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Abstract. Non-Desarguesian translation planes of order q2 are constructed whenever q =
2e ≥ 16 and e is not divisible by 3. Each plane has kernel GF(q) and translation complement
of order q(q − 1)2e, with orbits of lengths 1, q and q2 − q on the translation line. The planes
have elation groups of order q that produce derivable nets, but are not flock planes, semifield
planes, or lifted planes.

The same algebraic tools are used to construct non-Desarguesian translation planes of
order 2p for every prime p > 3.
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1 Introduction

In the 1970’s, Thas and Walker constructed translation planes from flocks
of Miquelian Laguerre planes ( flock planes, surveyed in [13]). Here we twist
that construction with a field automorphism, still producing translation planes
in Section 3 and new ones in Section 4, in the process recontextualizing the
Hughes-Kleinfeld semifield planes [7].

Another impetus for this paper came from an attempt to use cubic polyno-
mials in place of more common uses of quadratics in the study of 2-dimensional
translation planes. This produces the planes in Section 4, and additional ones
in Section 5. It is surprising, and perhaps even bizarre, that we construct planes
of even order q and q2 using the exact same computations, where q may or may
not be a square.

We conclude in Section 6 with some open problems.

iDedicated to Norm Johnson on the occasion of his 70th birthday.
iiResearch supported in part by NSF grant DMS 0753640.
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2 Flokki and Flokki planes

Flock planes are related to flocks of a quadratic cone. Each such cone can be
transformed into a cone xy = z2 of PG(3, q). In this section we consider a cone
on a plane curve obtained from a conic by twisting by a field automorphism.
Recall that a spread set on GF(q)2 is a set S of q2 2× 2 matrices over GF(q)
such that the difference of any two is invertible; this determines a translation
plane π(S) in a standard manner [2, p. 220].

1 Proposition. Consider the cone Cσ := {〈x, y, z, w〉 | xσy = zσ+1} in
PG(3, q) on the plane curve xσy = zσ+1, where σ ∈ Aut(GF(q)). Consider
functions f, g : GF(q) → GF(q). Then the planes w = xt − yf(t)σ + zg(t)σ,
t ∈ GF(q), partition Cσ\{〈0, 0, 0, 1〉} if and only if

S :=

{(
u+ g(t) f(t)

t uσ

) ∣∣∣ t, u ∈ GF(q)

}
is a spread set.

Proof. We have equations for q planes, each containing q+1 points of Cσ,
while |Cσ| = 1+q(q+1). Thus, in order to have a partition we only need to ensure
that, if t1 6= t2, then the conditions w = xt1−yf(t1)σ+zg(t1)σ = xt2−yf(t2)σ+
zg(t2)

σ and xσy = zσ+1 imply that x = y = z = 0. For distinct t1, t2 ∈ GF(q),
write ∆t := t1 − t2, ∆f := f(t1) − f(t2) and ∆g := g(t1) − g(t2). Then our
requirement states that xσ+1∆t− zσ+1∆fσ + xσz∆gσ = 0 ⇒ (x, z) = (0, 0). If
z 6= 0 and u := (x∆t/z)σ

−1
, then it follows that uσ+1+uσ∆g−∆t∆f = 0 must

have no root u ∈ GF(q). This is precisely the condition that S is a spread set,
and this argument reverses. QED

We call a partition of Cσ as in the theorem a flokki1 of Cσ, and the
corresponding plane π(S) is a flokki plane. These are (Thas-Walker) flock
planes if σ = 1.

2 Example. The most obvious flokki are linear, where all planes contain a
common line. This occurs if and only if fσ and gσ are linear. The corresponding
flokki planes π(S) are semifield planes. In fact, they have been known for almost
a half century : they are the Hughes-Kleinfeld planes [7]. The flokki setting pro-
vides a uniform way to view this class of projective planes as part of a larger
object (the cone Cσ) in place of the previous more computational view.

Unlike in the conical flock case there are many different orbits of such lines
under the group of collineations preserving Cσ, and hence many “different”
linear flokki. Presumably this can be used to explain the isomorphisms among
the Hughes-Kleinfeld planes [17].

1This is the Finnish word for “flock”. Plural: flokki.
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3 Example. S :=

{(
u ntτ

t uσ

) ∣∣∣ t, u ∈ GF(q)

}
is a spread set, where 1 6=

σ ∈ Aut(GF(q)), τ ∈ Aut(GF(q)), and n ∈ GF(q) is not of the form uσ+1/tτ+1

(i.e., n is not a dth power for some d|(σ + 1, τ + 1)). Here g ≡ 0 is linear, but S
is not linear if τ 6= σ, in which case all q planes have in common only a single
point: 〈0, 0, 1, 0〉. The semifield plane arising from S is due to Knuth [16].

3 Flokki planes and nets

One starting point of this paper is the following result of Gevaert and John-
son:

4 Theorem. A translation plane π of order q2 with kernel GF(q) admits
an elation group E of order q one of whose component-orbits union the elation
axis is a derivable net if and only if each of the component-orbits of E union
the axis is a derivable net, if and only if π is isomorphic to π(S), where

S :=

{(
u+ g(t) f(t)

t uσ

) ∣∣∣ t, u ∈ GF(q)

}

for some functions f, g : GF(q)→ GF(q) and some σ ∈ Aut(GF(q)). Moreover,
π is a flock plane if and only if σ = 1.

Proof. This is a restatement of [3, Theorem 2.2], incorporating Note 2.2(ii)
after Theorem 2.2 and the result in [8] that, in this situation, if the union of one
of the component-orbits with the elation axis is a derivable net, then the union
of each of the component-orbits with the axis is a derivable net. QED

The elation groups mentioned above are represented by the matrices

X =

(
I Y
0 I

)
with Y =

(
d 0
0 dσ

)
, d ∈ GF(q).

It follows from Proposition 1 that a plane satisfies the hypotheses of Theorem
4 if and only if it is a flokki plane. Note that the preceding two results involve
the same spread sets.

5 Example. HMO flokki planes
Suppose

S =

{(
s f(s, t)
t g(s, t)

) ∣∣∣ s, t ∈ GF(q)

}

is a spread set, where q is odd and n is a fixed non-square in GF(q). Fix η ∈
GF(q2) with η2 = n. Then

S′ =

{(
u f(s, t) + g(s, t)η

s+ tη uq

) ∣∣∣ s, t ∈ GF(q), u ∈ GF(q2)

}
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is a spread set. The process of moving from the plane given by S to the plane
given by S′ is due to Hiramine-Matsumoto-Oyama [6], and is generalized to
characteristic 2 in their Remark 2.4 (see also [9] and [15]), as follows. This time
fix a basis {1, η} for GF(q2) over GF(q), and let a = η + ηq. If

S :=

{(
s f(s, t) + ag(s, t)
t g(s, t)

) ∣∣∣ s, t ∈ GF(q)

}

is a spread set, then so is

S′ :=

{(
u f(s, t) + g(s, t)η

s+ tη uq

) ∣∣∣ s, t ∈ GF(q), u ∈ GF(q2)

}
.

Let v = s+ tη and let Tr(x) = x+ xq be the trace map GF(q2)→ GF(q).

For q odd, we have s = 1
2Tr(v) and t =

v− 1
2
Tr(v)

η , so that with

F (v) := f
(
Tr(v)/2,

v − 1
2Tr(v)

η

)
+ g
(1
2
Tr(v)η,

v − 1
2Tr(v)

η

)
η,

S′ =

{(
u F (v)
v uq

) ∣∣∣ u, v ∈ GF(q2)

}
.

For q even, note that a 6= 0 as {1, η} is a basis for GF(q2) over GF(q). This
time t = Tr(v)/a and s = v−Tr(v)η/a. If F (v) := f

(
v−Tr(v)η/a, Tr(v)/a

)
+

g
(
v − Tr(v)η/a, Tr(v)/a

)
η, then

S′ =

{(
u F (v)
v uq

) ∣∣∣ u, v ∈ GF(q2)

}
.

For both parities, π(S′) is a flokki plane (with g ≡ 0 and σ of order 2), called
a lifted plane in [12].

4 Cubic flokki planes

In the preceding section we were led to the equation uσ+1+uσ∆g−∆t∆f =
0. We do not know of any formula for its roots in general. However, in char-
acteristic 2, when σ is the Frobenius automorphism xσ = x2 cubic equations
naturally arise in constructing flokki planes, and there is such a classical for-
mula. TheHessian of a cubic polynomial F (x) = a0x

3+a1x
2+a2x+a3 over any

field is the polynomial H(x) := (3a0a2−a21)x2+(9a0a3−a1a2)x+(3a1a3−a22).
The formula for the roots of cubic polynomials yields the following
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6 Lemma. [5, Theorem 1.34]2 Let F be a cubic polynomial over GF(q)
with distinct roots, where q is not a power of 3. Assume that its Hessian H has
degree 2, with distinct roots β1, β2 in some extension field and β2 6= 0. Then F
has no roots in GF(q) if and only if either

(i) q ≡ 1 (mod 3), β1, β2 ∈ GF(q) and F (β1)/F (β2) /∈ GF(q)3, or

(ii) q ≡ 2 (mod 3), β1, β2 ∈ GF(q2)\GF(q) and F (β1)/F (β2) /∈ GF(q2)3.

Recall that the absolute trace T maps a given field K of characteristic 2
onto GF (2). If k ∈ K, then T (k) = 0 if and only if the quadratic x2 + x+ k is
reducible over K.

7 Theorem. For even q and functions f, g : GF(q)→ GF(q), let

S :=

{(
s+ g(t) f(t)

t s2

) ∣∣∣ s, t ∈ GF(q)

}
.

Write ∆t = t1 + t2, ∆f = f(t1) + f(t2) and ∆g = g(t1) + g(t2) for t1, t2 ∈
GF(q). Assume that g is 1-1 (or, more generally, that ∆t 6= 0 = ∆g ⇒
∆t∆f /∈ GF(q)3). If ∆f∆g 6= 0 let βi = βi(t1, t2), i = 1, 2, be the roots of
the quadratic [∆g]3x2+∆t∆f x+∆t∆f = 0. Then S is a spread set if and only
if f is 1-1 and, for any distinct t1, t2 ∈ GF(q), either

(i) q ≡ 1(mod 3), and T
(

[∆g]3

∆t∆f

)
= 0and β1/β2 /∈GF(q)3whenever ∆g 6= 0, or

(ii) q ≡ 2 (mod 3), and T
(

[∆g]3

∆t∆f

)
= 1 and β1/β2 /∈ GF(q2)3whenever ∆g 6= 0.

Proof. Assume that S is a spread set. Then

(u1 + u2)
3 + (u1 + u2)

2∆g +∆t∆f = 0⇒ (t1, t2) = (u1, u2),

and we must deduce (i) or (ii). Putting U = u1 + u2 yields the cubic equation

U3 + U2∆g +∆t∆f = 0.

We may assume that ∆t 6= 0. Then f must be 1-1 (as otherwise ∆f = 0 for
some distinct t1, t2, and then U = ∆g would yield a contradiction), and hence
also U 6= 0.

By hypothesis, ∆g 6= 0. Then h = h(t1, t2) :=
∆t∆f
[∆g]3

6= 0 and

[U/∆g]3 + [U/∆g]2 + h = 0.

2There are slight errors in [5, Theorem 1.34], see the Errata included in reference [5].





216 W. M. Kantor, T. Penttila

The cubic F (x) = Ft1,t2(x) := x3 + x2 + h ∈ GF(q)[x] has Hessian H(x) =
x2+hx+h, with roots βi satisfying 0 6= hβi = β2i +h. Then F (βi) = β3i +β

2
i +h =

βi(β
2
i + h) = βihβi, so F (β1)/F (β2) = β21/β

2
2 .

Clearly (βi/h)
2 + (βi/h) = 1/h. If q ≡ 1 (mod 3), by Lemma 6 we need to

have β21/β
2
2 /∈ GF(q)3 and βi ∈ GF(q), so that T (1/h) = 0. The case q ≡ 2

(mod 3) is similar. In either case F has distinct roots: a multiple root of F
would be a root of its derivative x2, whereas F (0) = h 6= 0.

Finally, this argument reverses, yielding the converse. QED

We call the planes π(S) arising from Theorem 7 cubic flokki planes.

8 Example. g ≡ 0 and f(t) = kt2 with k a non-cube. The cubic is U3 +
∆tk[∆t]2, and its roots are not in GF(q). This is a special case of Example 3.

9 Corollary. If the functions f, g produce a cubic flokki plane then so do
the functions f−1, gf−1.

Proof. Set zi = f(ti) in (i) and (ii). (This produces the transpose of the
spread set S.) QED

10 Remark (Another variant). If

S :=

{(
s+ g(t) f(t)

t s1/2

) ∣∣∣ s, t ∈ GF(q)

}
,

let u = s1/2 to put this into the form

S =

{(
u2 + g(t) f(t)

t u

) ∣∣∣ u, t ∈ GF(q)

}
,

where a cubic is evident. Now use a variant of the calculations above in order to
obtain conditions involving T

(
[∆g]3

∆t[∆f ]2

)
for S to be a spread set (cf. Lemma 17).

When q > 4 we suspect that the flokki plane π(S) is not isomorphic to a flokki
plane arising from Theorem 7 with σ = 2.

The remainder of this section concerns the planes π(S) obtained as follows:

11 Theorem. Let q = 2e, where e is not divisible by 3. Then

S :=

{(
s+ t5 t14

t s2

) ∣∣∣ s, t ∈ GF(q)

}

is a spread set.

Proof. Since (7, q − 1) = (23 − 1, 2e − 1) = 1, t14 is 1− 1. If t1, t2 ∈ GF(q)
with t2,∆t 6= 0 but ∆g = 0, then t := t1/t2 satisfies g(t) = 0 and hence has
order 5. We must show that U3 + ∆t∆f = 0 has no root in GF(q), that is,
(t+ 1)(t14 + 1) is a non-cube in GF(q). This can be checked by a calculation in





Translation planes 217

GF(2)[t] = GF(16) since GF(q)∗/GF(16)∗ does not have order divisible by 3 in
view of our hypothesis on e.

Fix t1, t2 in Theorem 7; we may assume that t := t2/t1 6= 0, 1. As above we

will use h = h(t) := ∆t∆f
[∆g]3

= (t+1)(t14+1)

(t5+1)3
.

Let ω ∈ GF(4) with ω + ω2 = 1; here ω might lie in GF(q2)\GF(q). Since

1

h
=
(
ω +

t6 + t4 + t3 + t

t7 + 1

)
+
(
ω +

t6 + t4 + t3 + t

t7 + 1

)2
, (1)

the trace condition in Theorem 7 is magically satisfied, and the roots of the
quadratic x2 + hx+ h are

β1 =
(
ω +

t6 + t4 + t3 + t

t7 + 1

)
h, β2 =

(
ω2 +

t6 + t4 + t3 + t

t7 + 1

)
h.

These lie in K := GF(qi), where q ≡ i (mod 3) for i = 1 or 2, and not in GF(q)
if i = 2. Again magically,

β1/β2 =
ω + t6+t4+t3+t

t7+1

ω2 + t6+t4+t3+t
t7+1

=
ω(t+ 1)(t2 + ωt+ 1)3

ω2(t+ 1)(t2 + ω2t+ 1)3
/∈ K3, (2)

as ω /∈ K3 since 2e is not divisible by 6, so that the non-cube condition in
Theorem 7 is satisfied. QED

12 Corollary. If q ≥ 16 then π(S) is a translation plane of order q4 that is
not a semifield plane.

Proof. π(S) is not a semifield plane since S contains 0 and is not closed
under addition [2, 5.1.2]. QED

13 Remark. If q = 4, then π(S) is the semifield plane of order 16 with
kernel GF(4) [16, p. 209].

14 Theorem. For q = 2e ≥ 16, the translation complement of π = π(S)
has order q(q − 1)2e, with orbits-lengths 1, q and q2 − q on the translation line.

Proof. Let S be the spread of PG(3, q) given by S; it contains the line
l(∞) := {(0, 0, s, t) | s, t ∈ GF(q)}. Then the translation complement Aut(π)0
is the stabilizer C of S in ΓL(4, q). Suppose X ∈ ΓL(4, q) stabilizes S and l(∞).

Then X can be written as the product of a 2× 2 block matrix X =

(
X1 X2

0 X3

)

and a field automorphism α such that

X−1
1 X2 +X−1

1 AαX3 ∈ S for all A ∈ S.
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A straightforward calculation then shows that the stabilizer G of l(∞) in

C consists of all matrices X =

(
X1 X2

0 X3

)
for which X1 =

(
a−14 0
0 l4a10

)
,

X2 =

(
d 0
0 d2

)
and X3 =

(
l5a−9 0
0 l14

)
, with a, l ∈ GF(q)∗, d ∈ GF(q), α ∈

Aut(GF(q)). Thus G has order q(q − 1)2e.
Another straightforward calculation shows that G has orbit-lengths 1, q and

q2− q on S. Using [4] and the elations in Theorem 4, we find that l(∞) is fixed
by C, so that C = G. QED

15 Theorem. π(S) is a flokki plane that is not a flock plane, a semifield
plane or a lifted plane.

Proof. π(S) is in the form given in Theorem 4. It is not a flock plane
by [11], since q+1 does not divide the order of the translation complement, nor
is it a lifted plane by [10]. It is not a semifield plane by Corollary 12. QED

5 Additional planes

The same calculations as in the proof of Theorem 11 produce translation
planes in an entirely different manner using prequasifields. A finite prequasi-
field is a finite vector space K over the prime field, together with a binary
operation ∗ on K that is left distributive and such that x ∗ t1 = x ∗ t2 ⇒ x = 0
or t1 = t2. This produces a translation plane π(∗) in a standard manner (com-
pare [2, Sec. 3.1]).

Let K = GF(q) with q = 2e. Consider functions a, b, c : GF(q)→ GF(q), and
the operation ∗ defined on GF(q) given by the formula

x ∗ t = x4a(t) + x2b(t) + xc(t). (3)

With notation as in Section 3, this defines a prequasifield if and only if

x3∆a+ x∆b+∆c = 0⇒ t1 = t2. (4)

16 Example. a(t) = t, b ≡ 0, c(t) = kt4
j
with k ∈ K a non-cube, so that

we must require that q ≡ 1 (mod 3). Then (3) define a twisted field [1]. Note
that this involves a relationship between some planes of Albert and some planes
of Knuth given in Example 3.

17 Lemma. Assume that b is 1-1. If ∆a∆c 6= 0 let β1, β2 denote the roots of
the quadratic [∆b]3x2+∆a[∆c]2x+∆a[∆c]2 = 0. Then (3) defines a prequasifield
if and only if a and c are 1-1 and, for any distinct t1, t2 ∈ GF(q), either

(i) q ≡ 1 (mod 3), T
(

[∆b]3

∆a[∆c]2

)
= 0 and β1/β2 /∈ GF(q)3, or
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(ii) q ≡ 2 (mod 3), T
(

[∆b]3

∆a[∆c]2

)
= 1 and β1/β2 /∈ GF(q2)3.

Proof. Suppose that (3) defines a prequasifield. Let t1 6= t2 behave as
in the first part of (4). Since ∆b 6= 0, (4) implies that a and c are 1-1. If

U :=
(
∆a
∆bx

2
)
+ 1 and h := ∆a[∆c]2

[∆b]3
, then (4) becomes F (U) = 0 for the same

cubic F (X) := X3+X2+h as in Section 4. The βi are the roots of the Hessian
H(x) = x2 + hx + h of F . We can now imitate the remainder of the proof of
Theorem 7. Once again the argument reverses. QED

18 Theorem. Let q = 2e, where e is not divisible by 3. Then each of the
following triples of functions defines a prequasifield using (3), and the corre-
sponding translation plane is not a semifield plane if q ≥ 16:

(i) a(t) = t, b(t) = t5, c(t) = t7, and

(ii) a(t) = t14, b(t) = t5, c(t) = t1/2.

Proof. (i) As in the preceding section we assume that t := t2/t1 6= 0, 1 and

use h := ∆a[∆c]2

[∆b]3
= (t+1)(t14+1)

(t5+1)3
. Then 1/h and the ratio β1/β2 in the preceding

lemma are exactly as in the proof of Theorem 11. Thus, using (1) and (2)
we obtain a prequasifield by the preceding lemma. The plane π(∗) is not a
semifield plane for q ≥ 16 since the set of functions x→ x∗ t is not closed under
addition [2, 5.1.2].

In detail: if the above set is closed under addition then, for each t, u, there is
v = v(t, u) such that (x4t+x2t5+xt7)+(x4u+x2u5+xu7)+(x4v+x2v5+xv7) = 0
for all x. Write ai = ti + ui + vi. Then x4a1 + x2a5 = xa7, and the case x = 1
gives x4a1 + x2a5 = x(a1 + a5). Since b is not additive, we can choose t, u such
that a1 6= 0, but then the function (x3 + 1)/(x + 1) is constant for x 6= 0, 1,
which is a contradiction since q > 4.

(ii) Here h := ∆a[∆c]2

[∆b]3
= (t14+1)(t+1)

(t5+1)3
is the same as in (i). Since h determines

the βi (for given t1 6= t2), (ii) follows as in (i). QED

It seems amazing that the same calculations are used in this theorem as in
Theorem 11, so it is natural to wonder if there might be a relationship between
the resulting planes. However, the present planes have order q, which might not
even be a square, whereas the earlier planes had order q2.

We suspect that π(∗) is a new plane in both (i) and (ii). These two planes
are evidently related in some formal algebraic sense, but the planes probably
are not isomorphic.

See [14, 16] for other translation planes of order 2e for odd e; those include
the only other non-Desarguesian planes we know of having order 2e when e is
prime. However, those are semifield planes or flag-transitive planes and hence
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admit far more automorphisms than the above ones appear to. (The only obvious
automorphisms of π(∗) fixing the vector 0 are powers of (x, y)→ (x2, y2).)

6 Open problems

We conclude with open problems concerning the planes in this paper, which
neither author plans to work on.

(1) For given q and σ, do linear flokki (Example 2) determine non-isomorphic
Hughes-Kleinfeld planes if and only if they are inequivalent under the
group of the cone Cσ?

(2) Are the planes in Example 3 the only non-linear ones in which the q planes
in Proposition 1 all meet?

(3) Does the use of the automorphism 1/2 in Remark 10 produce a different
plane when applied to the example in Theorem 7 if q > 4?

(4) Does Corollary 9 usually produce a different plane from Theorem 11 when
applied to the example in that theorem?

(5) Are the planes in Theorem 18(i) and (ii) non-isomorphic?

(6) Are there any more cubic flokki planes that are not semifield planes with
f and g monomial?

(7) Is there any relationship between flokki and generalized quadrangles?

(8) Is there any relationship between flokki and hyperovals?
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