Note di Matematica Note Mat. 29 (2009), suppl. n. 1, 211-222 ISSN 1123-2536, e-ISSN 1590-0932 DOI 10.1285/i15900932v29n1supplp211 http://siba-ese.unisalento.it, © 2009 Università del Salento

Flokki planes and cubic polynomials¹

William M. Kantorⁱⁱ

Department of Mathematics, University of Oregon kantor@uoregon.edu

Tim Penttila

Department of Mathematics, Colorado State University penttila@math.colostate.edu

Abstract. Non-Desarguesian translation planes of order q^2 are constructed whenever $q = 2^e \ge 16$ and e is not divisible by 3. Each plane has kernel GF(q) and translation complement of order $q(q-1)^2 e$, with orbits of lengths 1, q and $q^2 - q$ on the translation line. The planes have elation groups of order q that produce derivable nets, but are not flock planes, semifield planes, or lifted planes.

The same algebraic tools are used to construct non-Desarguesian translation planes of order 2^p for every prime p > 3.

Keywords: translation planes

MSC 2000 classification: primary 51E15, secondary 51A35

1 Introduction

In the 1970's, Thas and Walker constructed translation planes from flocks of Miquelian Laguerre planes (**flock planes**, surveyed in [13]). Here we twist that construction with a field automorphism, still producing translation planes in Section 3 and new ones in Section 4, in the process recontextualizing the Hughes-Kleinfeld semifield planes [7].

Another impetus for this paper came from an attempt to use cubic polynomials in place of more common uses of quadratics in the study of 2-dimensional translation planes. This produces the planes in Section 4, and additional ones in Section 5. It is surprising, and perhaps even bizarre, that we construct planes of even order q and q^2 using the exact same computations, where q may or may not be a square.

We conclude in Section 6 with some open problems.

ⁱDedicated to Norm Johnson on the occasion of his 70th birthday.

 $^{^{\}rm ii}{\rm Research}$ supported in part by NSF grant DMS 0753640.

2 Flokki and Flokki planes

Flock planes are related to flocks of a quadratic cone. Each such cone can be transformed into a cone $xy = z^2$ of PG(3, q). In this section we consider a cone on a plane curve obtained from a conic by twisting by a field automorphism. Recall that a **spread set** on $GF(q)^2$ is a set S of $q^2 \ 2 \times 2$ matrices over GF(q) such that the difference of any two is invertible; this determines a translation plane $\pi(S)$ in a standard manner [2, p. 220].

1 Proposition. Consider the cone $C_{\sigma} := \{\langle x, y, z, w \rangle \mid x^{\sigma}y = z^{\sigma+1}\}$ in PG(3,q) on the plane curve $x^{\sigma}y = z^{\sigma+1}$, where $\sigma \in Aut(GF(q))$. Consider functions $f, g: GF(q) \to GF(q)$. Then the planes $w = xt - yf(t)^{\sigma} + zg(t)^{\sigma}$, $t \in GF(q)$, partition $C_{\sigma} \setminus \{\langle 0, 0, 0, 1 \rangle\}$ if and only if

$$\mathbb{S} := \left\{ \begin{pmatrix} u + g(t) & f(t) \\ t & u^{\sigma} \end{pmatrix} \, \middle| \quad t, u \in \mathrm{GF}(q) \right\} \text{ is a spread set.}$$

PROOF. We have equations for q planes, each containing q+1 points of C_{σ} , while $|C_{\sigma}| = 1+q(q+1)$. Thus, in order to have a partition we only need to ensure that, if $t_1 \neq t_2$, then the conditions $w = xt_1 - yf(t_1)^{\sigma} + zg(t_1)^{\sigma} = xt_2 - yf(t_2)^{\sigma} + zg(t_2)^{\sigma}$ and $x^{\sigma}y = z^{\sigma+1}$ imply that x = y = z = 0. For distinct $t_1, t_2 \in GF(q)$, write $\Delta t := t_1 - t_2$, $\Delta f := f(t_1) - f(t_2)$ and $\Delta g := g(t_1) - g(t_2)$. Then our requirement states that $x^{\sigma+1}\Delta t - z^{\sigma+1}\Delta f^{\sigma} + x^{\sigma}z\Delta g^{\sigma} = 0 \Rightarrow (x, z) = (0, 0)$. If $z \neq 0$ and $u := (x\Delta t/z)^{\sigma^{-1}}$, then it follows that $u^{\sigma+1} + u^{\sigma}\Delta g - \Delta t\Delta f = 0$ must have no root $u \in GF(q)$. This is precisely the condition that S is a spread set, and this argument reverses.

We call a partition of C_{σ} as in the theorem a **flokki**¹ of C_{σ} , and the corresponding plane $\pi(\mathbb{S})$ is a **flokki plane**. These are (Thas-Walker) flock planes if $\sigma = 1$.

2 Example. The most obvious flokki are *linear*, where all planes contain a common line. This occurs if and only if f^{σ} and g^{σ} are linear. The corresponding flokki planes $\pi(\mathbb{S})$ are semifield planes. In fact, they have been known for almost a half century: they are the Hughes-Kleinfeld planes [7]. The flokki setting provides a uniform way to view this class of projective planes as part of a larger object (the cone C_{σ}) in place of the previous more computational view.

Unlike in the conical flock case there are many different orbits of such lines under the group of collineations preserving C_{σ} , and hence many "different" linear flokki. Presumably this can be used to explain the isomorphisms among the Hughes-Kleinfeld planes [17].

¹This is the Finnish word for "flock". Plural: flokki.

3 Example. $\mathbb{S} := \left\{ \begin{pmatrix} u & nt^{\tau} \\ t & u^{\sigma} \end{pmatrix} \mid t, u \in \mathrm{GF}(q) \right\}$ is a spread set, where $1 \neq \sigma \in Aut(\mathrm{GF}(q)), \tau \in Aut(\mathrm{GF}(q))$, and $n \in \mathrm{GF}(q)$ is not of the form $u^{\sigma+1}/t^{\tau+1}$ (i.e., n is not a dth power for some $d|(\sigma+1,\tau+1))$. Here $g \equiv 0$ is linear, but \mathbb{S} is not linear if $\tau \neq \sigma$, in which case all q planes have in common only a single point: $\langle 0, 0, 1, 0 \rangle$. The semifield plane arising from \mathbb{S} is due to Knuth [16].

3 Flokki planes and nets

One starting point of this paper is the following result of Gevaert and Johnson:

4 Theorem. A translation plane π of order q^2 with kernel GF(q) admits an elation group E of order q one of whose component-orbits union the elation axis is a derivable net if and only if each of the component-orbits of E union the axis is a derivable net, if and only if π is isomorphic to $\pi(\mathbb{S})$, where

$$\mathbb{S} := \left\{ \begin{pmatrix} u + g(t) & f(t) \\ t & u^{\sigma} \end{pmatrix} \ \Big| \ t, u \in \mathrm{GF}(q) \right\}$$

for some functions $f, g: GF(q) \to GF(q)$ and some $\sigma \in Aut(GF(q))$. Moreover, π is a flock plane if and only if $\sigma = 1$.

PROOF. This is a restatement of [3, Theorem 2.2], incorporating Note 2.2(ii) after Theorem 2.2 and the result in [8] that, in this situation, if the union of one of the component-orbits with the elation axis is a derivable net, then the union of each of the component-orbits with the axis is a derivable net. QED

The elation groups mentioned above are represented by the matrices

$$X = \begin{pmatrix} I & Y \\ 0 & I \end{pmatrix} \text{ with } Y = \begin{pmatrix} d & 0 \\ 0 & d^{\sigma} \end{pmatrix}, d \in \mathrm{GF}(q).$$

It follows from Proposition 1 that a plane satisfies the hypotheses of Theorem 4 if and only if it is a flokki plane. Note that the preceding two results involve the same spread sets.

5 Example. HMO flokki planes Suppose $\left(\left(x - f(x, t) \right) \right)$

$$\mathbb{S} = \left\{ \begin{pmatrix} s & f(s,t) \\ t & g(s,t) \end{pmatrix} \mid s,t \in \mathrm{GF}(q) \right\}$$

is a spread set, where q is odd and n is a fixed non-square in GF(q). Fix $\eta \in GF(q^2)$ with $\eta^2 = n$. Then

$$\mathbb{S}' = \left\{ \begin{pmatrix} u & f(s,t) + g(s,t)\eta \\ s+t\eta & u^q \end{pmatrix} \ \Big| \ s,t \in \mathrm{GF}(q), u \in \mathrm{GF}(q^2) \right\}$$

is a spread set. The process of moving from the plane given by S to the plane given by S' is due to Hiramine-Matsumoto-Oyama [6], and is generalized to characteristic 2 in their Remark 2.4 (see also [9] and [15]), as follows. This time fix a basis $\{1, \eta\}$ for $GF(q^2)$ over GF(q), and let $a = \eta + \eta^q$. If

$$\mathbb{S} := \left\{ \begin{pmatrix} s & f(s,t) + ag(s,t) \\ t & g(s,t) \end{pmatrix} \mid s,t \in \mathrm{GF}(q) \right\}$$

is a spread set, then so is

$$\mathbb{S}' := \left\{ \begin{pmatrix} u & f(s,t) + g(s,t)\eta \\ s+t\eta & u^q \end{pmatrix} \mid s,t \in \mathrm{GF}(q), u \in \mathrm{GF}(q^2) \right\}.$$

Let $v = s + t\eta$ and let $Tr(x) = x + x^q$ be the trace map $\operatorname{GF}(q^2) \to \operatorname{GF}(q)$. For q odd, we have $s = \frac{1}{2}Tr(v)$ and $t = \frac{v - \frac{1}{2}Tr(v)}{\eta}$, so that with

$$F(v) := f\left(Tr(v)/2, \frac{v - \frac{1}{2}Tr(v)}{\eta}\right) + g\left(\frac{1}{2}Tr(v)\eta, \frac{v - \frac{1}{2}Tr(v)}{\eta}\right)\eta,$$
$$\mathbb{S}' = \left\{ \begin{pmatrix} u & F(v) \\ v & u^q \end{pmatrix} \mid u, v \in \mathrm{GF}(q^2) \right\}.$$

For q even, note that $a \neq 0$ as $\{1, \eta\}$ is a basis for $GF(q^2)$ over GF(q). This time t = Tr(v)/a and $s = v - Tr(v)\eta/a$. If $F(v) := f(v - Tr(v)\eta/a, Tr(v)/a) + g(v - Tr(v)\eta/a, Tr(v)/a)\eta$, then

$$\mathbb{S}' = \left\{ \begin{pmatrix} u & F(v) \\ v & u^q \end{pmatrix} \mid u, v \in \mathrm{GF}(q^2) \right\}.$$

For both parities, $\pi(\mathbb{S}')$ is a flokki plane (with $g \equiv 0$ and σ of order 2), called a **lifted plane** in [12].

4 Cubic flokki planes

In the preceding section we were led to the equation $u^{\sigma+1} + u^{\sigma}\Delta g - \Delta t\Delta f = 0$. We do not know of any formula for its roots in general. However, in characteristic 2, when σ is the Frobenius automorphism $x^{\sigma} = x^2$ cubic equations naturally arise in constructing flokki planes, and there is such a classical formula. The **Hessian** of a cubic polynomial $F(x) = a_0 x^3 + a_1 x^2 + a_2 x + a_3$ over any field is the polynomial $H(x) := (3a_0a_2 - a_1^2)x^2 + (9a_0a_3 - a_1a_2)x + (3a_1a_3 - a_2^2)$. The formula for the roots of cubic polynomials yields the following

6 Lemma. [5, Theorem 1.34]² Let F be a cubic polynomial over GF(q) with distinct roots, where q is not a power of 3. Assume that its Hessian H has degree 2, with distinct roots β_1, β_2 in some extension field and $\beta_2 \neq 0$. Then F has no roots in GF(q) if and only if either

- (i) $q \equiv 1 \pmod{3}$, $\beta_1, \beta_2 \in GF(q)$ and $F(\beta_1)/F(\beta_2) \notin GF(q)^3$, or
- (ii) $q \equiv 2 \pmod{3}, \beta_1, \beta_2 \in \operatorname{GF}(q^2) \setminus \operatorname{GF}(q) \text{ and } F(\beta_1) / F(\beta_2) \notin \operatorname{GF}(q^2)^3.$

Recall that the **absolute trace** T maps a given field K of characteristic 2 onto GF(2). If $k \in K$, then T(k) = 0 if and only if the quadratic $x^2 + x + k$ is reducible over K.

7 Theorem. For even q and functions $f, g: GF(q) \to GF(q)$, let

$$\mathbb{S} := \left\{ \begin{pmatrix} s + g(t) & f(t) \\ t & s^2 \end{pmatrix} \ \Big| \ s, t \in \mathrm{GF}(q) \right\}.$$

Write $\Delta t = t_1 + t_2$, $\Delta f = f(t_1) + f(t_2)$ and $\Delta g = g(t_1) + g(t_2)$ for $t_1, t_2 \in GF(q)$. Assume that g is 1-1 (or, more generally, that $\Delta t \neq 0 = \Delta g \Rightarrow \Delta t \Delta f \notin GF(q)^3$). If $\Delta f \Delta g \neq 0$ let $\beta_i = \beta_i(t_1, t_2), i = 1, 2$, be the roots of the quadratic $[\Delta g]^3 x^2 + \Delta t \Delta f x + \Delta t \Delta f = 0$. Then S is a spread set if and only if f is 1-1 and, for any distinct $t_1, t_2 \in GF(q)$, either

(i)
$$q \equiv 1 \pmod{3}$$
, and $T\left(\frac{[\Delta g]^3}{\Delta t \Delta f}\right) = 0$ and $\beta_1/\beta_2 \notin \operatorname{GF}(q)^3$ whenever $\Delta g \neq 0$, or

(ii)
$$q \equiv 2 \pmod{3}$$
, and $T\left(\frac{[\Delta g]^3}{\Delta t \Delta f}\right) = 1$ and $\beta_1/\beta_2 \notin \operatorname{GF}(q^2)^3$ whenever $\Delta g \neq 0$.

PROOF. Assume that S is a spread set. Then

$$(u_1 + u_2)^3 + (u_1 + u_2)^2 \Delta g + \Delta t \Delta f = 0 \Rightarrow (t_1, t_2) = (u_1, u_2),$$

and we must deduce (i) or (ii). Putting $U = u_1 + u_2$ yields the cubic equation

$$U^3 + U^2 \Delta g + \Delta t \Delta f = 0.$$

We may assume that $\Delta t \neq 0$. Then f must be 1-1 (as otherwise $\Delta f = 0$ for some distinct t_1, t_2 , and then $U = \Delta g$ would yield a contradiction), and hence also $U \neq 0$.

By hypothesis, $\Delta g \neq 0$. Then $h = h(t_1, t_2) := \frac{\Delta t \Delta f}{[\Delta g]^3} \neq 0$ and

$$[U/\Delta g]^3 + [U/\Delta g]^2 + h = 0. \label{eq:eq:expansion}$$

²There are slight errors in [5, Theorem 1.34], see the Errata included in reference [5].

QED

The cubic $F(x) = F_{t_1,t_2}(x) := x^3 + x^2 + h \in \operatorname{GF}(q)[x]$ has Hessian $H(x) = x^2 + hx + h$, with roots β_i satisfying $0 \neq h\beta_i = \beta_i^2 + h$. Then $F(\beta_i) = \beta_i^3 + \beta_i^2 + h = \beta_i(\beta_i^2 + h) = \beta_i h\beta_i$, so $F(\beta_1)/F(\beta_2) = \beta_1^2/\beta_2^2$.

Clearly $(\beta_i/h)^2 + (\beta_i/h) = 1/h$. If $q \equiv 1 \pmod{3}$, by Lemma 6 we need to have $\beta_1^2/\beta_2^2 \notin \operatorname{GF}(q)^3$ and $\beta_i \in \operatorname{GF}(q)$, so that T(1/h) = 0. The case $q \equiv 2 \pmod{3}$ is similar. In either case F has distinct roots: a multiple root of Fwould be a root of its derivative x^2 , whereas $F(0) = h \neq 0$.

Finally, this argument reverses, yielding the converse.

We call the planes $\pi(\mathbb{S})$ arising from Theorem 7 cubic flokki planes.

8 Example. $g \equiv 0$ and $f(t) = kt^2$ with k a non-cube. The cubic is $U^3 + \Delta tk[\Delta t]^2$, and its roots are not in GF(q). This is a special case of Example 3.

9 Corollary. If the functions f, g produce a cubic flokki plane then so do the functions f^{-1}, gf^{-1} .

PROOF. Set $z_i = f(t_i)$ in (i) and (ii). (This produces the transpose of the spread set S.)

10 Remark (Another variant). If

$$\mathbb{S} := \left\{ \begin{pmatrix} s + g(t) & f(t) \\ t & s^{1/2} \end{pmatrix} \mid s, t \in \mathrm{GF}(q) \right\},\$$

let $u = s^{1/2}$ to put this into the form

$$\mathbb{S} = \left\{ \begin{pmatrix} u^2 + g(t) & f(t) \\ t & u \end{pmatrix} \mid u, t \in \mathrm{GF}(q) \right\},\$$

where a cubic is evident. Now use a variant of the calculations above in order to obtain conditions involving $T\left(\frac{[\Delta g]^3}{\Delta t[\Delta f]^2}\right)$ for \mathbb{S} to be a spread set (cf. Lemma 17). When q > 4 we suspect that the flokki plane $\pi(\mathbb{S})$ is not isomorphic to a flokki plane arising from Theorem 7 with $\sigma = 2$.

The remainder of this section concerns the planes $\pi(\mathbb{S})$ obtained as follows: 11 Theorem. Let $q = 2^e$, where e is not divisible by 3. Then

$$\mathbb{S} := \left\{ \begin{pmatrix} s+t^5 & t^{14} \\ t & s^2 \end{pmatrix} \mid s, t \in \mathrm{GF}(q) \right\}$$

is a spread set.

PROOF. Since $(7, q - 1) = (2^3 - 1, 2^e - 1) = 1$, t^{14} is 1 - 1. If $t_1, t_2 \in GF(q)$ with $t_2, \Delta t \neq 0$ but $\Delta g = 0$, then $t := t_1/t_2$ satisfies g(t) = 0 and hence has order 5. We must show that $U^3 + \Delta t \Delta f = 0$ has no root in GF(q), that is, $(t+1)(t^{14}+1)$ is a non-cube in GF(q). This can be checked by a calculation in

GF(2)[t] = GF(16) since $GF(q)^*/GF(16)^*$ does not have order divisible by 3 in view of our hypothesis on e.

Fix t_1, t_2 in Theorem 7; we may assume that $t := t_2/t_1 \neq 0, 1$. As above we will use $h = h(t) := \frac{\Delta t \Delta f}{[\Delta g]^3} = \frac{(t+1)(t^{14}+1)}{(t^5+1)^3}$. Let $\omega \in \mathrm{GF}(4)$ with $\omega + \omega^2 = 1$; here ω might lie in $\mathrm{GF}(q^2) \backslash \mathrm{GF}(q)$. Since

$$\frac{1}{h} = \left(\omega + \frac{t^6 + t^4 + t^3 + t}{t^7 + 1}\right) + \left(\omega + \frac{t^6 + t^4 + t^3 + t}{t^7 + 1}\right)^2,\tag{1}$$

the trace condition in Theorem 7 is magically satisfied, and the roots of the quadratic $x^2 + hx + h$ are

$$\beta_1 = \left(\omega + \frac{t^6 + t^4 + t^3 + t}{t^7 + 1}\right)h, \quad \beta_2 = \left(\omega^2 + \frac{t^6 + t^4 + t^3 + t}{t^7 + 1}\right)h.$$

These lie in $K := GF(q^i)$, where $q \equiv i \pmod{3}$ for i = 1 or 2, and not in GF(q)if i = 2. Again magically,

$$\beta_1/\beta_2 = \frac{\omega + \frac{t^6 + t^4 + t^3 + t}{t^7 + 1}}{\omega^2 + \frac{t^6 + t^4 + t^3 + t}{t^7 + 1}} = \frac{\omega(t+1)(t^2 + \omega t + 1)^3}{\omega^2(t+1)(t^2 + \omega^2 t + 1)^3} \notin K^3,$$
(2)

as $\omega \notin K^3$ since 2e is not divisible by 6, so that the non-cube condition in Theorem 7 is satisfied. QED

12 Corollary. If $q \ge 16$ then $\pi(\mathbb{S})$ is a translation plane of order q^4 that is not a semifield plane.

PROOF. $\pi(\mathbb{S})$ is not a semifield plane since \mathbb{S} contains 0 and is not closed under addition [2, 5.1.2]. QED

13 Remark. If q = 4, then $\pi(\mathbb{S})$ is the semifield plane of order 16 with kernel GF(4) [16, p. 209].

14 Theorem. For $q = 2^e \ge 16$, the translation complement of $\pi = \pi(\mathbb{S})$ has order $q(q-1)^2 e$, with orbits-lengths 1, q and $q^2 - q$ on the translation line.

PROOF. Let S be the spread of PG(3,q) given by S; it contains the line $l(\infty) := \{(0,0,s,t) \mid s,t \in GF(q)\}$. Then the translation complement $Aut(\pi)_0$ is the stabilizer C of S in $\Gamma L(4, q)$. Suppose $X \in \Gamma L(4, q)$ stabilizes S and $l(\infty)$. Then X can be written as the product of a 2 × 2 block matrix $X = \begin{pmatrix} X_1 & X_2 \\ 0 & X_3 \end{pmatrix}$ and a field automorphism α such that

$$X_1^{-1}X_2 + X_1^{-1}A^{\alpha}X_3 \in \mathbb{S} \quad \text{for all } A \in \mathbb{S}.$$

A straightforward calculation then shows that the stabilizer G of $l(\infty)$ in C consists of all matrices $X = \begin{pmatrix} X_1 & X_2 \\ 0 & X_3 \end{pmatrix}$ for which $X_1 = \begin{pmatrix} a^{-14} & 0 \\ 0 & l^4 a^{10} \end{pmatrix}$, $X_2 = \begin{pmatrix} d & 0 \\ 0 & d^2 \end{pmatrix}$ and $X_3 = \begin{pmatrix} l^5 a^{-9} & 0 \\ 0 & l^{14} \end{pmatrix}$, with $a, l \in \mathrm{GF}(q)^*$, $d \in \mathrm{GF}(q)$, $\alpha \in Aut(\mathrm{GF}(q))$. Thus G has order $q(q-1)^2 e$.

Another straightforward calculation shows that G has orbit-lengths 1, q and $q^2 - q$ on S. Using [4] and the elations in Theorem 4, we find that $l(\infty)$ is fixed by C, so that C = G.

15 Theorem. $\pi(\mathbb{S})$ is a flokki plane that is not a flock plane, a semifield plane or a lifted plane.

PROOF. $\pi(\mathbb{S})$ is in the form given in Theorem 4. It is not a flock plane by [11], since q+1 does not divide the order of the translation complement, nor is it a lifted plane by [10]. It is not a semifield plane by Corollary 12. QED

5 Additional planes

The same calculations as in the proof of Theorem 11 produce translation planes in an entirely different manner using prequasifields. A finite **prequasi**field is a finite vector space K over the prime field, together with a binary operation * on K that is left distributive and such that $x * t_1 = x * t_2 \Rightarrow x = 0$ or $t_1 = t_2$. This produces a translation plane $\pi(*)$ in a standard manner (compare [2, Sec. 3.1]).

Let K = GF(q) with $q = 2^e$. Consider functions $a, b, c: GF(q) \to GF(q)$, and the operation * defined on GF(q) given by the formula

$$x * t = x^4 a(t) + x^2 b(t) + xc(t).$$
(3)

With notation as in Section 3, this defines a prequasifield if and only if

$$x^{3}\Delta a + x\Delta b + \Delta c = 0 \Rightarrow t_{1} = t_{2}.$$
(4)

16 Example. $a(t) = t, b \equiv 0, c(t) = kt^{4^j}$ with $k \in K$ a non-cube, so that we must require that $q \equiv 1 \pmod{3}$. Then (3) define a twisted field [1]. Note that this involves a relationship between some planes of Albert and some planes of Knuth given in Example 3.

17 Lemma. Assume that b is 1-1. If $\Delta a \Delta c \neq 0$ let β_1, β_2 denote the roots of the quadratic $[\Delta b]^3 x^2 + \Delta a [\Delta c]^2 x + \Delta a [\Delta c]^2 = 0$. Then (3) defines a prequasifield if and only if a and c are 1-1 and, for any distinct $t_1, t_2 \in GF(q)$, either

(i)
$$q \equiv 1 \pmod{3}$$
, $T\left(\frac{[\Delta b]^3}{\Delta a [\Delta c]^2}\right) = 0$ and $\beta_1/\beta_2 \notin GF(q)^3$, or

(ii)
$$q \equiv 2 \pmod{3}, T\left(\frac{[\Delta b]^3}{\Delta a [\Delta c]^2}\right) = 1 \text{ and } \beta_1/\beta_2 \notin \mathrm{GF}(q^2)^3.$$

PROOF. Suppose that (3) defines a prequasifield. Let $t_1 \neq t_2$ behave as in the first part of (4). Since $\Delta b \neq 0$, (4) implies that a and c are 1-1. If $U := \left(\frac{\Delta a}{\Delta b}x^2\right) + 1$ and $h := \frac{\Delta a[\Delta c]^2}{[\Delta b]^3}$, then (4) becomes F(U) = 0 for the same cubic $F(X) := X^3 + X^2 + h$ as in Section 4. The β_i are the roots of the Hessian $H(x) = x^2 + hx + h$ of F. We can now imitate the remainder of the proof of Theorem 7. Once again the argument reverses. QED

18 Theorem. Let $q = 2^e$, where e is not divisible by 3. Then each of the following triples of functions defines a prequasifield using (3), and the corresponding translation plane is not a semifield plane if $q \ge 16$:

(i) a(t) = t, $b(t) = t^5$, $c(t) = t^7$, and

(ii)
$$a(t) = t^{14}, b(t) = t^5, c(t) = t^{1/2}.$$

PROOF. (i) As in the preceding section we assume that $t := t_2/t_1 \neq 0, 1$ and use $h := \frac{\Delta a[\Delta c]^2}{[\Delta b]^3} = \frac{(t+1)(t^{14}+1)}{(t^5+1)^3}$. Then 1/h and the ratio β_1/β_2 in the preceding lemma are *exactly* as in the proof of Theorem 11. Thus, using (1) and (2) we obtain a prequasifield by the preceding lemma. The plane $\pi(*)$ is not a semifield plane for $q \geq 16$ since the set of functions $x \to x * t$ is not closed under addition [2, 5.1.2].

In detail: if the above set is closed under addition then, for each t, u, there is v = v(t, u) such that $(x^4t + x^2t^5 + xt^7) + (x^4u + x^2u^5 + xu^7) + (x^4v + x^2v^5 + xv^7) = 0$ for all x. Write $a_i = t^i + u^i + v^i$. Then $x^4a_1 + x^2a_5 = xa_7$, and the case x = 1 gives $x^4a_1 + x^2a_5 = x(a_1 + a_5)$. Since b is not additive, we can choose t, u such that $a_1 \neq 0$, but then the function $(x^3 + 1)/(x + 1)$ is constant for $x \neq 0, 1$, which is a contradiction since q > 4.

which is a contradiction since q > 4. (ii) Here $h := \frac{\Delta a[\Delta c]^2}{[\Delta b]^3} = \frac{(t^{14}+1)(t+1)}{(t^5+1)^3}$ is the same as in (i). Since h determines the β_i (for given $t_1 \neq t_2$), (ii) follows as in (i).

It seems amazing that the same calculations are used in this theorem as in Theorem 11, so it is natural to wonder if there might be a relationship between the resulting planes. However, the present planes have order q, which might not even be a square, whereas the earlier planes had order q^2 .

We suspect that $\pi(*)$ is a new plane in both (i) and (ii). These two planes are evidently related in some formal algebraic sense, but the planes probably are not isomorphic.

See [14, 16] for other translation planes of order 2^e for odd e; those include the only other non-Desarguesian planes we know of having order 2^e when e is prime. However, those are semifield planes or flag-transitive planes and hence admit far more automorphisms than the above ones appear to. (The only obvious automorphisms of $\pi(*)$ fixing the vector 0 are powers of $(x, y) \to (x^2, y^2)$.)

6 Open problems

We conclude with open problems concerning the planes in this paper, which neither author plans to work on.

- (1) For given q and σ , do linear flokki (Example 2) determine non-isomorphic Hughes-Kleinfeld planes if and only if they are inequivalent under the group of the cone C_{σ} ?
- (2) Are the planes in Example 3 the only non-linear ones in which the q planes in Proposition 1 all meet?
- (3) Does the use of the automorphism 1/2 in Remark 10 produce a different plane when applied to the example in Theorem 7 if q > 4?
- (4) Does Corollary 9 usually produce a different plane from Theorem 11 when applied to the example in that theorem?
- (5) Are the planes in Theorem 18(i) and (ii) non-isomorphic?
- (6) Are there any more cubic flokki planes that are not semifield planes with f and g monomial?
- (7) Is there any relationship between flokki and generalized quadrangles?
- (8) Is there any relationship between flokki and hyperovals?

References

- A. A. ALBERT: Finite noncommutative division algebras. Proc. Amer. Math. Soc. 9 (1958), 928–932.
- [2] P. DEMBOWSKI: Finite geometries. Springer, Berlin, 1968.
- [3] H. GEVAERT, N. L. JOHNSON: Flocks of quadratic cones, generalized quadrangles and translation planes. Geom. Ded. 27 (1988), 301–317.
- [4] C. HERING: On shears of translation planes Abh. Math. Sem. Univ. Hamburg 37 (1972), 258–268.
- J. W. P. HIRSCHFELD: Projective geometries over finite fields. Second edition. Oxford University Press, New York, 1998. Errata: see http://www.maths.sussex.ac.uk/Staff/JWPH/RESEARCH/PGOFF/index.html.

- Y. HIRAMINE, M. MATSUMOTO, T. OYAMA: On some extension of 1-spread sets. Osaka J. Math. 24 (1987), 123–137.
- [7] D. R. HUGHES, E. KLEINFELD: Semi-nuclear extensions of Galois fields. Amer. J. Math. 82 (1960), 389–392.
- [8] V. JHA, N. L. JOHNSON: Derivable nets defined by central collineations. J. Combin. Inform. System Sci. 11 (1986), 83–91.
- [9] N. L. JOHNSON: Sequences of derivable translation planes. Osaka J. Math. 25 (1988), 519–530.
- [10] N. L. JOHNSON: Semifield planes of characteristic p admitting p-primitive Baer collineations. Osaka J. Math. 26 (1989), 281–285.
- [11] N. L. JOHNSON: Homology groups of translation planes and flocks of quadratic cones I. The structure. Bull. Belg. Math. Soc. Simon Stevin 12 (2005), 827-844.
- [12] N.L. JOHNSON, V. JHA, M. BILIOTTI: Handbook of finite translation planes. Chapman & Hall/CRC, Boca Raton, FL, 2007.
- [13] N. L. JOHNSON, S. E. PAYNE: Flocks of Laguerre planes and associated geometries. Mostly finite geometries (Iowa City, IA, 1996), 51–122, Lecture Notes in Pure and Appl. Math., 190, Dekker, New York, 1997.
- [14] W. M. KANTOR: Spreads, translation planes and Kerdock sets. II. SIAM J. Alg. Discr. Meth. 3 (1982), 308–318.
- [15] W. M. KANTOR: *HMO-planes*. Adv. Geom. 9 (2009), 31–43.
- [16] D. E. KNUTH: Finite semifields and projective planes. J. Algebra 2 (1965), 182-217.
- [17] R. SANDLER: Autotopism groups of some finite non-associative algebras. Amer. J. Math. 84 (1962), 239-264.