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Abstract. There is a still growing theory of Rédei type blocking sets and their applications,
also of the set of directions determined by the graph of a function. Here we prove a theorem
about the number of directions determined by a pointset of size p2 in AG(3, p), where p is
prime. Then two results, which are applications of the planar theorem, are generalized using
the new theorem.
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1 Introduction

There is a still growing theory of Rédei type blocking sets and their appli-
cations, also of the set of directions determined by the graph of a function or,
(as over a finite field every function is) a polynomial, the intimate connection
of these two topics is obvious. Here we prove a theorem about the number of
directions determined by a pointset of size p2 in AG(3, p), where p is prime.
Then two results, which are applications of the planar theorem, are generalized
using the new theorem.

Throughout this paper everything is finite and the common terminology is
used. AG(n, q) and PG(n, q) denote the affine and the projective space of n
dimension over the Galois field GF (q) where q = pt is a power of the prime
p > 2. We imagine PG(n, q) as the union of AG(n, q) and the ‘hyperplane at
infinity’ H∞. A blocking set B is a set of points intersecting every line, it is
called trivial if it contains a hyperplane. A point b ∈ B is essential if B \ { b } is
no more a blocking set (so there is a line l intersecting B in b only, such a line
can be called a tangent); B is minimal if all its points are essential.

1 Definition. We say that a set of points U ⊂ AG(n, q) determines the
direction h ∈ H∞, if there is an affine line through h meeting U in at least two
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points. We will always suppose that |U | = qn−1. Denote by D the set of deter-
mined directions. Finally, let N = |D|, the number of determined directions.

The following proposition shows how this becomes an algebraic problem:

2 Proposition. (i) If |U | = qn−1 does not determine all directions (i.e.
if N < θn−1), then it can be taken as the graph of a polynomial (in n− 1
variables).

(ii) Suppose that we are in 2 dimensions and U ⊂ AG(2, q) is the graph of the

polynomial f . Then D = { f(x)−f(y)
x−y : x 6= y }. QED

Now we show the connection between directions and blocking sets:

3 Proposition. U together with infinite points corresponding to directions
in D form a blocking set in PG(n, q), which is minimal subject to inclusion
(provided N < |H∞|).

Proof. Let h ∈ H∞. The affine lines through h are all blocked by U if and
only if they are all tangents, i.e. if h is not a determined direction. This means
that if we want to complete U to a blocking set in PG(n, q) by adding infinite
points then we have to take the points in D. The points of U are all necessary,
since N < |H∞| implies that there exists an infinite point through which the
affine lines are blocked by different points of U . This argument also shows that,
as there is at least one tangent line through any point of D, all points of D are
essential.

Any infinite line l ⊂ H∞ is blocked by D: there are qn−2 (disjoint) affine
planes through l, and in any of them, which has at least two points in U , a
determined direction of D ∩ l is found. QED

The blocking set B arising this way has the property to meet a hyperplane
in |B| − qn−1 points. On the other hand, if a blocking set meets a hyperplane
in |B| − qn−1 points then, after deleting this hyperplane, we find a set of points
in the affine space determining |B| − qn−1 directions, so the following notion is
more or less equivalent to a pointset plus its directions: a blocking set B is of
Rédei type if it meets a hyperplane in |B| − qn−1 points. We remark that the
theory developed by Rédei in his book [10] is highly related to these blocking
sets, see [3]. For high-dimensional blocking sets of Rédei type we refer to [11].
Blocking sets of Rédei type are in a sense extremal examples, as for any (non-
trivial) blocking set B and hyperplane H, |B \H| ≥ qn−1 holds.

Now if U determines all directions then it yields a trivial blocking set: it
contains the hyperplane at infinity; so we will be interested in the case when
U determines at most |H∞| − 1 directions. Since the arising blocking set has
size qn−1 +N , to find small blocking sets we will have to find and classify sets
determining a small number of directions.
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A strong motivation for the investigations can be, that in the planar case,
A. Blokhuis, S. Ball, A. Brouwer, L. Storme and T. Szőnyi classified blocking
sets of Rédei type, with size < q + q+3

2 , almost completely [4].

In this paper we will use the “direction” terminology, but all results can
be translated to results about Rédei type blocking sets. In section 2 we recall
the classical results about the q = p = prime case and some well-known ap-
plications are collected as well. In section 3 the analogue of the planar result
is proven for AG(3, p), where p is a prime. Finally the generalizations of two
planar applications are given in section 4.

2 Classical results and examples

The first result is due to Rédei and Megyesi [10] and was later found inde-
pendently by A. W. M. Dress, M. H. Klin and M. E. Muzichuk [6]:

4 Result. A set of p points in AG(2, p), which is not a line, determines at
least p+3

2 directions. QED

This is part of the theorem Rédei proves in his book using the results about
lacunary polynomials. The first ones to find a simple proof were Lovász and
Schrijver [8], who could also describe the case of equality:

5 Result. A set of p points in AG(2, p) (p > 2) determines p+3
2 directions

if and only if it is affine equivalent to the graph of the polynomial x
p+1
2 . QED

In section 3 we will prove the three dimensional version of this result (Propo-
sition 11, Theorem 15). As the blocking set in this theorem (called the projective
triangle by some authors) is a very important one, we give here another natural
form of it:

B△ = U△ ∪D△ =

{ (0, 0, 1); (0, 1, 0); (1, 0, 0); (a2, 0, 1); (0, a2, 1) (−a2, 1, 0) : a ∈ GF (p)∗ }.

Sometimes, for brevity, we will call the affine part of this configuration, i.e. the

affine transform of the graph of f(x) = x
p+1
2 , so those p points lying on two

lines, also (the affine part of) a projective triangle, which is (a convenient) abuse
of language.

Recently A. Gács could essentially improve these results, proving

6 Result ( [7]). Let U be a set of points in AG(2, p), p prime. Then one of
the following holds:

(i) U is a line determining one direction;
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(ii) U is affinely equivalent to the projective triangle determining p+3
2 direc-

tions; or

(iii) U determines at least 2
3(p − 1) + 1 directions.

We enlist here some algebraic applications of the Rédei-Megyesi theorem.
They can be found in the nice survey paper of Szőnyi [13]. Many other applica-
tions in finite geometry can be found in Blokhuis [3].

First a theorem from the Hajós theory of Abelian groups.

7 Result ( [8]). Let G = Cp × Cp. Suppose G = A + B is a normal fac-
torization of it, i.e. (0, 0) ∈ A,B and every g ∈ G can be written in the form
g = a+b, a ∈ A, b ∈ B in a unique way. Then A or B is a subgroup of G. QED

The next result is due to Rédei.

8 Result ( [10]). Let G = Cp × Cp, and H1, . . . ,Hk ≤ G subgroups of
size |Hi| = p. Suppose that R ⊂ G is a common representing system, i.e. (i)
(0, 0) ∈ R; (ii) |R| = p; (iii) R+Hi = G for i = 1, . . . , k.

Suppose also that R is not a subgroup (which would be the ‘trivial’ case).
Then k ≤ p−1

2 . If k = p−1
2 then R is the subset in Result 5 and the Hi sub-

groups are the sets { (x,mx) } where m is a direction not determined by R (after
changing the two Cp factors of G if needed). QED

The third result was first proved by Wielandt in a very complicated way.
Then Blokhuis and Seidel [5] realized that it is a direct consequence of Rédei’s
theorem.

9 Result (Wielandt’s visibility theorem). Let G be a permutation group
on the points of AG(2, p). Suppose that G contains all translations. Let G0

be the stabilizer of the origin. Let S be the set of k lines through the origin,
1 ≤ k ≤ p+1

2 . If G0 maps the set of points in S onto itself then every g ∈ G0

maps the lines in S to lines in S.

The following application is also a group theoretical one. Dress, Klin and
Muzichuk [6], and, independently, Ott [9] noted that the famous theorem of
Burnside can be proved using Rédei’s theorem.

10 Result (Burnside). Let G be a transitive permutation group of degree
p. Then either G is doubly transitive or G is isomorphic to a subgroup of the
affine transformations of form x 7→ ax+ b (a 6= 0, a, b ∈ GF (p)). QED

In section 4 we will generalize Results 8 and 9.
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3 Directions in AG(3, p)

First we prove the 3–dimensional analogue of the theorems of Rédei and
Lovász-Schrijver:

11 Proposition. Let U ⊂ AG(3, p) be a pointset of size |U | = p2, p > 3.
Then for the number N = |D| of determined directions one of the following
possibilities holds:

(i) U is a plane and N = p+ 1;

(ii) U is a cylinder with the (affine part of the) projective triangle as a base,
and N = 1 + pp+3

2 ;

(iii) N ≥ p+ pp+3
2 .

12 Remark. If p = 2 then a set of 4 points is either coplanar and determines
3 directions, or the points are in general position and determine 6 directions.

If p = 3 then a set of 9 points can determine 11 directions (which would be
forbidden by the bounds above) as the following example shows: let P1, P2, . . . , P9

be the points of an affine plane in AG(3, 3), such that P7, P8, P9 are collinear,
and Q1, Q2 be two points out of this plane, such that P7, Q1, Q2 are collinear.
Then the set

{P1, P2, . . . , P7, Q1, Q2 }
determines 11 directions. (If S is the infinite point of P8P9 and T is the infinite
point of Q1Q2 then from the four points of the line ST only S and T are
determined.) Note that this example is unique up to affine transformation.

The proof below shows that except for this example the theorem holds for
p = 3 as well, so 9 points in AG(3, 3) determine either 4 directions (and then U
is a plane), or 10 directions (U is the ‘lifted’ projective triangle), or 11 directions
(the configuration above), or at least 12 directions.

Proof. Suppose N < p+5
2 p. Then D can not form a p+3

2 –fold blocking
set in the infinite plane H∞, see [1]. So there exists a line ℓ ⊂ H∞ such that
|l ∩D| < p+3

2 . It means that for any affine plane S through ℓ the points U ∩ S
determine less than p+3

2 directions, so at most one. Hence each of these planes
contain at most p points, so (as there are p affine planes through ℓ) exactly p
points, and in each of these planes, by Lovász-Schrijver, they form a line. If two
of these lines were skew then their 2p points would determine p2 + 2 directions,
(they do not determine the p − 1 points on the infinite line joining the infinite
points of l1 and l2, but not on either of them), a contradiction if p > 3. Hence
all these lines are concurrent in an infinite point C (∈ ℓ) and U is cylindric.
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Let S0 be an affine plane not through C, U0 := U ∩ S0, and denote by
N0 the number of directions determined by U0 in S0. (N.B. |U0| = p.) Then
N = 1 + pN0. So either N = 1 + p and U0 is collinear so U is coplanar; or
N = 1 + pp+3

2 and U0 is the projective triangle and we are in (ii); or N0 ≥ p+5
2

contradicting N < p+5
2 p. QED

This bound can be improved, using the quoted Result 6 of A. Gács [7]. The
following lemma, that can be proved by elementary calculations, will also help.

13 Lemma. If one fixes the set of determined directions of the projective
triangle U∆ ⊂ AG(2, p) then any other pointset determining exactly the same
directions is of form

U = { (cx2 + a, b, 1); (a, cx2 + b, 1) : x ∈ GF (p) }.

QED

We shall intensively use the following result as well.

14 Lemma ( [14]). Let f1, . . . , fm ∈ GF (q)[x] be given polynomials, suppose
that no partial product fi1fi2 · · · fij , 1 ≤ i1 < i2 < · · · < ij ≤ m can be written as
a constant multiple of a square of a polynomial. If 2m−1

∑m
i=1 deg(fi) ≤

√
q− 1

then there is an x0 ∈ GF (q) such that fi(x0) is a non-square for every i =
1, . . . ,m. More precisely, if we denote the number of these x0-s by N then

|N − q/2m| ≤
m∑

i=1

deg(fi)

√
q + 1

2
.

QED

This lemma says that “being a square (or a non-square) element of GF(q)”
is a random event with probability 1/2, and the “error term” of this statement is∑m

i=1 deg(fi)
√

q+1
2 . This result was generalized in [12] for other powers in GF(q).

Now

15 Theorem. Let U ⊂ AG(3, p) be a pointset of size |U | = p2, p > 11.
Then for the number N = |D| of determined directions one of the following
possibilities holds:

(i) U is a plane and N = p+ 1;

(ii) U is a cylinder with the projective triangle as a base, and N = 1 + pp+3
2 ;

(iii) N ≥ 2
3(p− 1)p + 2p.

Proof. The proof is similar to the previous one, but it is a bit longer.
If N < p(2

3 (p − 1) + 2) then on the infinite plane the directions cannot form
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a 2
3(p − 1) + 1-fold blocking set. So we have a pencil of parallel affine planes

through an infinite line ℓ, each containing p points of U determining less than
2
3(p−1)+1 directions on ℓ. Hence the pointsets in the planes can be affine lines
or projective triangles. Note that if there are at least two projective triangles
then their set of infinite points (the directions) must coincide, otherwise by
Lemma 14, |D ∩ ℓ| ≥ 3

4p.

If there are lines only then the previous proof goes through. Suppose that
there is a projective triangle and at least p+1

2 lines then the lines should be
parallel (see the proof above). Let l1 and l2 be two of the parallel lines and
the (affine part of the) projective triangle T ⊂ m1 ∪ m2, where m1 and m2

are affine lines. After a suitable affine transformation one may assume that
T = (T ∩ m2) ∪ (T ∩ m1) = { (x2, 0, 0, 1); (0, x2, 0, 1) : x ∈ GF (p) }; l1 =
{ (x, ax + b1, c1, 1) : x ∈ GF (p) }; l2 = { (x, ax + b2, c2, 1) : x ∈ GF (p) }. Then
the direction (u, v, 1, 0) is determined by l1 and T ∩m1 if the equations x1

c1
= u

and
ax1+b1−y2

1
c1

= v have a solution (x1, y1), so if c1(au − v) + b1 is a square
element in GF (p). It happens for roughly the half of the possible (u, v) pairs.
The similar condition for l2 and T ∩m1 is that c2(au−v)+b2 should be a square
element, and these two conditions are dependent iff b2 = c2

c1
b1. If this is not the

case then l1, l2 and T ∩ m1 already determine roughly 3
4p

2 directions. If they
are dependent and c2

c1
is a non-square element, then l1, l2 and T ∩m1 already

determine roughly p2 directions. But, as there are at least p+1
2 lines, there exists

at least a pair of them for which c2
c1

is a non-square.

Finally suppose that there are at least p+1
2 projective triangles, not all in a

cylinder. After a suitable linear transformation they are of form

Ti = { (wix
2 + ai, bi, di, 1); (ai, wix

2 + bi, di, 1) : x ∈ GF (p) }.

Then Ti and Tj determine the following directions:

{ (x, bj − bi, dj − di, 0), (aj − ai, x, dj − di, 0),

(aj − ai + wjx
2, bj − bi − wiy

2, dj − di, 0),

(aj − ai − wiy
2, bj − bi + wjx

2, dj − di, 0) : x, y ∈ GF (p) }.

This set has cardinality 2p− 1 + (p−1)2

2 or 2p− 1 + (p−1)2

4 according as −wj/wi

is a non-square or a square.

Now if -1 is a non-square then there are many pairs (i, j) for which −wj/wi

is a non-square and we are done. If -1 is a square and there exists a wi which
is non-square then we are in a similarly easy situation. (Alternatively, one can
prove the last two sentences in the manner of what follows.) So suppose that
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-1 and all the elements wi are squares. From Lemma 13 we can assume that
∀i wi = 1 so we have

Ti = { (x2 + ai, bi, di, 1); (ai, x
2 + bi, di, 1) : x ∈ GF (p) }

and Ti and Tj determine the following directions:

{ (x, bj − bi, dj − di, 0), (aj − ai, x, dj − di, 0),

(aj − ai + x2, bj − bi + y2, dj − di, 0) : x, y ∈ GF (p) }.

Suppose that we have at least four triangles in “general position” (so not in a
cylinder), then from the exclusion-inclusion formula and Lemma 14 (we have to
use it for some linear polynomials of form (dj − di)u− (aj −ai) and (dj − di)v−
(bj − bi)) we get that they determine at least

≥
(

4

1

)(
p− 1

2

)2

−
(

4

2

)(p
4

+
√
p+ 1

)2
+

(
4

3

)(
p

8
− 3

2
(
√
p+ 1)

)2

−
(

4

4

)( p
16

+ (2 (
√
p+ 1))

)2
>

2

3
p2,

a contradiction again. QED

The next proposition shows that D should have an interesting structure:

16 Proposition. D is the union of some lines.

Proof. Let d ∈ D be a direction determined by U . It means that there
exists an affine line ℓ such that ℓ ∩H∞ = d and |l ∩U | ≥ 2. By the pigeon hole
principle there exists an affine plane through ℓ containing at least

|l ∩ U |+ ⌈p
2 − |l ∩ U |
p+ 1

⌉ = |l ∩ U |+ p− 1 ≥ p+ 1

points, so in that plane they determine all directions. Hence in H∞ for any
d ∈ D there exists a line ld such that d ∈ ld ⊂ D. QED

4 Applications

Here we generalize two results in Section 2 using Theorem 15 (or Proposition
11) as we promised.

17 Theorem. Let G = Cp × Cp × Cp, and H1, . . . ,Hk ≤ G subgroups of
size |Hi| = p. Suppose that R ⊂ G is a common representing system, i.e.

• (0, 0, 0) ∈ R;
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• |R| = p2;

• R+Hi = G for i = 1, . . . , k.

Suppose also that R is not a subgroup (which would be the ‘trivial’ case). Then

k ≤ pp− 1

2
.

If k = pp−1
2 then (after changing the three Cp factors of G if needed) R is the

set U of Theorem 13.(ii) and the Hi subgroups are the lines through the origin,
with slope not determined by R.

Proof. If we identify G with AG(3, p), the subgroups become subspaces
through the origin. So the subgroups Hi are lines and R is representing with
respect to Hi if and only if r1 − r2 6∈ Hi, i.e. the directions determined by the
points of R are different from the direction ofHi. If k > pp−1

2 then p2+p+1−k <
1+pp+3

2 , so there is no such (non-subgroup, i.e. non-planar) representing system.

If k = pp−1
2 then we are in (ii) of Theorem 14 and the description of R and

the sets Hi is straightforward. QED

Our result helps us to generalize Wielandt’s visibility theorem:

18 Theorem (Wielandt’s visibility theorem in three dimensions). Let G
be a permutation group on the points of AG(3, p). Suppose that G contains all
translations. Let G0 be the stabilizer of the origin. Let S be the set of k planes
through the origin, 1 ≤ k ≤ p+1

2 . If G0 maps the set of points in S onto itself
then every g ∈ G0 maps the planes in S to planes in S.

Proof. We simply reconstruct the method of Blokhuis and Seidel. Let g ∈
G0, and τ(u) be the translation by the vector u ∈ AG(3, p). If π ∈ S, then for
any two points x, y ∈ π the direction determined by g(x) and g(y) is also a
direction determined by the origin and a point of S as

τ(−g(y)) g τ(y) (x− y) = g(x) − g(y) ∈ S,

because τ(−g(y)) g τ(y) stabilizes the origin. So the points { g(x) : x ∈ π }
determine at most p+1

2 (p+1) < 1+pp+3
2 directions, so they are coplanar. QED
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