-invariant subgroup such that L ≤M ≤ K we
have K/M periodic. Without loss of generality we may assume T = T (G) = 1
and if

1 = T (G) = H0 ≤ H1 ≤ H2 ≤ · · · ≤ Hk = H

is a central series whose factors are rationally irreducible then, lettingWi/CG(H)
be the group of automorphisms induced by G that act trivially on Hi+1/Hi and
W = ∩i≥1Wi, we see that W/CG(H) is the stability group of the series so is
nilpotent, and W is nilpotent since the series is a central series. Also G/Wi is
the group of automorphisms induced by G acting on Hi+1/Hi, which is abelian
of rank at most r, so that there is an embedding of G/Wi into GL(r,Q). Since a
radical linear group of degree n is soluble of derived length bounded by a func-
tion of n, by a theorem of Zassenhaus (see [43, Corollary 3.8], for example), it
follows from Theorem 12 that G/Wi is abelian-by-finite and hence G/W is also
abelian-by-finite. Since it is possible to show that W = H the result follows.

The following quantitative version of the theorem also holds:
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16 Theorem. [Baer-Heineken [3]] Let G be a radical group with finite
abelian subgroup rank and let rp be the maximal p-rank of an abelian subgroup,
for p ≥ 0. Let T be the maximal normal torsion subgroup of G. Then

(i) Every p-section of T has rank at most 1
2rp(5rp + 1)

(ii) There exist integers, l(r0),m(r0), n(r0) depending only on r0 such that
G/T has a series of characteristic subgroups of length at most l(r0) whose
factors are either finite of order at most m(r0) or torsion-free abelian of
rank at most n(r0)

(iii) G/T is soluble of derived length bounded by a function of r0

(iv) The p-rank of an abelian section of G is bounded by a function of r0 and
rp.

This depends heavily upon the following facts.

• A theorem due to Kargapolov [19], Hall (see [39]), Gorčakov [15] and Baer
and Heineken [3] asserts that if A is an abelian p-group of finite rank n
then the p-component of AutA is finite of rank at most 1

2n(5n− 1). Thus
if P is a p-subgroup it has a maximal abelian normal subgroup A and
then A = CP (A). Hence P/A embeds in the automorphism group of A so
P has rank at most 1

2rp(5rp − 1) + rp.

• If A/T (G) is a maximal normal abelian subgroup of the nilpotent group
H/T (G) then A/T (G) has rank at most r0 and H/A has class at most
r0 − 1, as a group of rational unitriangular r0 × r0 matrices, and rank at
most 1 + 2 + · · · + (r0 − 1) = 1

2r0(r0 − 1).

To complete our discussion of the Baer-Heineken theorem we note the cor-
responding result when the abelian subgroups are all of finite rank.

17 Theorem. [Baer-Heineken [3]] Let G be a radical group with maximal
normal torsion subgroup T and let H be the Hirsch-Plotkin radical of G. Suppose
all the abelian subgroups of T have finite rank and that the torsion-free abelian
subgroups of G have finite rank. Then G has finite rank and G/H ∩T is soluble.

The following generalization has also been proved.

18 Theorem. [Robinson [38]] Let G be a generalized radical group which
has finite abelian subgroup rank. Then G is radical-by-finite

We shall say more concerning generalized radical groups in Section 4 and
refrain from giving the definition now. Also in Section 4 we shall see some
examples which show the limitations here, but now we change our emphasis to





Certain rank conditions on groups 163

groups of finite rank in general. The results mentioned earlier tell us rather a lot
about groups of finite rank when the groups are radical groups. In general locally
soluble groups are not radical, so this is the next type of group to consider. First
we have a structure theorem which follows with a small amount of work from
Theorem 13 and the result of Zassenhaus mentioned above.

19 Theorem. Let G be a locally soluble group with finite rank r. Then there
is a non-negative integer n = n(r) such that G(n) is a periodic hypercentral group
with Černikov p-components.

A natural question to ask here of course is whether locally soluble groups
of finite rank are soluble. This is false even for locally nilpotent groups as the
following example shows.

20 Example. [Kegel] A periodic locally soluble and hypercentral group
with finite rank need not be soluble.

To show this we work as follows, where p is prime.

• Let Hr be the group of all 2 × 2 matrices X with coefficients in Zpr , the
ring of integers modulo pr, and such that X ≡ I mod p.

• F , generated by the integer matrices

(
1 p
0 1

)
and

(
1 0
p 1

)
, is a free group.

• If X ∈ F then the map X 7−→ X mod pr is a homomorphism of F into
Hr with kernel Kr consisting of all matrices X in F such that X ≡ I
mod pr.

• There is no bound on the derived lengths of the Hr as r varies.

• So for each prime p there is a finite p-group H(p) whose derived length
increases with p and the group H(p) can be thought of as a group of
automorphisms of an abelian p-group of rank 2.

• Then H(p) has rank at most 9 by the result mentioned after Theorem 16
so G, the direct product of the groups H(p) as p varies, is a periodic
hypercentral group of rank at most 9 which is not soluble.

We have already noted that groups of finite rank could be too hard to classify
in general because of the Tarski monsters. In order to exclude such infinite simple
groups we make the following definition.

21 Definition. A group G is locally graded if every nontrivial finitely gen-
erated subgroup of G has a nontrivial finite image.

The following classes of groups are all subclasses of the class of locally graded
groups.
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• locally finite groups.

• locally soluble groups.

• residually finite groups.

• locally (soluble by finite) groups, locally residually finite groups, radical
groups.

In 1990 a paper of N. S. Černikov [5] appeared in which a very large class
of locally graded groups was defined. We next define Černikov’s class. First we
need some notation.

Let L,R, Ṕ, P̀ be the usual closure operations as defined in [36]. Thus if Y

is a class of groups then

• G ∈ LY if every finite subset of G is a subset of a Y-group.

• G ∈ RY if for each 1 6= x ∈ G there is a normal subgroup Nx of G such
that x /∈ Nx and G/Nx ∈ Y.

• G ∈ ṔY if G has an ascending series each of whose factors is a Y-group.

• G ∈ P̀Y if G has a descending series each of whose factors is a Y-group.

We let Λ denote the set of closure operations {L,R, Ṕ, P̀} and let Y denote
the class of periodic locally graded groups. Thus Y contains all locally finite
groups but is somewhat larger. We define the class X to be the Λ-closure of
the class of periodic locally graded groups; the class X is Černikov’s class. More
concretely, let Y0 = Y. For each ordinal α let Yα+1 = LYα∪RYα∪ṔYα∪P̀Yα

and Yβ = ∪α<βYα for limit ordinals β. Then X = ∪αYα.

It is not too hard to see that

22 Lemma. X is a subclass of the class of locally graded groups

It is hard to imagine how the class of locally graded groups can be larger
than X but the solution to the following questions still appear to be unknown.

• If G is locally graded then is G ∈ X?

• What is the structure of locally graded groups of finite rank?

In his paper [5], Černikov gave a broad generalization of Theorem 9. Cer-
tainly this is the most general theorem known concerning groups of finite rank.

23 Theorem. [N. S. Černikov [5]] Let G be an X-group of finite rank. Then
G is almost locally soluble and almost hyperabelian.
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As a special case we have

24 Theorem. [Lubotzky-Mann [24]] Let G be a residually finite group of
finite rank. Then G is almost locally soluble.

The Lubotzky-Mann theorem was proved using pro-p methods, but Černi-
kov’s theorem is independent of such work. We shall not go into the proof too
much other than to say that the proof basically goes by transfinite induction.
Limit ordinals are easy to handle: if α is a limit ordinal and it is known that all
groups in Yβ , (β < α) that are of finite rank are almost locally soluble then if
G ∈ Yα has finite rank we have G ∈ Yβ for some β < α and hence G is almost
locally soluble. So it suffices to consider the case when α− 1 exists and G is of
finite rank and in one of the classes LYα−1, RYα−1, ṔYα−1, or P̀Yα−1. Each
case is then considered in turn and real work is required to establish the result.
Notice however that an X-group of finite rank is countable.

Finally in this section we note that Platonov has proved that a linear group
(a subgroup of GL(n, F ), for some field F ) of finite rank is soluble-by-finite
(see [43] for example).

4 Some later results

In this section we see how to generalize Theorems 15 and 23. One way to
think of radical groups is that they can be used to simultaneously handle soluble
and also locally nilpotent groups. The next class of generalized soluble groups
with finite abelian subgroup rank that we might consider is the class of locally
soluble groups satisfying this condition. Unfortunately however the anticipated
theorem is no longer true as the following theorem of Merzljakov shows!

25 Theorem. [Merzljakov [27–29]]

(i) There exists a locally polycyclic group G with finite abelian section rank
which does not have bounded abelian section rank. The group G has infinite
rank.

(ii) A locally soluble group with all abelian subgroups of bounded rank at most
r is of finite rank at most f(r) for some function f .

As we see, these examples of Merzljakov appeared quite early in the pro-
ceedings. The original paper, appearing in 1964, asserted that a locally soluble
group with all abelian subgroups of finite rank need not have finite rank. Sub-
sequently a mistake was found and this was corrected in the 1969 paper. In the
1984 paper it was shown that the construction could be used to obtain groups
with the stated property in Theorem 25(i). We shall give very brief details of
this example here.





166 M. R. Dixon

26 Example (Merzljakov’s example).

• The group G is torsionfree with all abelian subgroups of finite but un-
bounded ranks.

• To begin the construction let H be a group that contains a free abelian
normal subgroup A = 〈a1, . . . , as〉 of rank s < ∞ such that |H : A| = m
is finite.

• Let κ = (r1, . . . , rs) be an s-tuple of relatively prime integers and let
k = r1r2 . . . rs. Define φ(k) = n, where φ is Euler’s function.

• Let Aκ = 〈ar1
1 , . . . , a

rs
s 〉 and Ak = {ak | a ∈ A}.

• Then Ak ≤ Aκ. If ξ1, . . . ξn are the primitive n th roots of unity then
let Φk(x) =

∏n
i=1(x − ξi) = xn − c1x

n−1 − · · · − cn be the cyclotomic
polynomial of degree n. Let

ζk =




c1 c2 . . . cn
1 0 . . . 0
0 1 0 . . .
...

...
. . .

. . .

0 0 . . . 1 0




be the companion matrix of Φk. Then the characteristic polynomial of ζk
is Φk and ζk is cyclic of order k.

• Since A/Aκ is cyclic of order k there is a representation
σ : A −→ A/Aκ −→ GL(n,Z).

• The induced representation H −→ GL(mn,Z) can be formed. Let B be
the induced module, which is free abelian of rank mn.

• Form H1 = B ⋊ H, A1 = AkB, which is free abelian of rank smn and
|H1 : A1| = ksm. Note that H = H0 ≤ H1.

• We now iterate this procedure to form G =
⋃
i≥0

Hi.

This groupG is the group that is required. We shall not go into the remaining
details of the proof, but certainly G is locally (free abelian-by-finite).

The result of Theorem 23 was partially generalized in 1996 and in the same
paper and a subsequent one Theorem 25(ii) was generalized. This is the content
of the next theorem.

27 Theorem. [Dixon, Evans, Smith [7,9]]
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(i) Let G be locally soluble-by-finite and suppose that all locally soluble sub-
groups of G have finite rank. Then G has finite rank and is almost locally
soluble.

(ii) Let G be locally soluble-by-finite with all abelian torsion groups of finite
rank and all torsionfree abelian subgroups of bounded rank. Then G has
finite rank and is almost locally soluble.

(iii) Let G be a locally soluble-by-finite group with finite abelian subgroup rank
and suppose that G has bounded torsionfree abelian subgroup rank. Then
G is almost locally soluble.

The original goal here was to somehow meld together the results of Šunkov
and Merzljakov and in fact, at the time the paper was written, we were unaware
of Černikov’s theorem. The paper [7] depended heavily upon the classification
of finite simple groups. We show in [10] that the classification theorem is not
necessary for the proof. We here sketch some of the important points.

• Since the class of groups of finite rank is countably recognizable we may
assume that we have a countable counterexample G to the theorem.

• Then G = ∪i∈ωHi, where Hi is a finitely generated soluble-by-finite group.

• Let Ri denote the soluble radical of Hi and let R = 〈Ri|i ∈ ω〉. Then R is
locally soluble of rank r, say, by hypothesis.

• It turns out that the indices |Hi : Ri| must be unbounded.

• Fi = Hr/Ri is semisimple for each i and Fi is a section of Fi+1.

• We may assume that the socle of Fi has rank ni and that ni < ni+1 for
each i.

• It can be shown that then Hi contains a normal locally finite subgroup Ai

of rank ni − kd where d is chosen such that R(d) is periodic and k is the
order of the largest finite subgroup of GL(r,Q).

• Then A =
∏

iAi is locally finite and its abelian subgroups have finite
rank.

• Šunkov’s theorem implies that A has finite rank, which is a contradiction
that proves Theorem 27.
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This result actually applies to locally radical-by-finite groups. For example,
if H is a finitely generated radical-by-finite group with all abelian subgroups
of finite rank and if K ⊳ H with H/K finite and K radical then by the Baer-
Heineken theorem K has finite rank. By Černikov’s theorem K is soluble so H
is soluble-by-finite.

Černikov’s theorem shows that a periodic locally graded group with finite
rank is almost locally soluble and hence is locally finite. This suggests the fol-
lowing questions.

• Let G be a periodic locally graded group with all locally soluble (respec-
tively abelian) subgroups of finite rank. Is G of finite rank? Is G locally
finite?

• In particular is a periodic residually finite group with all abelian subgroups
of finite rank necessarily finite?

• Are there infinite residually finite groups with all subgroups either finite
or of finite index?

Of course a free group has all abelian subgroups of (bounded!) finite rank
and does not have finite rank, hence the restriction to periodic groups here.

What of groups all of whose proper subgroups have finite rank?

28 Theorem. Let G ∈ X and suppose that all proper subgroups of G have
finite rank. Then G is almost locally soluble and of finite rank.

Proof. Let F be a nontrivial finitely generated subgroup of G. Since G is
locally graded F contains a proper normal subgroup N of finite index. Since F
has finite rank, Černikov’s theorem implies that F is soluble-by-finite, so G is
locally soluble-by-finite. Hence by Theorem 27 G has finite rank or is locally
soluble. In the former case G is almost locally soluble by Černikov’s theorem. In
the latter case let J =

∏
{N ⊳ G|N 6= G}. Since a simple locally soluble group

is finite, G/J is finite so if J 6= G then G will be of finite rank. If G = J and if
N ⊳ G,N 6= G then N is of finite rank and has a characteristic ascending series
with abelian factors so G is hyperabelian. By the Baer-Heineken theorem G has
finite rank. QED

Lest anyone believes that if all proper subgroups have finite rank then the
group should have finite rank we quote the following theorem of Obraztsov [30]
(which I incorrectly attributed to A. Yu. Ol’shanskii during my talk). There are
some very exotic examples of such groups. The group is constructed using the
“Ol’shanskii method”. It is this result which enables us to construct uncountable
groups of finite rank.
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29 Theorem. Let {Gi}i∈I be a finite or countable set of non-trivial finite
or countably infinite groups without involutions. Suppose |I| ≥ 2 and n is a
sufficiently large odd number. Suppose Gi ∩ Gj = 1 for i 6= j. Then there is a
countable simple group G containing a copy of Gi for all i with the following
properties:

(i) If x, y ∈ G and x ∈ Gi \ {1}, y /∈ Gi, for some i, then G is generated by x
and y.

(ii) Every proper subgroup of G is either a cyclic group of order dividing n or
is contained in some subgroup conjugate to some Gi.

This theorem has many important consequences as follows.

• For each i ∈ N let Gi be a countable group without involutions that has
rank ri and suppose that ri+1 > ri for i ≥ 1. Then the group G which can
be constructed in this case is 2-generator but clearly does not have finite
rank. However every proper subgroup of G does have finite rank.

• Suppose Gi is free abelian of infinite rank for i ∈ N. Then the group
G constructed using Obraztsov’s construction has all proper non-abelian
subgroups of finite rank, precisely because it has no proper non-abelian
subgroups, although the group itself has infinite rank.

• Let Gi be an abelian group of rank i without involutions. Form the
Obraztsov group G constructed from the groups Gi. Then G is a 2-
generator group of infinite rank with all proper subgroups abelian.

• To construct an uncountable group of finite rank let Hα, for α < β,
be groups of rank at most 2, where β is a countable ordinal and the
Hα satisfy the hypotheses of Theorem 29. Let Hα+1 be the Obraztsov
group obtained. Then clearly Hα+1 has rank 2. For limit ordinals γ define
Hγ =

⋃
α<γ Hα so that Hγ has rank 2 if each of the Hα do. If ρ is the first

uncountable ordinal and for α < ρ we have constructed Hα as above then
Hρ =

⋃
α<ρHα has rank 2 and is uncountable. Note also that Hρ will also

be simple.

On the other hand it is very easy to see that if G is a group with all proper
subgroups of rank at most r then G has rank at most r + 1.

We pursue this idea of looking at the proper subgroups of a group. We have
focused on the abelian subgroups of a group. What if the non-abelian ones are
well-behaved? Of course one would naturally expect a group to have lots of non-
locally soluble subgroups if it is not locally soluble, so what if we ensure that
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the non-locally soluble subgroups are well-behaved. We can be quite explicit as
to the kind of groups we get, at least in Černikov’s class X.

30 Theorem. [Dixon, Evans, Smith [8]] Let G ∈ X and suppose that every
proper subgroup is either locally soluble or of finite rank. Then either

(i) G is locally soluble, or

(ii) G has finite rank, or

(iii) G is isomorphic to one of SL(2,F), PSL(2,F) or Sz(F) for some infinite
locally finite field F in which every proper subfield is finite.

In particular, if G ∈ X and all non-abelian subgroups have finite rank then
G is either abelian or of finite rank. To make further progress here we definitely
need more information concerning locally graded groups.

We now change topic again slightly and look at the Hirsch-Zaicev rank of a
group. The motivation here comes from polycyclic groups where it is well-known
that the number of infinite cyclic factors is an invariant of the group called the
Hirsch length.

31 Definition.

(i) A group G has finite Hirsch-Zaicev rank rhz(G) = r if G has an ascending
series whose factors are either infinite cyclic or periodic and if the number
of infinite cyclic factors is exactly r.

(ii) G has finite section 0-rank r0(G) = r if, for every torsion-free abelian
section, U/V ofG, r0(U/V ) ≤ r and there is an abelian torsion-free section
A/B such that r0(A/B) = r.

(iii) G is generalized radical if G has an ascending series whose factors are
locally nilpotent or finite.

The examples of Merzljakov have finite section 0-rank but infinite Hirsch-
Zaicev rank. Also periodic generalized radical groups are locally finite.

For abelian groups the section 0-rank and the Hirsch-Zaicev rank are the
same and this implies that a soluble group has finite Hirsch-Zaicev rank if and
only if it has finite section 0-rank. The natural setting for groups of finite Hirsch-
Zaicev rank is the class of generalized radical groups. The following theorem is
based very closely on [14].

32 Theorem. [Dixon, Kurdachenko, Polyakov [12]] Let G be a locally gen-
eralized radical group of Hirsch-Zaicev rank r. Then G has normal subgroups
T ≤ L ≤ K ≤ S ≤ G such that
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(i) T is locally finite and G/T is soluble-by-finite of finite rank,

(ii) L/T is a torsion-free nilpotent group,

(iii) K/L is a finitely generated torsion-free abelian group,

(iv) G/K is finite and S/T is the soluble radical of G/T .

There are functions f1, f2, f3 : N −→ N such that |G/K| ≤ f1(r), d(S/T ) ≤
f2(r) and r(G/T ) ≤ f3(r).

Interestingly, there is a local version of this result. So in fact we may take
G to be locally (generalized radical with finite abelian subgroup rank).

33 Theorem. [ [12]] Let G be a group and suppose that every finitely gener-
ated subgroup of G is a generalized radical group of finite abelian subgroup rank.
If there is a positive integer r such that rhz(A) ≤ r for each abelian subgroup A,
then

(i) G has finite Hirsch-Zaicev rank at most f4(r)

(ii) G/T (G) is soluble-by-finite of finite rank at most f3(f4(r)).

Note that if we remove the bound here not only does the result not hold
because of the example of Merzljakov, but because of the more critical situation
that there are infinite simple examples, as exhibited in [11].

In his paper [37] Derek Robinson showed, using cohomological methods that
a finitely generated soluble group with finite abelian subgroup rank is minimax.
This can now be generalized as follows.

34 Theorem. [ [12]] Let G be a finitely generated generalized radical group.
If G has finite abelian subgroup rank, then G is minimax and soluble-by-finite.

There is also a further generalization of Theorem 25(ii) which runs as follows.

35 Theorem. [ [12]] Let G be a locally generalized radical group and suppose
that there is an integer r such that r(A) ≤ r for all abelian subgroups A. Then
G has finite rank at most f3(f4(r)) + r(5r + 1)/2 + 1.

Finally we give a result which holds for just a single prime p or 0. Here, if p
is prime then, a group G has finite section p-rank rp(G) = r if every elementary
abelian p-section of G is finite of order at most pr and there is an elementary
abelian p-section K/L such that K/L = pr.

36 Theorem. [ [12]] Let p be a prime or 0. Let G be a locally generalized
radical group. If every finitely generated subgroup of G has finite section p-rank
at most r, then G has normal subgroups T ≤ L ≤ K ≤ S ≤ G such that

(i) T is locally finite and G/T is soluble-by-finite of finite rank,
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(ii) L/T is a torsion-free nilpotent group,

(iii) K/L is a finitely generated torsion-free abelian group,

(iv) G/K is finite and S/T is the soluble radical of G/T .

Furthermore, when p is prime, the Sylow p-subgroups of T are Černikov of
finite rank at most f5(r). G has finite Hirsch-Zaicev rank at most r(r + 3)/2
and |G/K| ≤ f6(r) and d(S/T ) ≤ f7(r).

On the next page we give a diagram of group classes which hopefully helps
delineate the classes of groups that we have been discussing.
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•finite rank

•bounded abelian section rank

•finite abelian section rank

•

•III

•II

•I

•finite abelian subgroup rank

•

•

•

•finite section p-rank

•finite section 0-rank

•

•finite Hirsch-Zaicev rank

Diagram of Group Classes

Here I represents the class of groups with all abelian subgroups of finite
rank, II represents the class of groups with all abelian subgroups of bounded
rank and III represents the class of groups with bounded abelian subgroup rank.
Examples to show many of the strict containments here have been mentioned
throughout the paper.
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[6] S. N. Černikov: On the theory of special p-groups, Doklady Akad. Nauk SSSR (N.S.)
63 (1948), 11–14.

[7] M. R. Dixon, M. J. Evans, and H. Smith: Locally (soluble-by-finite) groups of finite
rank, J. Algebra 182 (1996), 756–769.

[8] M. R. Dixon, M. J. Evans, and H. Smith: Locally (soluble-by-finite) groups with all
proper insoluble subgroups of finite rank, Arch. Math. (Basel) 68 (1997), 100–109.

[9] M. R. Dixon, M. J. Evans, and H. Smith: On groups with rank restrictions on sub-
groups, Groups St. Andrews 1997 in Bath, I, London Math. Soc. Lecture Note Ser., vol.
260, Cambridge Univ. Press, Cambridge, (1999), 237–247.

[10] M. R. Dixon, M. J. Evans, and H. Smith: Locally (soluble-by-finite) groups with various
rank restrictions on subgroups of infinite rank, Glasgow Math. J. 47 (2005), 309–317.

[11] M. R. Dixon, M. J. Evans, and H. Smith: Embedding groups in locally (soluble-by-
finite) simple groups, J. Group Theory 9 (2006), 383–395.

[12] M. R. Dixon, L. A. Kurdachenko, and N. V. Polyakov: Locally generalized radical
groups satisfying certain rank conditions, to appear, Ricerche di Matematica.

[13] W. Feit and J. G. Thompson: Solvability of groups of odd order, Pacific J. Math. 13
(1963), 775–1029.

[14] S. Franciosi, F. De Giovanni, and L. A. Kurdachenko: The Schur property and
groups with uniform conjugacy classes, J. Algebra 174 (1995), 823–847.
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[42] V. P. Šunkov: On the conjugacy of the Sylow p-subgroups in SF-groups, Algebra i Logika
10 (1971), 587–598 (Russian), English transl. in Algebra and Logic, 10 (1971), 363–368.

[43] B. A. F. Wehrfritz: Infinite Linear Groups, Ergebnisse der Mathematik und ihrer
Grenzgebiete, Springer-Verlag, New York, Heidelberg, Berlin, (1973), Band 76.






