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1 Introduction

Recently, the authors have constructed classes of mutually disjoint hyper-
reguli of order qn and degree (qn−1)/(q−1), for any integer n > 2. When n > 3,
these hyper-reguli are not André hyper-reguli and so the associated translation
planes are not André or generalized André planes. In contrast, when n = 3,
all hyper-reguli are André hyper-reguli. However, if one has a set of mutually
disjoint hyper-reguli, it is possible that a subset of cardinality at least two may
not be linear and so would produce new translation planes. In this article, new
sets of non-André hyper-reguli in PG(5, q) are determined with the property
that every subset of cardinality at least two is not linear. Hence, replacement
of such a subset will produce a new translation plane.

Of course, it is well known that a regulus R in PG(3, q) is a set of q + 1
lines that are covered by another set of q + 1 lines, the opposite regulus R∗.
Considering this in the associated 4-dimensional GF (q)-vector space, we have a
set of q+1 2-dimensional GF (q)-subspaces that are covered by a set of q+1 Baer
subplanes that share the zero vector. If we have a regulus R in V4, considered
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within a Desarguesian affine plane with spread

x = 0, y = xm;m ∈ K2 ≃ GF (q2),

we consider the kernel homology group

Kern2 :
{
σd : (x, y) 7−→ (xd, yd); d ∈ K2 − {0}

}
.

If we select a Baer subplane of R, πo (line of R∗), then

R∗ = πoKern.

For example, if we consider the sets

Aδ =
{
y = xm;mq+1 = δ

}
, for δ ∈ F ≃ GF (q),

we have a union of q − 1 reguli that are disjoint from x = 0, y = 0. Any of
these may be selected to be derived as above. In this setting the opposite reguli
A∗

δ = {y = xqm;mq+1 = δ}.
More generally, if K3 ≃ GF (q3), and we consider the Desarguesian affine

plane with spread

x = 0, y = xm;m ∈ K3 ≃ GF (q3),

the sets

Aδ =
{
y = xm;m(q3−1)/(q−1) = δ

}
, for δ ∈ F ≃ GF (q),

are called the ‘André’ nets of degree (q3−1)/(q−1). Here, there are correspond-
ing sets that cover these André nets, defined as follows:

Aqk

δ =
{
y = xqk

m;m(q3−1)/(q−1) = δ
}
, for δ ∈ F ≃ GF (q), k = 1, 2.

The analogous construction process of derivation then may be more generally
considered as follows: If k = 1 or 2 and πo is any subspace y = xqk

mo such that

m
(q3−1)/(q−1)
o = δ, then

Aqk

δ = πoKern
3.

1 Definition. A ‘hyper-regulus’ in a vector-space of dimension 2n over
GF (q) is a set of (qn − 1)/(q − 1) n-dimensional GF (q)-subspaces that have a
replacement set of (qn−1)/(q−1) n-dimensional GF (q)-subspaces, so that each
subspace of the replacement set ‘lies over’ each of the original subspaces in a
1-dimensional GF (q)-subspace.
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Hence, we see that the André nets defined above are hyper-reguli and if the
degree is qn, there are at least n − 1 replacement sets. These replacement sets
are called the ‘André’ replacements, which are also hyper-reguli. We note that
any André replacement hyper-regulus is also an André hyper-regulus using a
different Desarguesian affine plane.

Moreover, each André net in a Desarguesian affine plane Σ admits an affine
homology group of Σ that is transitive on the components:

〈
(x, y) 7−→ (x, ya(q−1)); a ∈ GF (qn)

〉

acts transitively on A1. We note the following for André nets of order q3 and
degree (q3 − 1)/(q − 1).

The following result is in Jha-Johnson [3] where André nets of order qn,
n > 2, are considered. Here we restrict attention to n = 3.

2 Theorem (Jha-Johnson [3]). Given an André net A in a Desarguesian
plane Σ of order q3, there is a unique pair of components L and M external
to A such that A admits affine homologies with axis L and coaxis M , and with
axis M and coaxis L.

The André nets of a Desarguesian plane Σ are in an orbit under GL(2, q3).

We focus our attention on the following two problems.

3 Problem. Is any hyper-regulus in a 6-dimensional GF (q)-vector space
always an André hyper-regulus?

4 Problem. Given a set of mutually disjoint hyper-reguli, when is the set
‘linear’ (see below)?

We note that strictly as an abstract net of degree (q3−1)/(q−1), and order
q3, an André net may be embedded in a Desarguesian affine plane, and clearly
this Desarguesian affine plane is unique. We define the more general term ‘André
net’ in a Desarguesian affine plane of order q3 as in the following theorem:

5 Theorem (see Jha-Johnson [3]). Let A be any André net of degree (q3−
1)/(q − 1) and order q3. Then there is a unique Desarguesian affine plane Σ
containing A. Now choose any two components L and M of Σ. Then there is a
set of (q − 1) disjoint André nets of degree (q3 − 1)/(q − 1) such that the union
of these nets with L and M is the spread for Σ. Any such net shall be called an
André net. Hence, within any Desarguesian affine plane, there are exactly

(q3 + 1)q3(q − 1)/2

André nets in Σ. And, there is a corresponding set of

(q3 + 1)q3(q − 1)
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replacement sets for André nets of Σ.

There are exactly

(|ΓL(6, q)| /
∣∣ΓL(2, q3)

∣∣)(q3 + 1)q3(q − 1)/2

André nets in a 6-dimensional GF (q)-vector space V6.

Certainly each hyper-regulus of order qn, when n = 2, produces a derivable
net, which is a regulus in some Desarguesian affine plane by the main result of
Johnson [6]. Hence, any hyper-regulus is an André hyper-regulus when n = 2.

When n = 3, Bruck [1] has shown that every hyper-regulus that sits in a
Desarguesian affine plane is an André hyper-regulus. Furthermore, Pomareda [7]
proved that each André hyper-regulus of order q3 can have exactly two possible
André replacements. In the process of our analysis, we give alternative proofs
of these results of Bruck and Pomareda.

Furthermore, we have given constructions of hyper-reguli that are not André
in Jha-Johnson [3], [5] of order qn, n > 3, and shown that it is possible to
construct sets of mutually disjoint hyper-reguli. The collineation groups of the
translation planes obtained are considered in Jha-Johnson [4]. In particular, the
authors have obtained a variety of families of translation planes constructed by
the replacement of subsets of sets of mutually disjoint hyper-reguli.

6 Theorem (Jha and Johnson [5]). Let Σ denote a Desarguesian affine
plane of order qn, for n > 2, coordinatized by a field isomorphic to GF (qn). Let
ω be a primitive element of GF (qn)∗, then for ωi, attach an element f(i) of
the cyclic subgroup of GF (qn)∗ of order (qn − 1)/(q − 1), C(qn−1)/(q−1), and for

ω−iqn−1
, attach an element f(i)−qn−1

. Hence, basically, we have a set of coset
representatives {ωf(1), ω2f(2), . . . , ω(q−1)f(q − 1)} for C(qn−1)/(q−1). Let

H∗ =





y = xqωijf(ij)d
1−q + xqn−1

(ωij )−qn−1
f(ij)

−qn−1
bd1−qn−1

;
d ∈ GF (qn)∗,for ij ∈ λ ⊆ {1, 2, . . . , q − 1},
assume b(q

n−1)/(q−1) /∈ (ωij+ik)(q
n−1)/(q−1)



 .

Then H∗ is a set of |λ| mutually disjoint hyper-reguli.

Now restricting this to n = 3, we have

7 Theorem. Let Σ be a Desarguesian affine plane of order q3. Let ω be a
primitive element of GF (q3), then for ωi, attach an element f(i) of the cyclic
subgroup of GF (q3)∗ of order (q3 − 1)/(q − 1), C(q3−1)/(q−1). Let

H∗ =





y = xqωijf(ij)d
1−q + xq2

(ωij )−q2
g(ij)bd

1−q2
;

d ∈ GF (q3)∗,for ij ∈ λ ⊆ {1, 2, . . . , q − 1},
assume b(q

3−1)/(q−1) /∈ (ωij+ik)(q
3−1)/(q−1)



 .
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Then H∗ is a set of |λ| mutually disjoint hyper-reguli.
In particular,

(1) then H∗
ij
, for ij fixed, defines a replacement set for a hyper-regulus Hij of

Σ.

(2) Furthermore,
{
y = xqωijf(ij)d

1−q + xq2
(ωijf(ij))

−q2
bd1−q2

}
and

{
y = xq(ωijf(ij))

−1bqd1−q + xq2
(ωijf(ij))

q2
d1−q2

}

are replacements for each other.

A set of hyper-reguli in PG(5, q) is said to be ‘linear’ if and only if the set
belongs to a standard set of André hyper-reguli invariant under the same affine
homology group of order (q3− 1)/(q− 1). The question is if there are any linear
subsets of cardinality > 1. In fact, we show that there are no such sets. That is,
there are no two hyper-reguli in a linear set. If there is a set of t > 1 hyper-reguli
of the type represented above, we show that every subset of j ≤ t, j > 1, will
produce a non-André plane and hence a non-generalized-André plane. In this
article, we also consider the isomorphism classes of the constructed translation
planes.

Ebert and Culbert [2] have constructed several classes of sets of hyper-reguli
in PG(5, q), and from the construction it turns out that no two hyper-reguli
fall into a linear set. This construction uses the analysis of cubic functions by
Sherk [8] and constructs the hyper-reguli directly from the associated Desargue-
sian affine plane (more precisely from the associated line at infinity), where our
construction finds first the replacement hyper-reguli and then only indirectly
can one construct the hyper-reguli in the associated Desarguesian plane. Al-
though there may be some overlap between these two classes, this is completely
undetermined.

Using algebraic methods concerning linear sets, we prove the following gen-
eral result:

8 Theorem. Let Σ be a Desarguesian affine plane of order q3. If we have a
set of mutually disjoint hyper-reguli of the type {y = xqαd1−q +xq2

α−q2
bd1−q2},

where α is in λ ⊆ GF (q3)∗, then no two of these hyper-reguli are in a linear set.

9 Corollary. For any subset of at least two mutually disjoint hyper-reguli
of the type stated in the previous theorem, for each hyper-regulus, choose one of
the two possible replacements. Then a translation plane of order q3 and kernel
GF (q) is constructed that admits a cyclic collineation group of order q3 − 1 but
is not an André or generalized André plane.
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2 Examples

In this section, we show how to construct a variety of examples. We consider
other examples in coming sections.

2.1 Group type examples.

10 Example. For example, take q odd and λ = {2, 4, . . . , (q − 1)/2} and
ij = 2j. Then (ω2j+2k)(q

3−1)/(q−1) ∈ C(q−1)/2. Choose b so that b(q
3−1)/(q−1) /∈

C(q−1)/2. Then, we obtain a set of (q − 1)/2 mutually disjoint hyper-reguli.

11 Example. Similarly, if we take λ = {2, 4, . . . , (q − 1)/2}+ 1 and choose
b so that b(q

3−1)/(q−1) /∈ ωC(q−1)/2, we obtain a set of (q−1)/2 mutually disjoint
hyper-reguli.

12 Example. For q odd, take λ = {1, 2, 3, 4, . . . , (q−3)/2}. Then note that
since for i, j in λ we have i+j ≤ q−3, we may take b(q

3−1)/(q−1) = 1 to construct
a set of (q − 3)/2 mutually disjoint hyper-reguli.

13 Example. Actually, take any set of (q−3)/2 elements of {1, 2, . . . , q−1}
such that i+j is not congruent to 0 mod q−1. Then for b(q

3−1)/(q−1) = 1, we may
construct a set of (q−3)/2 mutually disjoint hyper-reguli. More generally, choose
any i0 from {1, 2, 3, . . . , q−1}. Then choose any set of (q−3)/2 elements so that
i + j is not congruent to i0 mod (q − 1). Letting b(q

3−1)/(q−1) = ωi0(q3−1)/(q−1)

produces a set of (q − 3)/2 mutually disjoint hyper-reguli.

For example take q = 9. Taking λ = {2, 4, 6, 8} produces sets of four disjoint
hyper-reguli. Taking λ = {1, 2, 3} produces a set with three disjoint hyper-reguli.

14 Example. Let q be even, λ = {1, 2, 3, . . . , q/2−1}, and b(q
3−1)/(q−1) = 1.

Then for i, j in {1, 2, . . . , q/2− 1}, we have i+ j ≤ q − 2, so this will produce a
set of q/2− 1 mutually disjoint hyper-reguli.

15 Example. Let k divide q − 1. Take λ = {k, 2k, . . . , (q − 1)/k}. Then
i+ j = kz and ωkz(q3−1)/(q−1) ∈ C(q−1)/k. Take b so that b(q

3−1)/(q−1) /∈ C(q−1)/k

to produce a set of (q − 1)/k mutually disjoint hyper-reguli.

16 Example. In the previous example, let i0 be any element of {1, 2, . . . , q−
1} − {3, 6, 9, . . . , (q − 1)/k} and consider λ = {i0 + ktk; t = 1, 2, . . . , (q −
1)/k}∪{k, 2k, . . . , (q−1)/k}. Then (ωi+j)(q

3−1)/(q−1) ∈ C(q−1)/k∪ωi0C(q−1)/k ∪
ω2i0C(q−1)/k. So, if k > 3, we may add on to obtain 2(q−1)/k mutually disjoint
hyper-reguli.

17 Remark. Note when we obtain a set of t mutually disjoint hyper-reguli,
we obtain (t)(q

3−1)/(q−1) different sets of t mutually disjoint hyper-reguli.

So, if q is odd, we may obtain ((q−1)/2)(q
3−1)/(q−1) sets of (q−1)/2 mutually

disjoint hyper-reguli and when q is even, we may obtain (q/2−1)(q
3−1)/(q−1) sets
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of q/2 − 1 hyper-reguli. Furthermore, all of these sets correspond to the same
choice for b. Other choices for b that have the same avoidance condition also
work. For example, if b works, so does b∗ so that b∗(q

3−1)/(q−1) = b(q
3−1)/(q−1).

In the group type sets, if t = (q− 1)/2, for example, then there are actually
(q3−1)/2 choices for b. Hence, there are then at least ((q−1)/2)(q

3−1)/(q−1)(q3−
1)/2 possible sets of (q − 1)/2 mutually disjoint hyper-reguli.

Moreover, for each coset representative defining a hyper-regulus, we may re-
place the hyper-regulus with the replacement mentioned above and still produce
a set of mutually disjoint hyper-reguli.

3 Hyper-reguli of degree (q3 − 1)/(q − 1)

Consider any subspace of V2n over GF (q), of dimension n over GF (q), that is
disjoint from a given subspace, which we represent in the form x = 0. Represent
V2n as GF (qn)⊕GF (qn). Then, we may represent the subspace in the form

y =
n−1∑

i=0

xqi
ai,

for a set of constants ai, i = 0, 1, 2, . . . , n− 1, of GF (qn), where x is in GF (qn),
as an indeterminate.

Now assume that n = 3. We first ask the conditions on y = xqa1 + xq2
a2,

for a1a2 so that this is a subspace of a putative hyper-regulus replacement for
a hyper-regulus of Σ, a Desarguesian affine plane of order q3.

We consider the image set of y = xq, under GL(2, q3), where GL(2, q3) is
written as 〈[

a f
c d

]
; ad− cf 6= 0, a, f, c, d ∈ GF (q3)

〉
.

Since (x, xq)

[
a f
c d

]
= (xa+xqc, xf+xqd), we see that this is y = xe0+xqe1+

xq2
e2, if and only if xa+xqc 6= 0 for all x. Note that this condition implies that

−c/a is not a (q − 1)st power. Then, we obtain:

(xa+ xqc)e0 + (xa+ xqc)qe1 + (xa+ xqc)q
2
e2 = xf + xqd, ∀x ∈ GF (q3).

This produces the following matrix equation:



a 0 cq

2

c aq 0

0 cq aq2





e0
e1
e2


 =



f
d
0


 .
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We see that the coefficient matrix has determinant a1+q+q2
+ c1+q+q2 6= 0, since

otherwise −(c/a)(q
3−1)/(q−1) = 1, a contradiction to our assumptions.

Hence, we obtain:

e0 = det



f 0 cq

2

d aq 0

0 cq aq2


 /(a1+q+q2

+ c1+q+q2
)

= (faq+q2
+ dcq+q2

)/(a1+q+q2
+ c1+q+q2

),

e1 = det



a f cq

2

c d 0

0 0 aq2


 /(a1+q+q2

+ c1+q+q2
)

= (da1+q2 − fcaq2
)/(a1+q+q2

+ c1+q+q2
),

e2 = det



a 0 f
c aq d
0 cq 0


 /(a1+q+q2 − c1+q+q2

)

= (fc1+q − adcq)/(a1+q+q2
+ c1+q+q2

).

Now consider

(fc1+q − adcq)/(a1+q+q2
+ c1+q+q2

)/((da1+q2 − fcaq2
)/(a1+q+q2

+ c1+q+q2
))

= (fc1+q − adcq)/((da1+q2 − fcaq2
)) = − cq

aq2 (ad− fc)/(da− fc)

= − cq

aq2 = −
( c
aq

)q
.

Note that −
(

c
aq

)q
is a non-(q − 1)st power, and by choosing various a and

c (e.g. a = 1), we may obtain any non-(q − 1)st power. Moreover, we see that
it is possible to vary a, b, c, f to obtain, when ac 6= 0, all elements y = xe0 +
xqe1 + xq2

e1ρ, where ρ is not a (q − 1)st power. The total number of lying-over
subspaces of standard André replacements is

((q3 + 1)q3/2)(q − 1)2(q3 − 1)/(q − 1) = q3(q3 + 1)(q3 − 1) = q3(q6 − 1).

Furthermore, since the stabilizer of y = xq in GL(2, q3) clearly has order (q3−1),
it follows that each lying-over subspace of standard André type is an image of
y = xq under an element of GL(2, q3). Note that since we have shown that every
lying-over subspace of the type y = xa+xqb+xq2

c is an image of y = xq under
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some collineation of GL(2, q3), we have shown that every hyper-regulus is an
André hyper-regulus and every replacement of an André hyper-regulus is one of
two standard types. The first of these statements was proved by Bruck [1] and
the second by Pomareda [7], both by different methods.

18 Theorem. Let Σ be an affine Desarguesian plane of order q3 and let
y = xa+ xqb+ xq2

c.

(1) Then this subspace represents a subspace defining an André hyper-regulus
if and only if either bc = 0 or bc 6= 0 and (b/c) is a non-(q − 1)st power.

(2) Every subspace defining a hyper-regulus of Σ defines an André hyper-
regulus and is in an orbit under GL(2, q3) (see Bruck [1]). Furthermore,
there are exactly two replacement hyper-reguli for each (see [7]).

19 Corollary. Every hyper-regulus and every replacement belongs to a uni-
que Desarguesian affine plane.

Proof. Just note that every replacement is Desarguesian and by cardi-
nality, two Desarguesian planes of order q3 sharing at least (q3 − 1)/(q − 1)
components must be identical. QED

4 Additional constructions

We list a few additional construction procedures of Jha and Johnson [5] that
may be obtained from the general construction procedure.

20 Theorem.

{
xqαδ + xq2

βb;

(
αδ

β

)3

6= b(q
3−1)/(q−1)

}
,

{
xqβδ + xq2

αb;

(
βδ

α

)3

6= b(q
3−1)/(q−1)

}
,

{
xqβ + xq2

αδb;

(
β

αδ

)3

6= b(q
3−1)/(q−1)

}
,

{
xqα+ xq2

βδb;

(
α

βδ

)3

6= b(q
3−1)/(q−1)

}

define mutually disjoint hyper-reguli, for all δ in GF (q), such that b(q
3−1)/(q−1) 6=

δ±3, and β 6= αδ, α 6= βδ, δ 6= 1.
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We ask if the plane obtained could be an André plane (or generalized André
plane). If so, there is an affine homology group fixing each André replacement
set which is induced from a homology group of the associated Desarguesian
affine plane. So, if this is a set of André nets with carrying lines L and M of Σ,
assume first that x = 0 and y = xm0 are the axis and coaxis. Then mapping by
(x, y) 7−→ (x,−xm0 + y) moves the axis and coaxis to x = 0, y = 0 and maps

{
xqαδ + xq2

βb;

(
αδ

β

)n

6= b(q
n−1)/(q−1)

}
,

{
xqβδ + xq2

αb;

(
βδ

α

)n

6= b(q
n−1)/(q−1)

}
,

{
xqβ + xq2

αδb;

(
β

αδ

)n

6= b(q
n−1)/(q−1)

}
,

{
xqα+ xq2

βδb;

(
α

βδ

)n

6= b(q
n−1)/(q−1)

}

to {
−xm0 + xqαδ + xq2

βb;

(
αδ

β

)n

6= b(q
n−1)/(q−1)

}
,

{
−xm0 + xqβδ + xq2

αb;

(
βδ

α

)n

6= b(q
n−1)/(q−1)

}
,

{
−xm0 + xqβ + xq2

αδb;

(
β

αδ

)n

6= b(q
n−1)/(q−1)

}
,

{
−xm0 + xqα+ xq2

βδb;

(
α

βδ

)n

6= b(q
n−1)/(q−1)

}
.

Then, (x, y) 7−→ (x, ytq−1) is a collineation group of the spread, clearly a contra-
diction. Hence, the axis and coaxis are y = xm0 and y = xm1. The conditions

for an affine homology

[
a f
c d

]
with axis y = xm0 and y = xm1 are as follows:

[
a f
c d

]
; a = 1−m0c, f = m0(d− 1),

(1 + (m1 −m0)c)m1 = (m1 +m0)d−m0.
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Consider the image of y = xq under

[
a f
c d

]
, such that −(c/a) is not a (q−1)st

power as

y = x(faq+q2
+ dcq+q2

)/(a1+q+q2
+ c1+q+q2

)

+ xq(aq2
(da− fc))/(a1+q+q2

+ c1+q+q2
)

+ xq2
(−cq)(da − fc)/(a1+q+q2

+ c1+q+q2
).

Just to get an example, take q odd and a = c = 1, to get y = x(f + d)/2 +
xq(d− f)/2 + xq2

(−(d− f))/2. Take f = −d = −1 to get

y = xq − xq2
.

Thus,

[
1 −1
1 1

]
will map y = xq onto y = xq−xq2

and will map y = xqm onto

y = x(m1+q+q2 − 1)/(m1+q+q2
+ 1) + xq(2m)/(m1+q+q2

+ 1)

+ xq2
(−2m1+q)/(m1+q+q2

+ 1).

So, in order to get a term with x-coefficient 0, we must have m1+q+q2
= 1.

However, then the image is in
{
y = xqd1−q − xq2

d1−q2}
so can’t map to one of

our other André hyper-reguli. The same collineation will map y = xqm onto

y = x(m1+q+q2 − 1)/(m1+q+q2
+ 1) + xq(−2m1+q2

)/(m1+q+q2
+ 1)

+ xq2
(2m/(m1+q+q2

+ 1)).

Hence, again in order to obtain a 0 x-coefficient, we must map to the same

hyper-regulus overlying y = xq − xq2
, a contradiction. Now choose

{
xqαδ +

xq2
βb;
(

αδ
β

)n
6= b(q

n−1)/(q−1)
}
, as

{
xq − xq2}

such that αδ = 1, βb = −1.

Hence, we require that
(

1
b

)3 6= b(q
n−1)/(q−1) = b3, if and only if b6 is not 1.{

xqβδ+ xq2
αb;
(

βδ
α

)n
6= b(q

n−1)/(q−1)
}

is then
{
xq(−1/bα) + xqαb

}
if and only

if b3 6= −α−3.
{
xqβ+xq2

αδb;
(

β
αδ

)n
6= b(q

n−1)/(q−1)
}

is then
{
xq(−1/b)+xq2

b
}

if and only if (−1/b)3 6= b3, so b6 6= −1.
{
xqα+ xq2

βδb;
(

α
βδ

)n
6= b(q

n−1)/(q−1)
}

is then
{
xqα+ xq2

(−1/αb)
}

if and only −α3 6= b3.

21 Lemma. If α, β in GF (q) − {0} and α/β = d1−q = 1/d1−qn−1
, then(

α
β

)(n,q−1)
= 1. Hence, if

(
α
β

)(n,q−1)
6= 1 then

(
α− βd1−q

αd1−qn−1 − β

)(qn−1)/(q−1)

= 1.



90 V. Jha, N. L. Johnson

Proof. α/β = d1−q = 1/d1−qn−1
implies that d(1−q)(1−q) = 1. ((1−q)2, qn−

1) = (q − 1)(q − 1, (qn − 1)/(q − 1)) = (q − 1)(q − 1, n). We consider

(
α− βd1−q

αd1−qn−1 − β

)(qn−1)/(q−1)

.

Note that

(
αd1−qn−1 − β

)1+q+q2+···+qn−1

=
(
d1−qn−1

)(qn−1)/(q−1) (
α− βdqn−1−1

)1+q+q2+···+qn−1

=

n−1∏

i=0

(
α− βd (qn−1−1)qi

)

=

n−1∏

i=0

(
α− βd (qi−1−qi)

)
.

Furthermore,

(
α− βd1−q

)1+q+q2+···+qn−1

=

n−1∏

j=0

(
α− βd (1−q)qj

)

=

n−1∏

j=0

(
α− βd qj−qj+1

)

=

n−1∏

i=0

(
α− βd qi−1−qi

)
.

This completes the proof. QED

5 Multiplicative sets of hyper-reguli

In this section, we generalize the sets of the previous section.

22 Theorem. Suppose that {αi;αi ∈ GF (q) − {0}, i = 1, 2, . . . , t} is a set
of elements of GF (q) such that

(
αi

αj

)(n,q−1)

6= 1, αj 6= αi,
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and there exists an element b in GF (qn) − {0}, where the following conditions
hold:

b(q
n−1)/(q−1) 6=

(
αi

α1 · · · α̂i · · ·αt

)n

, b(q
n−1)/(q−1) 6=

(
1

α1 · · · α̂i · · · α̂j · · ·αt

)n

,

for αi 6= αj, where α̂i indicates that the element αi is not in the product.

Then

Rt =
{
y = xqk

αid
1−q + xqn−k

α1α2 · · · α̂i · · ·αtbd
1−qn−1

;

i = 1, 2, . . . , t; d ∈ GF (qn)− {0}
}

is a partial spread of degree t(qn−1)/(q−1) that lies over a set of t(qn−1)/(q−1)
components in a Desarguesian affine plane Σ which is defined by a set of t hyper-
reguli. If M denotes the set of components of Σ−Rt, then

Rt ∪M

is a spread with kernel GF (q).

23 Definition. Any set of mutually disjoint hyper-reguli obtained from a
set λ as above shall be called a ‘multiplicative’ set of hyper-reguli. More precisely,
we call this a ‘multiplicative set of degree 1’.

24 Corollary. {xqαi1αi2 · · ·αikd
1−q +xqn−1

α1 · · · α̂i1 · · · α̂ik · · ·αtbd
1−qn−1},

for k fixed, is a partial spread and consists of t hyper-reguli if

(
αi1αi2 · · ·αik

αj1 · · ·αjk

)(n,q−1)

6= 1,

(
αi1αi2 · · ·αik

α1 · · · α̂i1 · · · α̂ik · · ·αt

)n

6= b(q
n−1)/(q−1),

and (
1

α1 · · · α̂i1 · · · α̂ik · α̂j1 · · · α̂jk
· · ·αt

)n

6= b(q
n−1)/(q−1),

where the term indicated is removed exactly once.

25 Definition. The sets of hyper-reguli obtained as above are called ‘mul-
tiplicative sets of degree k’.
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6 When a subset is linear

Suppose we have two hyper-reguli H∗
α,ρ,b = {y = xqαd1−q + xq2

ρbd1−q2},
where α, ρ ∈ GF (q3)∗, and H∗

α∗,ρ∗,b.

Now consider the mapping

[
1 bq+1

bq 1

]
, and note that it maps H∗

1,1,b onto

y = xq, since

(
x, xqαd1−q + xq2

ρbd1−q2
)[ 1 bq+1

bq
2

1

]

=
(
x+

(
xqαd1−q + xq2

ρbd1−q2
)
bq

2
, xbq+1 + xqαd1−q + xq2

ρbd1−q2
)
.

If α = ρ and d = 1 then note that
(
x+

(
xq + xq2

b
)
bq

2
)q

= xbq+1 + xq + xq2
b

Then the question is where this mapping takes H∗
α∗,ρ∗,b.

A generator y =
(
xqα∗ + xq2

ρ∗b
)

for this hyper-regulus then maps to
{
x +(

xqα∗+xq2
ρ∗b
)
bq

2
, xbq+1+

(
xqα∗+xq2

ρ∗b
)}

. Assuming these two distinct hyper-

reguli H∗
α∗,ρ∗,b and H∗

1,1,b form a linear set, this is true if and only if the image

is y = xqk
d, where k is either 1 or 2 and d ∈ GF (q3)∗, since there is a unique

linear set in the Desarguesian affine plane Σ lying across y = xq. If k = 1, this
implies the following:

d = α∗, (α∗)q bd = ρ∗b, (ρ∗)q bq+1d = bq+1.

This in turn implies that

(α∗)1+q+q2

= 1, and ρ∗ = (α∗)1+q .

Since α∗ is a (q − 1)st power, let d1−q = α∗, then ρ∗ = d1−q2
. However, this

means that we have exactly the same hyper-regulus.
We recall that

{
y = xqωijf(ij)d

1−q + xq2
(ωijf(ij))

−q2
bd1−q2

}
and

{
y = xq(ωijf(ij))

−1bqd1−q + xq2
(ωijf(ij))

q2
d1−q2

}

are replacements for one another. Then
{
xqαd1−q + xq2

α−q2
bd1−q2

}
and

{
xqα−1bqd1−q + xq2

αq2
d1−q2

}
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are replacements for each other.
Thus, if k = 2, we obtain:

d = ρ∗b, (α∗)q
2

bqd = bq+1, (ρ∗)q
2

bq
2+qd = α∗.

This implies that

ρ∗ = (α∗)−q2

and b1+q+q2
= (α∗)1+q+q2

.

If we now work out the condition for the union of H∗
1,1,b and H∗

α∗,ρ∗,b to be a

partial spread, we require that b1+q+q2 6= (α∗)1+q+q2

. To see this, we note that

y = xqα∗ + xq2
(α∗)−q2

b and y = xq + xq2
b do not have a non-trivial solution if

and only if

(
(α∗ − 1) /

(
1− (α∗)−q2

))(q3−1)/(q−1)
6= b(q

3−1)/(q−1).

However,
(
1 − (α∗)−q2)

= (α∗)−q2 (
(α∗)q

2 − 1
)

and (α∗ − 1) =
(
(α∗)q2 − 1

)q
.

But then
(
(α∗ − 1) /

(
1− (α∗)−q2

))(q3−1)/(q−1)
= (α∗)q

2(q3−1)/(q−1) = (α∗)(1+q+q2) .

Hence, if k = 2, we have a replacement for the same hyper-regulus.
We now obtain our main theorem.

26 Theorem. Let Σ be a Desarguesian affine plane of order q3. If we have a
set of mutually disjoint hyper-reguli of the type {y = xqαd1−q +xq2

α−q2
bd1−q2},

where α is in λ ⊆ GF (q3)∗, then no two of these hyper-reguli are in a linear set.

Proof. From the discussion above, it is evident that no two hyper-reguli of
the form H∗

1,1,b and H∗
α∗,ρ∗,b can form a linear set. Similarly, it is easily checked

that y = xqα+ xq2
α−q2

b maps to y = xq under the mapping
[
α1+q+q2

α−1bq+1

bq
2

1

]
.

The question then is where this mapping will take y = xqβ + xq2
β−q2

b. To be
linear, again the image must be y = xqk

d for k = 1 or 2.
The image is
(
xα1+q+q2

+
(
xqβ + xq2

β−q2
b
)
bq

2
, xα−1bq+1 + xqβ + xq2

β−q2
b
)
.

This is y = xqd if and only if
(
xα1+q+q2

+
(
xqβ + xq2

β−q2
b
)
bq

2
)q
d = xα−1bq+1 + xqβ + xq2

β−q2
b.
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The requirements then are

α1+q+q2
d = β, βqbd = β−q2

b, β−1bq+1d = α−1bq+1.

This implies
α1+q+q2

= β1+q+q2
= α.

This implies that α is in GF (q) and that α3 = α, or α2 = 1, so α = ±1. If
α = 1, we may apply the previous argument to arrive at a contradiction. If
α = −1, map y = −xq − xq2

b and y = xqβ + xq2
β−q2

b to y = xq + xq2
b and

y = xq(−β) + xq2
(−β)−q2

b by the mapping (x, y) 7−→ (x,−y). Since we retain
the same form as previously considered, we have a contradiction if k = 1.

Now if k = 2,

(
xα1+q+q2

+
(
xqβ + xq2

β−q2
b
)
bq

2
)q2

d = xα−1bq+1 + xqβ + xq2
β−q2

b.

The conditions now are

α1+q+q2
d = β−q2

b, βq2
bqd = α−1bq+1d, and β−qbq

2+qd = β.

This implies
αq+q2

= 1, so that αq+1 = 1.

However, (q+ 1, q3− 1) = (2, q− 1). If q is even then α = 1 and if q is odd then
α2 = 1 and α = ±1. In either case, by considering the mapping (x, y)→ (x,−y),
we have a contradiction as before. QED

Hence, we have proved the following:

27 Theorem. Let H be a set of hyper-reguli of the form H∗
α,α−q2 ,b

where

α ∈ λ ⊆ GF (q3)∗. Choose any subset of hyper-reguli of cardinality at least two.
Then the corresponding translation plane is not generalized André or André.

7 The collineation group

We have shown that no two hyper-reguli of our sets of mutually disjoint
hyper-reguli are linear. We now consider a different type of question: Can two
of the hyper-reguli fall into a Desarguesian spread? If one of these hyper-reguli is
mapped to y = xq then the other hyper-regulus cannot be of the form y = xqk

n,
for k = 1, 2 and n in GF (q3)∗. But the unique Desarguesian spread containing
y = xqd1−q, d ∈ GF (q3)∗, has spread components

x = 0, y = 0, y = xqm;m ∈ GF (q3).

Hence, we have then
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28 Proposition. No two of the hyper-reguli of our sets of mutually disjoint
hyper-reguli can be contained in the same Desarguesian spread.

In the authors’ work [4] on the groups of these sorts of sets of hyper-reguli
of order qn, n > 2, it is shown that if the number of hyper-reguli in the set is
≤ (q − 1)/2 or q/2 − 1, for q odd or even, respectively, then either the set has
cardinality (q − 1)/2 or the full collineation group is the group inherited from
the associated Desarguesian affine plane Σ used in the construction of the set.
Furthermore, when the number of hyper-reguli is (q − 1)/2, it is shown that
either the full collineation group is the group inherited from the Desarguesian
plane Σ or the set of (q − 1)/2 hyper-reguli is Desarguesian. Hence, we may
apply this result and the above note to conclude that the full collineation group
is in the inherited group when n = 3, whenever the number of hyper-reguli is
≤ (q − 1)/2 or q/2− 1, for q odd or even, respectively.

29 Theorem. If a translation plane π of order q3 and kernel GF (q) is
obtained by the replacement of mutually disjoint hyper-reguli with replacements

{
y = xqαd1−q + xq2

α−q2
bd1−q2

; d ∈ GF (q3)∗
}

or

{
y = xqα−1bqd1−q + xq2

αq2
d1−q2

; d ∈ GF (q3)∗
}

for each α ∈ λ ⊆ GF (q3)∗, where |λ| ≤ (q − 1)/2, or q/2− 1, respectively, as q
is odd or even, then the full collineation group is the group inherited from the
associated Desarguesian affine plane.

8 Final comments and a few details on isomorphisms

We have provided a great variety of new and different translation planes by
the replacement of subsets of at least two mutually disjoint hyper-reguli of a
specific type. There must be more types of hyper-reguli, that is, other than linear
André sets and the types that we have determined, so the discussion is far from
definitive. Moreover, because of the varied nature of our constructions, we have
not made much of an attempt to establish the isomorphism classes. For the more
general case, of order qn, for n > 3, the situation is much more manageable since
the hyper-reguli that we are considering then are never André. So, it might be
advisable to provide here a few details on how one might go about establishing
both the full collineation group of a particular translation plane and whether
two given translation planes are isomorphic.

In this section, we indicate very general methods to show how two trans-
lation planes constructed by the methods of this article could be determined
isomorphic.
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Now assume that we have two translation planes of order q3 and kernel
GF (q) obtained from a Desarguesian plane by the replacements of the type
under consideration, one using a set λ with constant b, and another with a set λ̂
and constant b̂. The same sort of argument that establishes that the collineation
group is inherited applies to isomorphisms, provided that λ and λ̂ both have
cardinality ≤ (q − 1)/2.

30 Lemma. The stabilizer of y = xq in GL(2, q3) is
〈[

a 0
0 aq

]
; a ∈ GF (q3)∗

〉
.

Proof. Assume that

[
a b
c d

]
fixes y = xq. Then (xa + cxq)q = xb+ xqd.

This is true if and only if aq = d and c = b = 0. QED

31 Lemma. The stabilizer of y = xqα+ xq2
α−q2

b in GL(2, q3) is
〈[

α1+q+q2
α−1bq+1

bq
2

1

][
a 0
0 aq

][
α1+q+q2

α−1bq+1

bq
2

1

]−1

; a ∈ GF (q3)∗
〉
.

Proof. Just note that

[
α1+q+q2

α−1bq+1

bq
2

1

]
maps y = xqα + xq2

α−q2
b

onto y = xq, then apply the previous lemma. QED

32 Lemma. An element σ of GL(2, q3) maps xqα + xq2
α−q2

b onto y =
xqβ + xq2

β−q2
b̂ if and only if

σ =

[
α1+q+q2

α−1bq+1

bq
2

1

] [
a 0
0 aq

][
β1+q+q2

β−1b̂q+1

b̂q
2

1

]−1

,

for some element a of GF (q3)∗.

Proof. [
α1+q+q2

α−1bq+1

bq
2

1

]

maps y = xqα+ xq2
α−q2

b onto y = xq and
[
β1+q+q2

β−1b̂q+1

b̂q
2

1

]−1

maps y = xq onto y = xqβ + xq2
β−q2

b̂. So,
[
α1+q+q2

α−1bq+1

bq
2

1

]−1

σ

[
β1+q+q2

β−1b̂q+1

b̂q
2

1

]
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fixes y = xq and hence has the form

[
a 0
0 aq

]
. This proves the assertion.

QED

If we assume that we are always using the first type of replacement, with
the b-term associated with the xq2

-term, then suppose that an isomorphism is
linear in the sense that it is in GL(2, q3) (it must be in ΓL(2, q3) by the previous
arguments). Hence, we see that there are exactly (q3 − 1)/(q − 1) elements of
GL(2, q3) that map given elements y = xqα+xq2

α−q2
b and y = xqβ+xq2

β−q2
b̂

one to the other.
Suppose y = xqα + xq2

α−q2
b maps to y = xqβ + xq2

β−q2
b̂ by a mapping in

GL(2, q3): then it can only have the form

[
α1+q+q2

α−1bq+1

bq
2

1

][
a 0
0 aq

][
β1+q+q2

β−1b̂q+1

b̂q
2

1

]−1

,

for some element a of GF (q3)∗. Then y = xqδ + xq2
δ−q2

b maps to

(x, xqδ + xq2
δ−q2

b)

[
α1+q+q2

α−1bq+1

bq
2

1

][
a 0
0 aq

][
β1+q+q2

β−1b̂q+1

b̂q
2

1

]−1

.

This subspace is of the form y = xqγ+xq2
γ−q2

b̂ if and only if we obtain the
following conditions:


(x, xqδ + xq2

δ−q2
b)

[
α1+q+q2

α−1bq+1

bq
2

1

] [
a 0
0 aq

] [
β1+q+q2

β−1b̂q+1

b̂q
2

1

]−1


 ,

which is


(x, xqδ + xq2

δ−q2
b)

[
α1+q+q2

a α−1bq+1aq

bq
2
a aq

][
β1+q+q2

β−1b̂q+1

b̂q
2

1

]−1


 ,

and, in turn, is




(X,Y )

[
β1+q+q2

β−1b̂q+1

b̂q
2

1

]−1

(X,Y )

[
1 −β−1b̂q+1

−b̂q2
β1+q+q2

]
/(β1+q+q2 − β−1b̂1+q+q2

)

X = xα1+q+q2
a+ (xqδ + xq2

δ−q2
b)bq

2
a

Y = xα−1bq+1aq + (xqδ + xq2
δ−q2

b)aq





.
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Let this set product be {(x∗y∗)}, where ∆ = (β1+q+q2 − β−1b̂1+q+q2
) and

x∗ =
[
xα1+q+q2

a+
(
xqδ + xq2

δ−q2
b
)
bq

2
a

−
(
xα−1bq+1aq +

(
xqδ + xq2

δ−q2
b
)
aq
)
b̂q

2
]
/∆

and y∗ is

y
[
−
((
xα1+q+q2

a+
(
xqδ + xq2

δ−q2
b
)
bq

2
a
)
β−1b̂q+1+

(
xα−1bq+1aq +

(
xqδ + xq2

δ−q2
b
)
aq
)
β1+q+q2

)]
/∆.

Hence, this is y = xqγ + xq2
γ−q2

b̂ if and only if
{[(

xα1+q+q2
a+

(
xqδ + xq2

δ−q2
b
)
bq

2
a
)
−

(
xα−1bq+1aq +

(
xqδ + xq2

δ−q2
b
)
aq
)
b̂q

2
]
/∆
}q
γ

+
{[(

xα1+q+q2
a+

(
xqδ + xq2

δ−q2
b
)
bq

2
a
)
−

(
xα−1bq+1aq +

(
xqδ + xq2

δ−q2
b
)
aq
)
b̂q

2
]
/∆
}q2

γ−q2
b̂

=
[
−
((
xα1+q+q2

a+
(
xqδ + xq2

δ−q2
b
)
bq

2
a
)
β−1b̂q+1 +

(
xα−1bq+1aq +

(
xqδ + xq2

δ−q2
b
)
aq
)
β1+q+q2

)]
/∆.

Note that

[(
xα1+q+q2

a+
(
xqδ+xq2

δ−q2
b
)
bq

2
a
)
−
(
xα−1bq+1aq +

(
xqδ+xq2

δ−q2
b
)
aq
)
b̂q

2
]

= x
(
α1+q+q2

a− α−1bq+1aq b̂q
2)

+ xq
(
δbq

2
a− δaq b̂q

2)

+ xq2(
δ−q2

b1+q2
a− δ−q2

baq b̂q
2)

and

[
−
((
xα1+q+q2

a+
(
xqδ + xq2

δ−q2
b
)
bq

2
a
)
β−1b̂q+1 +

(
xα−1bq+1aq

+
(
xqδ + xq2

δ−q2
b
)
aq
)
β1+q+q2

)]

= x
(
−α1+q+q2

aβ−1b̂q+1 + α−1bq+1aqβ1+q+q2)

+ xq
(
−δbq2

aβ−1b̂q+1 + δaqβ1+q+q2)

+ xq2(−δ−q2
b1+q2

aβ−1b̂q+1 + δ−q2
baqβ1+q+q2)

.
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Thus, we require





[
x
(
α1+q+q2

a− α−1bq+1aq b̂q
2)

+ xq
(
δbq

2
a− δaq b̂q

2)
+

xq2(
δ−q2

b1+q2
a− δ−q2

baq b̂q
2)]

/∆





q

γ

+





[
x
(
α1+q+q2

a− α−1bq+1aq b̂q
2)

+ xq
(
δbq

2
a− δaq b̂q

2)
+

xq2(
δ−q2

b1+q2
a− δ−q2

baq b̂q
2)]

/∆





q2

γ−q2
b̂

=
[
x
(
−α1+q+q2

aβ−1b̂q+1 + α−1bq+1aqβ1+q+q2)

+ xq
(
−δbq2

aβ−1b̂q+1 + δaqβ1+q+q2)

+ xq2(−δ−q2
b1+q2

aβ−1b̂q+1 + δ−q2
baqβ1+q+q2)]

/∆.

Hence, we obtain the three conditions:

(∗) :
{(
δ−q2

b1+q2
a− δ−q2

baq b̂q
2)
/∆
}q
γ +

{(
δbq

2
a− δaq b̂q

2)
/∆
}q2

γ−q2
b̂

=
(
−α1+q+q2

aβ−1b̂q+1 + α−1bq+1aqβ1+q+q2)
/∆,

(∗∗) :
{(
α1+q+q2

a− α−1bq+1aq b̂q
2)
/∆
}q
γ

+
{(
δ−q2

b1+q2
a− δ−q2

baq b̂q
2)
/∆
}q2

γ−q2
b̂

=
(
−δbq2

aβ−1b̂q+1 + δaqβ1+q+q2)
/∆,

and

(∗ ∗ ∗) :
{(
δbq

2
a− δaq b̂q

2)
/∆
}q
γ

+
{(
α1+q+q2

a− α−1bq+1aq b̂q
2)
/∆
}q2

γ−q2
b̂

=
(
−δ−q2

b1+q2
aβ−1b̂q+1 + δ−q2

baqβ1+q+q2)
/∆.

However, this mapping must also be of the form

[
δ1+q+q2

δ−1bq+1

bq
2

1

][
e 0
0 eq

][
γ1+q+q2

γ−1b̂q+1

b̂q
2

1

]−1
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so that

[
α1+q+q2

α−1bq+1

bq
2

1

][
a 0
0 aq

][
β1+q+q2

β−1b̂q+1

b̂q
2

1

]−1

=

[
δ1+q+q2

δ−1bq+1

bq
2

1

][
e 0
0 eq

] [
γ1+q+q2

γ−1b̂q+1

b̂q
2

1

]−1

.

Solving for

[
e 0
0 eq

]
produces the following conditions, after a short compu-

tation:

(∗4) :
(
δ1+q+q2 − α1+q+q2)(

γ1+q+q2 − β−1b1+q+q2)

·
(
δ−1 − α−1

)(
β1+q+q2 − γ−1b1+q+q2)

=
(
γ1+q+q2 − β1+q+q2)(

δ1+q+q2 − α−1b1+q+q2)

·
(
γ−1 − β−1

)(
α1+q+q2 − δ−1b1+q+q2)

,

and

(∗5) :
{
a
(
α1+q+q2 − δb1+q+q2)(

γ1+q+q2 − β−1b1+q+q2)
/∆δ∆β = e

}q

=
{
b1+q+q2

aq
(
α−1 − δ−1

)(
γ1+q+q2 − β1+q+q2)

/∆δ∆β

}
,

where ∆ρ = ρ1+q+q2 − ρ−1b1+q+q2
.

It is also true that the equality between the forms of the mapping means
that the previous three conditions (∗), (∗∗), (∗ ∗ ∗) are valid replacing a by e,
and interchanging δ with α, and β with γ.

Thus, we have:

(∗)′ :
{(
α−q2

b1+q2
e− α−q2

beq b̂q
2)
/∆
}q
β +

{(
αbq

2
e− αeq b̂q2)

/∆
}q2

β−q2
b̂

=
(
−α1+q+q2

eβ−1b̂q+1 + α−1bq+1eqβ1+q+q2)
/∆,

(∗∗)′ :
{(
δ1+q+q2

e− δ−1bq+1eq b̂q
2)
/∆
}q
β

+
{(
α−q2

b1+q2
e− α−q2

beq b̂q
2)
/∆
}q2

β−q2
b̂

=
(
−αbq2

eγ−1b̂q+1 + αeqγ1+q+q2)
/∆,
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and

(∗ ∗ ∗)′ :
{(
αbq

2
e− αeq b̂q2)

/∆
}q
β

+
{(
δ1+q+q2

e− δ−1bq+1eq b̂q
2)
/∆
}q2

β−q2
b̂

=
(
−α−q2

b1+q2
eγ−1b̂q+1 + α−q2

beqγ1+q+q2)
/∆.

8.1 When b = b̂

Now assume that b = b̂ to obtain:

(∗) :
{(
δ−q2

b1+q2
(a− aq)

)
/∆
}q
γ +

{
δq2
bq(a− aq)/∆

}q2

γ−q2
b

= b1+q
(
−α1+q+q2

aβ−1 + α−1aqβ1+q+q2)
/∆,

(∗∗) :
{(
α1+q+q2

a− α−1bq+1aqbq
2)
/∆
}q
γ+
{(
δ−qb(q

2+q)(a− aq)
)
/∆
}q2

γ−q2
b

=
(
−δbq2

aβ−1bq+1 + δaqβ1+q+q2)
/∆,

and

(∗ ∗ ∗) :
{(
δbq

2
(a− aq)

)
/∆
}q
γ +

{(
α1+q+q2

a− α−1bq+1bq
2
aq
)
/∆
}q2

γ−q2
b

= −δ−q2
b
(
b1+q+q2

aβ−1 + aqβ1+q+q2)
/∆.

Note that if a = aq then (∗) gives α2+q+q2
= β2+q+q2

, implying that α = β since
(2 + q + q2, q3 − 1) = 1. But then the collineation is a kernel homology of order
necessarily dividing q − 1, so all ‘components’ are fixed.

Hence, we may assume that a 6= aq. We may easily solve for γ using (∗) and
(∗∗) by taking δ−q2

b−q(∗)− δqb−(q2+q)(∗∗), which eliminates the γ−q2
b, term.

Hence, we obtain:

{
δ−q2

b−q
{(
δ−q2

b1+q2
(a− aq)

)
/∆
}q

− δqb−(q2+q)
{(
α1+q+q2

a− α−1bq+1aq
)
/∆
}q}

γ

= δ−q2
b−q
{(
−α1+q+q2

aβ−1bq+1 + α−1bq+1aqβ1+q+q2)
/∆
}

− δqb−(q2+q)
{(
−δb1+q+q2

aβ−1 + δaqβ1+q+q2)
/∆
}
.
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This uniquely specifies γ unless the coefficient of γ is zero. We may repeat this
using a choice of two of the three conditions involving γ. If one of the three of
the corresponding coefficients is not zero, this places a condition independent
of γ on α, β, δ. Such a condition must be valid for α, β and any other value δ of
λ. By using the conditions (∗)′, etc., then we would similarly obtain a condition
valid for β and λ and any other value α of λ.

These conditions although complex could be used to determine isomorphisms
in specific situations since any isomorphism arises from an element of ΓL(2, q3).

Furthermore, these ideas can be utilized when determining collineation
groups of particular translation planes.

In general, each plane admits a collineation group of order q3 − 1, which
is the kernel homology group of the associated Desarguesian affine plane, that
acts transitively on each hyper-regulus.

Finally, we again point out that some of the classes of translation planes are
similar to combinatorics as those found by Culbert and Ebert [2], in the following
sense. We have found classes of hyper-reguli of size (q−1)/2, (q−3)/2 and q/2−1
such that no subset of at least two hyper-reguli can be embedded as a linear
André set of hyper-reguli. In other words, replacement by any one hyper-regulus
leaves to an André plane, but replacement of more than one hyper-regulus never
leads to a hyper-regulus. Since Culbert and Ebert arrive at their constructions
using Sherk spaces and work directly on the line PG(1, q3), whereas we work
from the replacement side, finding first the replacement for the putative hyper-
regulus that lies in an associated Desarguesian plane, the two approaches are
completely different and it is not clear how the two sets of translation planes
obtained are related to each other. We leave this as an open problem.

33 Problem. Determine if our classes of hyper-reguli of sizes (q−1)/2, (q−
3)/2 and q/2− 1 and those of Culbert and Ebert are isomorphic?
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