Note di Matematica 26, n. 1, 2006, 69–77.

Simply connected two-step homogeneous nilmanifolds of dimension 5

Szilvia Homolya

Institute of Mathematics, University of Miskolc, Hungary mathszil@gold.uni-miskolc.hu

Oldřich Kowalski

Faculty of Mathematics and Physics, Charles University, Czech Republic kowalski@karlin.mff.cuni.cz

Received: 11/3/2005; accepted: 11/3/2005.

Abstract. The aim of this paper is to classify all simply connected two-step nilpotent Lie groups of dimension 5 equipped with left-invariant metrics ("two-step nilmanifolds") up to isometry. We also calculate the corresponding isometry groups.

Keywords: nilmanifolds, two-step nilpotent Lie groups, H-type groups

MSC 2000 classification: 22E25, 53C30

1 Introduction

Two-step nilpotent Lie groups endowed with a left-invariant metric, often called two-step homogeneous nilmanifolds are studied intensively in the last twenty years. A special subclass of two-step homogeneous nilmanifolds, the Heisenberg type groups, was introduced and studied by A. Kaplan (cf. [6], [7]) and others. We refer to [1] for a survey about the geometry of generalized Heisenberg groups. The Heisenberg type groups play an important role in geometric analysis, Lie groups and mathematical physics. J. Lauret (cf. [10]) essentially generalized this concept by introducing so-called *modified H-type groups* (See below).

In [9] J. Lauret classified, up to isometry, all homogeneous nilmanifolds of dimension 3 and 4 (not necessarily two-step nilpotent) and computed the corresponding isometry groups. He also studied, as example, the structure of specific 5-dimensional two-step nilmanifolds with 2-dimensional center. His results will be used in the present paper. Our purpose is to classify all simply connected two-step Riemannian nilmanifolds of dimension 5 and to determine their full isometry groups.

2 Two-step nilpotent Lie groups

A connected Riemannian manifold which admits a transitive nilpotent Lie group N of isometries is called a *nilmanifold*. E. Wilson proved in [12] that, when given a homogeneous nilmanifold M, there exists a unique nilpotent Lie subgroup N of I(M) acting simply transitively on M, and N is normal in I(M). Hence the Riemannian manifold M can be identified with the group N equipped with a left-invariant metric $\langle ., . \rangle$. A left-invariant metric $\langle ., . \rangle$ on N determines an inner product \langle , \rangle on the corresponding Lie algebra $\mathfrak{n} = T_e N$ and conversely. According to [12], the full group of isometries of $(N, \langle ., . \rangle)$ can be expressed as a semi-direct product

$$I(N, \langle ., . \rangle) = K \ltimes N, \tag{1}$$

where $K = Aut(\mathfrak{n}) \cap O(\mathfrak{n}, \langle, \rangle)$ is the isotropy subgroup at the identity element e and N acts by left translations. K is the full group of automorphisms of the Lie algebra \mathfrak{n} which preserve the inner product \langle, \rangle . Thus the structure of the full isometry group is completely determined by the isotropy subgroup K. Moreover, if N is simply connected, then the exponential mapping $\exp : \mathfrak{n} \to N$ is a diffeomorphism. We need not make distinction between automorphisms of \mathfrak{n} and those of N.

A Lie algebra \mathfrak{n} is said to be *two-step nilpotent* if $[\mathfrak{n}, \mathfrak{n}] \neq \{0\}$ but $[[\mathfrak{n}, \mathfrak{n}], \mathfrak{n}] = \{0\}$. In the following we shall work usually with a two-step nilpotent metric Lie algebra $(\mathfrak{n}, \langle, \rangle)$. We denote by \mathfrak{z} the center of \mathfrak{n} and by $\mathfrak{a} = \mathfrak{z}^{\perp}$ the orthogonal complement of \mathfrak{z} . Then we have the orthogonal direct sum decomposition $\mathfrak{n} = \mathfrak{a} \oplus \mathfrak{z}$. We denote by $\mathfrak{so}(\mathfrak{a})$ the Lie algebra of skew-symmetric endomorphisms of the Euclidean vector subspace $(\mathfrak{a}, \langle, \rangle_{\mathfrak{a}})$ of $(\mathfrak{n}, \langle, \rangle)$.

1 Definition. Let $(\mathfrak{n}, \langle, \rangle)$ be a two-step nilpotent metric Lie algebra, $\mathfrak{n} = \mathfrak{a} \oplus \mathfrak{z}$. For each element Z of \mathfrak{z} , define an endomorphism $j(Z) \in so(\mathfrak{a})$ by

$$\langle j(Z)X,Y\rangle = \langle [X,Y],Z\rangle \text{ for all } X,Y \in \mathfrak{a}.$$
 (2)

The algebraic properties of $(\mathbf{n}, \langle, \rangle)$ can be expressed in terms of the maps j(Z) with $Z \in \mathfrak{z}$. Indeed, let two metric vector spaces $(\mathfrak{a}, \langle, \rangle_{\mathfrak{a}})$ and $(\mathfrak{z}, \langle, \rangle_{\mathfrak{z}})$ be given and let $(\mathbf{n}, \langle, \rangle_{\mathfrak{n}})$ be their orthogonal direct sum. Let a linear map $j: \mathfrak{z} \to so(\mathfrak{a})$ be fixed. Define first a Lie bracket on \mathfrak{a} by the condition $[\mathfrak{a}, \mathfrak{a}] \subset \mathfrak{z}$ and by (2). Then extend this Lie bracket to the whole of \mathfrak{n} by putting $[\mathfrak{n}, \mathfrak{z}] = \{0\}$. Since $[\mathfrak{n}, \mathfrak{n}] = [\mathfrak{a}, \mathfrak{a}] \subset \mathfrak{z}$ and $[\mathfrak{n}, \mathfrak{z}] = \{0\}$, the algebra \mathfrak{n} (and hence the corresponding simply connected group N with the left-invariant metric $\langle ., . \rangle$) is two-step nilpotent. The mappings $\{j(Z): Z \in \mathfrak{z}\}$ contain the "geometry of (N, \langle, \rangle) " in the sense that the covariant derivative, curvature tensor and Ricci tensor can be formulated entirely using j, \mathfrak{a} and \mathfrak{z} (cf. [2]). If \mathfrak{z} is equal to the commutator of \mathfrak{n} , i.e. $\mathfrak{z} = [\mathfrak{n}, \mathfrak{n}]$, then $j: \mathfrak{z} \to so(\mathfrak{a})$ is an injective linear map.

Two-step nilmanifolds

Among two-step nilpotent Lie groups with left-invariant metrics, the Heisenberg type Lie groups are of particular significance. A two-step nilpotent Lie group N with a left-invariant metric $\langle ., . \rangle$ is said to be an *Heisenberg type* (H-type) Lie group if $[j(Z)]^2 = -\langle Z, Z \rangle i d_{\mathfrak{a}}$ for any $Z \in \mathfrak{z}$.

More generally, $(N, \langle ., . \rangle)$ is called a *modified H*-type group if $[j(Z)]^2 = -h(Z)id_{\mathfrak{a}}$ for any $Z \in \mathfrak{z}$, where h(Z) is a positive definite quadratic form on \mathfrak{z} (see [10]).

2 Example. The Heisenberg group is, up to isomorphism, the only twostep nilpotent Lie group with a 1-dimensional center. The (2n + 1)-dimensional Heisenberg group H_{2n+1} is the group of all real $(n + 2) \times (n + 2)$ matrices of the form

$\left(1 \right)$	x_1	x_2	•••	x_n	z)
0	1	0	•••	0	y_1	
1 :	0	1	0	÷	y_2	
:		·	·	0	÷	
1			·	1	y_n	
$\int 0$				0	1	J

for $x_i, y_i, z \in \mathbb{R}, i = 1, ..., n$. The Lie algebra \mathfrak{h}_{2n+1} of H_{2n+1} is a (2n+1)dimensional vector space with basis $\{X_1, \ldots, X_n, Y_1, \ldots, Y_n, Z\}$ and the only nonzero Lie brackets are $[X_i, Y_i] = -[Y_i, X_i] = Z$ for $1 \le i \le n$.

The center \mathfrak{z} of \mathfrak{h}_{2n+1} equals $\mathfrak{z} = \operatorname{span}_{\mathbb{R}} \{ Z \}$. One determines a left-invariant metric on H_{2n+1} by specifying an inner product \langle,\rangle on \mathfrak{h}_{2n+1} .

Now we choose the natural inner product making the basis above an orthonormal basis. Using the equation (2) and the basis $\{X_1, \ldots, X_n, Y_1, \ldots, Y_n, Z\}$ we obtain that

$$j(Z)X_i = Y_i$$
 and $j(Z)Y_i = -X_i$ for $1 \le i \le n$.

It follows that $[j(Z)]^2 = -id_{\mathfrak{a}}$, which means that the Heisenberg Lie group equipped with the corresponding natural left-invariant metric is an H-type Lie group.

3 5-dimensional two-step nilmanifolds

Now we give a classification of 5-dimensional simply connected two-step nilmanifolds up to isometry. This is equivalent to the classification of the corresponding metric Lie algebras. Clearly, the dimension of the center of a 5-dimensional two-step nilpotent Lie algebra is ≤ 3 . We consider separately the cases where the dimension of the center is 1, 2 or 3.

3.1 Metric Lie algebras with 1-dimensional center

Let \mathfrak{h}_5 denotes a 5-dimensional Lie algebra the center \mathfrak{z} of which is onedimensional. We assume that \mathfrak{h}_5 is equipped with an inner product \langle , \rangle . (Twostep nilmanifolds with one-dimensional center are usually called Heisenberg manifolds.) Let e_5 be a unit vector in \mathfrak{z} and let \mathfrak{a} be the orthogonal complement of \mathfrak{z} in \mathfrak{h}_5 . We consider a 2-dimensional vector subspace \mathfrak{a}_2 such that $[\mathfrak{a}_2,\mathfrak{a}_2] = \mathfrak{z}$. Since the center of \mathfrak{h}_5 is one-dimensional there is a unique vector subspace \mathfrak{b}_2 of \mathfrak{a} which is complementary to \mathfrak{a}_2 in \mathfrak{a} and commutes with \mathfrak{a}_2 , namely $\mathfrak{b}_2 = \operatorname{Ker}(ad(u)) \cap \operatorname{Ker}(ad(v)) \cap \mathfrak{a}$, where $\{u, v\}$ is any basis of \mathfrak{a}_2 . Let us assume that the complementary subspaces \mathfrak{a}_2 and \mathfrak{b}_2 are not orthogonal. One can see easily that the angle of a variable vector in \mathfrak{a}_2 and of its orthogonal projection on \mathfrak{b}_2 achieves its maximum and minimum values in two mutually perpendicular directions in \mathfrak{a}_2 . This angle can be also constant, then the perpendicular directions can be chosen in arbitrary way. (In such a case, \mathfrak{a}_2 and \mathfrak{b}_2 are called isoclinic.) Then one can choose an orthonormal basis $\{e_1, e_2, e_3, e_4\}$ for \mathfrak{a} such that $\{e_1, e_2\}$ is an orthonormal basis of \mathfrak{a}_2 and $\{f_1 = \cos \alpha e_1 + \sin \alpha e_3, f_2 = \cos \beta e_2 + \sin \beta e_4\}$ forms an orthonormal basis for \mathfrak{b}_2 , where $\alpha, \beta \neq 0$ denote the extremal values of the angles between the two-spaces \mathfrak{a}_2 and \mathfrak{b}_2 . We have

$$[e_1, e_2] = \lambda e_5$$
 and $[e_3, e_4] = \bar{\mu} e_5$

where $\bar{\lambda} \neq 0$ and e_5 is a unit vector of the center. Then we can compute the remaining Lie brackets of the basis elements:

$$[e_1, e_3] = 0, \qquad [e_1, e_4] = -\bar{\lambda} \cot \beta \, e_5 [e_2, e_4] = 0, \qquad [e_2, e_3] = \bar{\lambda} \cot \alpha \, e_5.$$

Now, we can find a new orthonormal basis of the form:

$$e'_1 = \cos t \, e_1 + \sin t \, e_3, \quad e'_3 = -\sin t \, e_1 + \cos t \, e_3,$$

 $e'_2 = \cos s \, e_2 + \sin s \, e_4 \quad e'_4 = -\sin s \, e_2 + \cos s \, e_4,$

such that $[e'_2, e'_3] = 0$ and $[e'_1, e'_4] = 0$. Such a basis is determined by the solution $\{t, s \in \mathbb{R}\}$ of the equations

$$(\bar{\lambda} + \bar{\mu}) \sin(t-s) = \bar{\lambda} (\cot\beta - \cot\alpha) \cos(t-s), (\bar{\lambda} - \bar{\mu}) \sin(t+s) = -\bar{\lambda} (\cot\beta + \cot\alpha) \cos(t+s).$$

Hence there exists an orthonormal basis $\{e_1, e_2, e_3, e_4\}$ of \mathfrak{a} such that

$$[e_1, e_2] = -[e_2, e_1] = \lambda e_5, \quad [e_3, e_4] = -[e_4, e_3] = \mu e_5, \tag{3}$$

Two-step nilmanifolds

$$[e_1, e_3] = [e_1, e_4] = [e_2, e_3] = [e_2, e_4] = 0.$$
(4)

Moreover we can assume that $\lambda \geq \mu > 0$. A metric Heisenberg algebra of type (λ, μ) is defined as a 5-dimensional metric Lie algebra having an orthonormal basis $\{e_1, e_2, e_3, e_4, e_5\}$ satisfying the commutation relations (3) and (4), where $\lambda \geq \mu > 0$. We will denote it by $\mathfrak{h}_5(\lambda, \mu)$.

3 Proposition. For any 5-dimensional 2-step nilpotent metric Lie algebra \mathfrak{n} with 1-dimensional center there exist real numbers $\lambda \geq \mu > 0$ such that \mathfrak{n} is isomorphic to the metric Heisenberg algebra $\mathfrak{h}_5(\lambda,\mu)$. The metric Heisenberg algebras $\mathfrak{h}_5(\lambda,\mu)$ and $\mathfrak{h}_5(\lambda',\mu')$ are isometrically isomorphic if and only if $\lambda = \lambda'$ and $\mu = \mu'$.

PROOF. The first assertion follows from the previous discussion.

Let us consider the metric Heisenberg algebras $\mathfrak{h}_5(\lambda,\mu)$ and $\mathfrak{h}_5(\lambda',\mu')$ given by the orthonormal bases $\{e_1, e_2, e_3, e_4, e_5\}$ and $\{e_1', e_2', e_3', e_4', e_5'\}$, respectively. A linear isomorphism $\varphi : \mathfrak{h}_5(\lambda,\mu) \to \mathfrak{h}_5(\lambda',\mu')$ is an isometric Lie algebra isomorphism only if it maps the center span (e_5) onto the center span (e_5') and the orthogonal complement \mathfrak{a} onto the orthogonal complement \mathfrak{a}' . In particular $\varphi(e_5) = \pm e_5'$. Hence the maps $j(e_5)^2 : \mathfrak{a} \to \mathfrak{a}$ and $j(e_5')^2 : \mathfrak{a}' \to \mathfrak{a}'$ are selfadjoint endomorphisms with eigenvalues $-\lambda^2$, $-\mu^2$ and $-\lambda'^2$, $-\mu'^2$, respectively. We have the relation

$$\varphi \circ j(e_5)^2 \circ \varphi^{-1} = j(e_5')^2.$$

Hence any isometric isomorphism $\varphi : \mathfrak{h}_5(\lambda, \mu) \to \mathfrak{h}_5(\lambda', \mu')$ maps the eigenspaces of $j(e_5)^2$ into the eigenspaces of $j(e_5')^2$ corresponding to the same eigenvalue. It follows $\lambda = \lambda'$ and $\mu = \mu'$.

From the above computations and also from [8] we get the following:

4 Corollary. Each 5-dimensional Heisenberg group space N corresponding to a metric algebra $\mathfrak{h}_5(\lambda,\mu)$ is a modified H-type group in the sense of J. Lauret and it is naturally reductive. It is an H-type group if and only if $\lambda = \mu$.

If now $\lambda \neq \mu$, then the group of isometric isomorphisms of $\mathfrak{h}_5(\lambda,\mu)$ can be represented by the group of matrices

$$\left\{ \begin{pmatrix} \varepsilon \cos t & -\sin t & 0 & 0 & 0 \\ \varepsilon \sin t & \cos t & 0 & 0 & 0 \\ 0 & 0 & \varepsilon \cos s & -\sin s & 0 \\ 0 & 0 & \varepsilon \sin s & \cos s & 0 \\ 0 & 0 & 0 & 0 & \varepsilon \end{pmatrix}, \quad \varepsilon = \pm 1, s, t \in \mathbb{R} \right\}.$$

In the case $\lambda = \mu$ an orthogonal transformation φ is an orthogonal automorphism if and only if its restriction to \mathfrak{a} commutes with the complex structure $J: \mathfrak{a} \to \mathfrak{a}$ determined by

$$J(e_1) = \varepsilon e_2, \quad J(e_2) = -\varepsilon e_1, \quad J(e_3) = \varepsilon e_4, \quad J(e_4) = -\varepsilon e_3$$

S. Homolya, O. Kowalski

and, moreover,

 $\varphi(e_5) = \varepsilon e_5$, where $\varepsilon = \pm 1$.

Hence one obtains:

5 Proposition. The group of orthogonal automorphisms of the metric Lie algebra $\mathfrak{h}_5(\lambda,\mu)$ is isomorphic to the group $O(2) \times SO(2)$ for $\lambda \neq \mu$, and it is isomorphic to the group $U(2) \times \mathbb{Z}_2$ for $\lambda = \mu$.

3.2 Metric Lie algebras with 2-dimensional center

Let \mathfrak{n}_5 denotes a 5-dimensional Lie algebra the center \mathfrak{z} of which is twodimensional and let N_5 be the corresponding simply connected Lie group. We assume that \mathfrak{n}_5 is equipped with an inner product \langle, \rangle . Let \mathfrak{a} denote the orthogonal complement of the center \mathfrak{z} in \mathfrak{n}_5 . Since the 3-dimensional vector space \mathfrak{a} is isomorphic to the exterior product $\mathfrak{a} \wedge \mathfrak{a}$, the linear map [.,.] : $\mathfrak{a} \wedge \mathfrak{a} \to \mathfrak{z}$ has a one-dimensional kernel spanned by a bivector $u \wedge v$. The two-dimensional subalgebra $\mathfrak{a}_2 = \mathbb{R}u + \mathbb{R}v$ is a unique two-dimensional commutative subalgebra in \mathfrak{a} . Let $e_1 \in \mathfrak{a}$ be a unit vector which is orthogonal to \mathfrak{a}_2 and let $\{e'_2, e'_3\}$ be an orthonormal basis for \mathfrak{a}_2 . If we consider a new orthonormal basis of \mathfrak{a}_2 in the form

$$e_2 = \cos t e'_2 + \sin t e'_3, \quad e_3 = -\sin t e'_2 + \cos t e'_3, \quad t \in \mathbb{R},$$

then we have

$$\langle [e_1, e_2], [e_1, e_3] \rangle = \frac{1}{2} (\| [e_1, e_3'] \|^2 - \| [e_1, e_2'] \|^2) \sin 2t + \langle [e_1, e_2'], [e_1, e_3'] \rangle \cos 2t.$$
 (5)

Clearly, one can find $t \in \mathbb{R}$ such that

$$\langle [e_1, e_2], [e_1, e_3] \rangle = 0 \tag{6}$$

and hence the vectors $[e_1, e_2], [e_1, e_3] \in \mathfrak{z}$ are orthogonal (and we still have $[e_2, e_3] = 0$). Thus there is an orthonormal basis $\{e_4, e_5\}$ of \mathfrak{z} such that

$$[e_1, e_2] = \lambda e_4, \quad [e_1, e_3] = \mu e_5, \quad \lambda \ge \mu > 0.$$
 (7)

We denote a 5-dimensional metric Lie algebra described above by $\mathfrak{n}_5(\lambda, \mu)$. From the considerations in [9, p. 153], we obtain at once

6 Proposition. For any 5-dimensional 2-step nilpotent metric Lie algebra \mathfrak{n} having a 2-dimensional center there exist real numbers $\lambda \geq \mu > 0$ such that \mathfrak{n} is isomorphic to the metric algebra $\mathfrak{n}_5(\lambda,\mu)$. Moreover the metric Heisenberg Lie algebras $\mathfrak{n}_5(\lambda,\mu)$ and $\mathfrak{n}_5(\lambda',\mu')$ are isometrically isomorphic if and only if $\lambda = \lambda'$ and $\mu = \mu'$.

Two-step nilmanifolds

7 Proposition. The group of orthogonal automorphisms of the metric Lie algebra $\mathfrak{n}_5(\lambda,\mu)$ is isomorphic to the group $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ for $\lambda \neq \mu$, and it is isomorphic to the group $O(2) \times \mathbb{Z}_2$ for $\lambda = \mu$.

Using (2) and (7) we see that, for any $Z = \alpha e_4 + \beta e_5 \in \mathfrak{z}$, the map j(Z) and its square $j^2(Z)$ can be expressed by

$$j(Z) = \begin{pmatrix} 0 & -\alpha\lambda & -\beta\mu \\ \alpha\lambda & 0 & 0 \\ \beta\mu & 0 & 0 \end{pmatrix};$$

$$j^{2}(Z) = \begin{pmatrix} -\alpha^{2}\lambda^{2} - \beta^{2}\mu^{2} & 0 & 0 \\ 0 & -\alpha^{2}\lambda^{2} & -\alpha\beta\lambda\mu \\ 0 & -\alpha\beta\lambda\mu & -\beta^{2}\mu^{2} \end{pmatrix}.$$

We see that the 5-dimensional group spaces corresponding to the metric algebras $\mathfrak{n}_5(\lambda,\mu)$ are not modified H-type groups. From [8] we also see easily that these spaces are never naturally reductive.

3.3 Metric Lie algebras with 3-dimensional center

Let \mathfrak{z} denote the center of a two-step nilpotent 5-dimensional metric Lie algebra \mathfrak{n} , where dim $\{\mathfrak{z}\} = 3$. Clearly dim $\{[\mathfrak{n},\mathfrak{n}]\} = 1$ for the commutator $[\mathfrak{n},\mathfrak{n}]$ of the Lie algebra \mathfrak{n} . Let \mathfrak{a} denote the orthogonal complement of the center \mathfrak{z} in \mathfrak{n} and let \mathfrak{b} denote the orthogonal complement of $[\mathfrak{n},\mathfrak{n}]$ in the center \mathfrak{z} . Then $[\mathfrak{n},\mathfrak{n}] = [\mathfrak{a},\mathfrak{a}]$ and the subalgebra $\mathfrak{h}_3 = \mathfrak{a} \oplus [\mathfrak{a},\mathfrak{a}]$ is a 3-dimensional metric Heisenberg algebra. The metric Lie algebra \mathfrak{n} decomposes into the orthogonal direct sum $\mathfrak{n} = \mathfrak{h}_3 \oplus \mathfrak{b}$ of the metric Heisenberg subalgebra \mathfrak{h}_3 and of the abelian metric algebra \mathfrak{b} .

Let $\{e_1, e_2\}$ be an orthonormal basis for \mathfrak{a} and $e_3 \in [\mathfrak{a}, \mathfrak{a}]$ a unit vector such that

$$[e_1, e_2] = -[e_2, e_1] = \lambda e_3 \tag{8}$$

with $\lambda > 0$. Moreover we denote by $\{e_4, e_5\}$ an orthonormal basis for \mathfrak{b} . The corresponding Lie algebra will be denoted by $(\mathfrak{h}_3)(\lambda) \oplus \mathbb{R}^2$.

Using the results from [9, pp. 148–149], or by an easy calculation we get

8 Proposition. For any 5-dimensional 2-step nilpotent metric Lie algebra \mathfrak{n} having a 3-dimensional center there exist a real number $\lambda > 0$ such that \mathfrak{n} is isomorphic to the metric algebra $\mathfrak{h}_3(\lambda) \oplus \mathbb{R}^2$. The metric Heisenberg Lie algebras $\mathfrak{h}_3(\lambda) \oplus \mathbb{R}^2$ and $\mathfrak{h}_3(\lambda') \oplus \mathbb{R}^2$ are isometrically isomorphic if and only if $\lambda = \lambda'$.

9 Proposition. The group of orthogonal automorphisms of the metric Lie algebra $\mathfrak{h}_3 \oplus \mathbb{R}^2$ is isomorphic to the group $O(2) \times O(2)$.

Now we prove that the 5-dimensional group spaces corresponding to the metric algebras $\mathfrak{h}_3(\lambda) \oplus \mathbb{R}^2$ are not modified H-type groups. Using the formulas (2) and (8), we obtain the following matrix representations for $j(e_3), j(e_4)$ and $j(e_5)$:

$$j(e_3) = \begin{pmatrix} 0 & \lambda \\ -\lambda & 0 \end{pmatrix}; \ j(e_4) = j(e_5) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

We can see that, for any $Z = \alpha e_3 + \beta e_4 + \gamma e_5 \in \mathfrak{z}$, the map $j^2(Z)$ has the form

$$j^{2}(Z) = \begin{pmatrix} -\alpha^{2}\lambda^{2} & 0\\ 0 & -\alpha^{2}\lambda^{2} \end{pmatrix}.$$

Hence $-j^2(Z)$ is only positive semidefinite. On the other hand, it is known that all these spaces are naturally reductive.

3.4 Classification up to isometry

We can summarize our results:

10 Theorem. The simply connected two-step homogeneous nilmanifolds of dimension 5 are, up to isometry,

$$\begin{array}{rcl} (H_5, \langle ., . \rangle_{\lambda,\mu}) & : & \lambda \ge \mu > 0, \\ (N_5, \langle ., . \rangle_{\lambda,\mu}) & : & \lambda \ge \mu > 0, \\ (H_3 \times \mathbb{R}^2, \langle ., . \rangle_{\lambda}) & : & \lambda > 0. \end{array}$$

Furthermore the full isometry groups of the corresponding nilmanifolds are expressed by:

$$I(H_5, \langle ., . \rangle_{\lambda,\mu}) = \begin{cases} (U(2) \times \mathbb{Z}_2) \ltimes H_5, & \text{if } \lambda = \mu, \\ (O(2) \times SO(2)) \ltimes H_5, & \text{if } \lambda \neq \mu, \end{cases}$$
$$I(N_5, \langle ., . \rangle_{\lambda,\mu}) = \begin{cases} (O(2) \times \mathbb{Z}_2) \ltimes N_5, & \text{if } \lambda = \mu, \\ (\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2) \ltimes N_5, & \text{if } \lambda \neq \mu, \end{cases}$$
$$I(H_3 \times \mathbb{R}^2, \langle ., . \rangle_{\lambda}) = (O(2) \times O(2)) \ltimes (H_3 \times \mathbb{R}^2).$$

PROOF. The result follows at once from the one-to-one correspondence between simply connected two-step nilmanifolds and metric Lie algebras. Here we just use Propositions 3-9.

Acknowledgements. The first author is very grateful to her advisor Professor P. T. Nagy for his useful comments during this work. The second author was supported by the grant GA $\check{C}R$ 201/05/2707 and the project MSM 0021620839.

References

- J. BERNDT, F. TRICCERI, L. VANHECKE: Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces, Lecture Notes in Math., Vol. 1598, Springer-Verlag 1995.
- P. EBERLEIN: Geometry of 2-step nilpotent groups with a left invariant metric, Ann. Sci. Ecole Norm. Sup., 4^e série, 27, (1994), 611–660.
- [3] P. EBERLEIN: Geometry of 2-step nilpotent groups with a left invariant metric II, Trans. Amer. Math. Soc., 343, (1994), 805–828.
- [4] R. GORNET, M. B. MAST: The length spectrum of Riemannian two-step nilmanifolds, Ann. Sci. Ecole Norm. Sup., 4^e sé rie, 33, (2000), 181–209.
- [5] S. HOMOLYA, P. T. NAGY: Submersions on nilmanifolds and their geodesics, Publ. Math. Debrecen, 62/3-4, (2003), 415–428.
- [6] A. KAPLAN: Riemannian nilmanifolds attached to Clifford modules, Geometriae Dedicata, 11, (1981), 127–136.
- [7] A. KAPLAN: On the geometry of groups of Heisenberg type, Bull. London Math. Soc., 15, (1983), 35–42.
- [8] O. KOWALSKI, L. VANHECKE: Classification of five-dimensional naturally reductive spaces, Math. Proc. Camb. Phil. Soc., 97, (1985), 445–463.
- [9] J. LAURET: Homogeneous nilmanifolds of dimension 3 and 4, Geometriae Dedicata, 68, (1997), 145–155.
- [10] J. LAURET: Modified H-type groups and symmetric-like Riemannian spaces, Diff. Geom. Appl., 10, (1999), 121–143.
- [11] L. MAGNIN: Sur les algébres de Lie nilpotents de dimension ≤ 7, J. Geom. Phys., 3/1, (1986), 119–144.
- [12] E. WILSON: Isometry groups on homogeneous nilmanifolds, Geometriae Dedicata, 12, (1982), 337–346.