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1 Introduction

An ‘autotopism group’ of an affine translation plane π is a group of collinea-
tions G that fixes two points on the line of infinity of the projective extension π+

of π and fixes an affine point P . The triangle so formed in π+ is called the ‘auto-
topism’ triangle of G. Since the collineation group of π is a semidirect product
of the stabilizer of a point by the translation group, the affine point fixed by
an autotopism group may always be taken arbitrarily. When autotopism groups
become important for the analysis of a translation plane, there is a natural
choice for the two infinite points fixed by the group. For example, if π is a finite
non-Desarguesian semifield plane of order pu, every collineation fixes the center
of the affine elation group E of order pu, which we denote by (∞). Furthermore,
the second fixed infinite point may be chosen arbitrarily since E is transitive
on the set of remaining infinite points. More generally, we may coordinatize so
that the two infinite points are (∞) and (0) and the affine fixed point is the
zero vector (0, 0) of the associated underlying vector space.
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As the title might suggest, we are interested in ‘triangle transitive translation
planes’. Since we will be dealing with autotopism groups, such planes are defined
as translation planes that admit an autotopism group that acts transitively on
the set of non-vertex points of each side of the autotopism triangle. (In other
considerations, a triangle transitive plane may be required only to have a group
leaving invariant the triangle and acting transitively on the set of non-vertex
points of each side of the triangle.) When this occurs, there is essentially a fixed
triangle to consider since Jha and Johnson [14] have shown that the plane may
be completely determined if either of the vertices on the line at infinity are
moved outside of vertex set of the given triangle.

But, of course, another definition might be that a ‘triangle transitive trans-
lation plane’ is a translation plane that admits a collineation group that acts
transitively on all affine triangles. However, it is clear that the only possible finite
translation planes of this type are Desarguesian, since there is a corresponding
group acting doubly transitively on the affine points. So, we are content with
our definition of triangle transitivity as it coincides with the autotopism groups
with a certain maximal level of transitivity.

A major problem in translation planes is the following:

Completely determine the class of triangle transitive translation

planes.

To indicate the difficulty of this problem, we mention some examples of
triangle transitive translation planes.

Finite generalized twisted field planes are triangle transitive precisely when
the right, middle and left nuclei of the associated semifield plane coincide (see
Biliotti, Jha, Johnson [2]). If the order is pu, there is a cyclic autotopism group
of order pu− 1 that acts on the plane. Furthermore, the Suetake planes [22] are
triangle transitive under the less restrictive definition.

Perhaps the most standard examples of triangle transitive planes are the
nearfield planes of order pu. In this case, there is an autotopism group of order
(pu − 1)2 that is triangle transitive, the group being the direct product of two
affine homology groups of order pu − 1 where the axis and co-axis of one group
is the co-axis and axis of the second group, respectively.

There are a great variety of triangle transitive planes of order pu in Williams
[24] that admit a cyclic autotopism group of order pu − 1. These planes are
discussed further in Kantor [18], who explicates the connections with these and
the construction of Blokhuis, Coulter, Henderson and O’Keefe [3]. In particular,
the number of non-isomorphic planes is not bounded by any polynomial in
q = pu.

In this article, we shall construct a class of triangle transitive planes of
order pu that admit an autotopism group of order (pu− 1)2/2. These planes are
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generalized André planes and also admit symmetric affine homology groups of
orders (pu − 1)/2 but fail to be nearfield planes.

If a triangle transitive group has order (pu − 1), it may be quite difficult to
determine the general nature of the plane as noted above, given the great variety
of triangle transitive planes with ‘small’ groups. So, the question is whether the
existence of a ‘large’ triangle transitive autotopism group necessarily forces the
plane to be a nearfield plane or at least belong to a known class of planes. We
define ‘large’ to any group of order divisible by (pu − 1)22′ . We consider this
question in the last section and show that, with the exception of a few sporadic
orders, such a plane is at least forced to be a generalized André plane.

To elaborate and digress slightly, a nearfield plane is a translation plane of
order k that admits a group of affine homologies of order k − 1. In this case,
it follows directly that there are two affine homology groups of order k − 1.
The basic question is how large must a homology group be before it can be
concluded that one obtains, in fact, the full group? For example, suppose there
is a homology group of order (k − 1)/2 or perhaps two such groups. Must then
the plane be a nearfield plane? Actually, the answer is ‘no’; there are translation
planes of order k that admit one or even two affine homology groups of order
(k − 1)/2. The complete answer when there are two groups is due to Hiramine
and Johnson.

1 Theorem (Hiramine and Johnson [12]). Let π be a translation plane of
order k that admits two distinct homology groups of order (k−1)/2 with distinct
axes. Then one of the following occurs:

(1) π is Desarguesian or

(2) the axis and co-axis of one homology group is the co-axis and axis, re-
spectively, of the remaining homology group.

Furthermore, either the translation plane is

(a) a generalized André plane or

(b) the order is 72 and the plane is the irregular nearfield plane,

(c) the order is 72 and the plane is the exceptional Lüneburg plane, or

(d) the order is 232 and the plane is the irregular nearfield plane.

So, it might be said that such translation planes are ‘known’. However, the
question then remains to determine all generalized André planes of order k
that admit two affine homology groups of order (k − 1)/2. This problem was
considered by Hiramine and Johnson also. However, it was improperly argued
that when k = qn then {q, n} is always a Dickson pair. In fact, this need not be
the case, although it is true that the prime divisors of n will divide q − 1, the
problem is when this occurs and n ≡ 0 mod 4, as was pointed out and corrected
in Draayer [5]. The following theorem combines Hiramine and Johnson and
the work of Draayer to completely determine the generalized André planes of
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order k = qn admitting symmetric homology groups of order (qn − 1)/2, where
it is assumed that the right and middle nuclei of the corresponding quasifield
coordinatizing π are equal. We state the result below although, we immediately
argue that one of the cases (case (c)) does not occur.

In the statement of the following theorem, we shall assume that the order
of the plane pw is qn, there all prime divisors of n divide q− 1 and either {q, n}
is a Dickson pair or q ≡ −1 mod 4 and n ≡ 0 mod 4.

2 Theorem (See Hiramine and Johnson [11] and Draayer [5] (4.2) and
(5.2)). Let π be a generalized André plane of order qn that admits symmetric
homology groups of order (qn − 1)/2 (the axis and co-axis of one group is the
co-axis and axis, respectively, of the second group). Assume that the right and
middle nuclei of the corresponding quasifield coordinatizing π are equal.

Then the spread may be represented as follows:

x = 0, y = xqi
ws(qi−1)/(q−1)α, y = xptqj

wvqj
ws(qj−1)/(q−1)β

where α, β ∈ A a subgroup of GF (qn)∗ of order (qn − 1)/2n, where i, j =
0, 1, . . . , n− 1 and where t and v have the following restrictions:

for q ≡ 1 mod 4 or n odd,

we may choose s = 2, v = 1, t ≥ 0,

for q ≡ −1 mod 4 and n ≡ 2 mod 4,

we may choose s = 1, v = n, t ≥ 0 and even, or

for q ≡ 3 mod 8 and n ≡ 0 mod 4,

we may choose s = 1, v = 2[n]2′ , t ≥ 0 and even.

Furthermore, we have the congruence:

s(pt − 1) ≡ v(q − 1) + 2nz mod (qn − 1), for some z so that

s(pt − 1) ≡ v(q − 1) mod 2n.

Conversely, generalized André planes with the above conditions have two
symmetric homology groups corresponding to equal right and middle nuclei in
the associated quasifield.

Draayer [5] has show that, in fact, there is a generalized André planes of
order 34, which is not a nearfield planes and nevertheless has two affine homology
groups of order (34− 1)/2, where the corresponding right and middle nuclei are
not equal. There is a faulty argument in Hiramine and Johnson [11, (5.1)] that
reputes to show that the two nuclei are always equal or the plane must be a
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nearfield plane. This argument infected the analysis of planes of order 72, so we
repair both of these problems this in this article.

This brings up an interesting question: What is the subclass of transla-

tion planes of order qn, where {q, n} is not a Dickson pair that admit

two homology groups of order (qn − 1)/2, where the associated mid-

dle and right nuclei are equal? And, what is the subclass when the

associated middle and right nuclei are not equal?

Moreover, it is of general interest to completely determine the generalized
André planes of order qn admitting two affine homology groups of order (qn −
1)/2, where the associated nuclei are not equal. We have previously called planes
admitting two ‘half-order’ homology groups, ‘near nearfield planes’. When the
associated nuclei are not equal, we show that such translation planes admit an
autotopism group that acts transitively on the non-vertex points on the ‘infinite
line’ and completely classify such planes. Furthermore, we show that any near
nearfield plane always admits an autotopism group that acts transitively on the
non-vertex points of each affine side of the autotopism triangle, thus providing
additional examples of triangle transitivity planes.

Our main result is

3 Theorem. Let π be a non-Desarguesian affine plane of order pw, p a
prime that admits two affine homology groups Hx and Hy of order (pw − 1)/2
with axis (respectively, co-axis) x = 0 and co-axis (respectively, axis) y = 0.

Then there is an autotopism group that is triangle transitive if and only if
π is one of the following types of planes:

(1) the plane is a Dickson nearfield plane,
(2) pw = 72 or 232 and the plane is an irregular nearfield plane,
(3) the plane is a generalized André plane of order pw = qn, where q ≡

3 mod 8, n ≡ 0 mod 4, n/4 is odd.
Furthermore, the spread may be represented as follows:

{
x = 0, y = 0, {y = x, y = wn/2}Hy

}
,

where

Hy =
〈
(x, y) 7−→ (x, yqi

ws(qi−1)/(q−1)α);α ∈ A, where i = 0, 1, . . . , n− 1
〉
,

and A the cyclic subgroup of GF (qn)∗ of order (qn − 1)/2n.

2 Transitive generalized André planes

We begin by answering the question discussed in the introduction; what are
the translation planes of indicated type that have corresponding equal middle
and right nuclei?
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Since Theorem 2 gives the classification of all such translation planes, we
may utilize the congruence given in part (c) to analyze such planes.

Thus, we have

q ≡ 3 mod 8 and n ≡ 0 mod 4, s = 1, v = 2[n]2′ , t ≥ 0, t even and

s(pt − 1) ≡ v(q − 1) + 2nz mod (qn − 1), for some z.

Since t is even, it follows that 8 divides s(pt − 1) and, of course, 8 divides
2nz. Since 8 divides qn − 1, it follows that

v(q − 1) ≡ 0 mod 8.

However, (q − 1)/2 is odd since 4 divides (q − 1)/2 − 1. Since v/2 is odd, we
have a contradiction. That is, case (c) never occurs.

Hence, we have:

4 Theorem. Let π be a generalized André plane of order qn admitting sym-
metric homology groups of order (qn − 1)/2. Assume that the right and middle
nuclei of the corresponding quasifield coordinatizing π are equal.

Then {q, n} is a Dickson pair.

So, we now continue to determine the complete class of planes where the
right and middle nuclei are not equal.

We require the following result for our general analysis.

5 Theorem (Draayer [5]). Let π be a translation plane of order qn that
admits an affine homology group Hy of order (qn − 1)/2 with axis y = 0 and
co-axis x = 0. Then the spread for π may be represented as follows:

x = 0, y = xqi
ws(qi−1)/(q−1)α, y = xptqj

wvqj
ws(qj−1)/(q−1)β

where α, β ∈ A a subgroup of GF (qn)∗ of order (qn − 1)/2n, where i, j =
0, 1, . . . , n− 1 and where t and v have the following restrictions:

for q ≡ 1 mod 4 or n odd, let s = 2, v = 1, t ≥ 0, or

for q ≡ −1 mod 4 and n ≡ 2 mod 4, let s = 1, v = n, t ≥ 0 and even, or

for q ≡ 3 mod 8 and n ≡ 0 mod 4, let s = 1, v = 2[n]2′ , t ≥ 0 and even.

Furthermore, the group Hy has the following form:

〈
(x, y) 7−→ (x, yqi

ws(qi−1)/(q−1)α);α ∈ A, where i = 0, 1, . . . , n− 1
〉
.

Now assume we have a generalized André plane π represented as above and
assume that there is a homology group Hx of order (qn − 1)/2 that has axis
x = 0 and co-axis y = 0.
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6 Lemma. Each element (x, y) 7−→ (xδ, yγ) for δ, γ ∈ A is a collineation
of π.

Proof.

y = xqi
ws(qi−1)/(q−1)α is mapped onto y = xqi

ws(qi−1)/(q−1)αδ−qi
γ

and

y = xptqj
wvqj

ws(qj−1)/(q−1)β

is mapped onto y = xptqj
wvqj

ws(qj−1)/(q−1)βδ−ptqj
γ.

Since A is a subgroup of GF (qn)∗ of order (qn − 1)/2n, it follows that αδ−qi
γ

and βδ−ptqj
γ are back in A. Hence, the lemma follows immediately. QED

Thus, there is an affine homology group Ax of order (qn − 1)/2n with axis
x = 0 and co-axis y = 0 corresponding to A. Let H+

x denote the full homology
group of π with axis x = 0 and co-axis y = 0 so that Ax is a subgroup of H+

x .
There are two possibilities: Ax ⊆ Hx or Hx is a proper subgroup of H+

x .
Of course, in the latter case, we have a nearfield plane and since all of these
are Dickson nearfield planes, they are completely determined. Hence, we may
assume that Ax ⊆ Hx.

7 Remark. In Hiramine and Johnson [11], there is an analysis of generalized
André systems of order qn that admit right sub-nuclei of order (qn− 1)/2. Such
right sub-nuclei correspond to the affine homology group with axis y = 0 and
co-axis x = 0. This analysis applies equally, in theory, to such systems that
admit middle sub-nuclei of order (qn− 1)/2. Such middle sub-nuclei correspond
to the affine homology group with axis x = 0 and co-axis y = 0.

In particular, the set of generalized André systems of order qn with right sub-
nuclei of order (qn−1)/2 are in 1–1 correspondence with the set of all generalized
André systems of order qn with middle sub-nuclei of order (qn− 1)/2 under the
mapping (x, y) 7−→ (y, x).

We may apply the analysis of generalized André systems of order qn that
admit right sub-nuclei of order (qn−1)/2 to generalized André systems of order
hn∗

that admit middle sub-nuclei of order (hn∗−1)/2. Assume that we have both
a right nucleus of order (qn− 1)/2 and a middle nucleus of order (hn∗ − 1)/2 =
(qn − 1)/2.

Then we have a group B of order (hn∗−1)/2n∗ that takes the place of A but
acting on the left; (x, y) 7−→ (xδ, y) for δ ∈ B, is a collineation of the plane π, so
we obtain a corresponding group Bx and the above lemma shows that we also
would have a group By as a collineation group. So, either we have a nearfield
plane or we may assume that Ax is a subgroup of Hx and By is a subgroup of
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Hy. This implies that A and B are equal. Since hn∗
= qn and we now have that

2n∗ = 2n, which implies that h = q and n∗ = n.

8 Lemma. Under the above assumptions, Hx/Ax may be represented cycli-
cally with generator (x, y) 7−→ (xqws∗ , y).

Proof. Again, the analysis for the decomposition over the right nucleus ap-
plies to show that the decomposition over the middle nucleus is cyclic modulo
A. Without using the special form given in the previous theorem (that is, with-
out specifying the nature of {s, t, v}), we would know that set of all generalized
André planes with a right nucleus of order (qn−1)/2 produce under the mapping
φ : (x, y) 7−→ (y, x) the set of all generalized André planes with a middle nucleus
of order (qn− 1)/2. Hence, the basic generator on the right (x, y) 7−→ (x, yqws),
without yet specifying s, maps under φ to (y, x) 7−→ (yqws, x).This means that
the homology group Hx modulo Ax is also cyclic and generated for some ws∗

exactly as indicated. QED

9 Lemma. Assume that the multiplicative groups of the right nucleus N∗
r

and middle nucleus N∗
m are both of order (qn − 1)/2 but are distinct.

(1) Then (N∗
r , ◦)∩(N∗

m, ◦) defines a multiplicative group of order (qn−1)/4.
Note that this also says that b ∈ N∗

m implies that b ◦ b ∈ N∗
r .

(2) Hence, if n is odd then q ≡ 1 mod 4.

Proof. This result is clear if in the associated generalized André system
(Q−{ 0 }, ◦) is a group, so we need to check that the standard counting argument
works in this setting.

We consider N∗
m ◦N∗

r ⊆ Q− { 0 } = Q∗. Assume that

bm ◦ ar = b∗m ◦ a∗r ,

where bm, b
∗
m ∈ N∗

m and ar, a
∗
r ∈ N∗

r . Then

b−1
m ◦ (bm ◦ ar) = b−1

m ◦ (b∗m ◦ a∗r) ⇐⇒
(b−1

m ◦ bm) ◦ ar = ar = (b−1
m ◦ b∗m) ◦ a∗r . This is valid ⇐⇒

c = ar ◦ a∗−1
r = ((b−1

m ◦ b∗m) ◦ a∗r) ◦ a∗−1
r = (b−1

m ◦ b∗m),

is in N∗
m ∩N∗

r , using the fact that the corresponding elements are in the middle
and right nuclei.

Thus,

|N∗
m ◦N∗

r | ≤ (qn − 1) and |N∗
m ◦N∗

r | = ((qn − 1)2/4)/I

where I is the order of N∗
m ∩N∗

r , since

bm ◦ ar = (bm ◦ c) ◦ (c−1 ◦ ar) and c ∈ N∗
m ∩N∗

r .
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But,

(qn − 1)2/4I ≤ (qn − 1) ⇐⇒
(qn − 1)/4 ≤ I.

Since N∗
m 6= N∗

r , it follows that I = (qn − 1)/4. QED

10 Lemma. (1) The group generated by the associated right and left ho-
mology groups generate a group that is transitive on the components not equal
to the axis and co-axis x = 0, y = 0.

(2) The groups Hx and Hy commute and Hy permutes the two Hx-orbits of
components. Nr 6= Nm if and only if Hy inverts the two Hx-orbits of components.

Proof. (2) implies (1) so it suffices to complete the proof to (2). Clearly,
the groups Hx and Hy commute since they both leave invariant the axis and co-
axis of the remaining group. Consider the image set of y = x under ρ : (x, y) 7−→
(xqws∗ , y), which is y = xq−1

w−s∗q−1
. Assume that x ◦ b = xqws∗ . Then

y = x ◦ a 7−→ y = x ◦ (b−1 ◦ a),

under ρ. Suppose that y = xq−1
w−s∗q−1

= x ◦ b−1 is in the Hy orbit of y = x
then b−1 would be forced into N∗

r , a contradiction. Hence, the image must be in
the orbit of y = xpt

wv . Since this argument is symmetric, (2) is proved. QED

11 Lemma. Let H−
y have elements

(x, y) 7−→ (x, yq2i
ws(q2i−1)/(q−1)α), for α of order dividing (qn − 1)/2n

and H−
x have elements

(x, y) 7−→ (xq2i
ws∗(q2i−1)/(q−1)β, y)

for β of order dividing (qn − 1)/2n and i = 1, 2, . . . , n/2.

(1) Then,
ws∗(q+1) = ws(q+1)αo

for some αo in A.
(2) 2n divides (s∗ − s)(q + 1).
(3)

(a) If q ≡ 3 mod 8 and n ≡ 0 mod 4 then we may assume that

s∗ = s± n/2 or s∗ = s+ n.

(b) If n is even and q ≡ 1 mod 4 then

s∗ = s+ n.
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(c) If n ≡ 2 mod 4 and q ≡ −1 mod 4 then

s∗ = s± n/2 or s∗ = s+ n.

Proof. We know that the stabilizer of y = x in the group generated by Hx

and Hy has order exactly (qn−1)/4. Moreover, we know that (x, y) 7−→ (xα, yα)
is a subgroup of order (qn − 1)/2n. Furthermore, modulo Ay, we know that
we have a cyclic subgroup of Hy of order n. Hence, the stabilizer of y = x
corresponds exactly to the cyclic subgroup of Hy of order n/2 module Ay. It
follows that for a given i, there exists α and β such that the product of the two
listed elements in the statement of the lemma fix y = x. This proves (1).

(2) now follows since the order of αo divides (qn − 1)/2n.

If q is congruent to 3 mod 8 then (q + 1)/4 is odd. We may assume that
every prime divisor of n divides q − 1, then it follows that since 2n divides
(s∗ − s)(q + 1) then n/2 divides (s∗ − s), and since we may take everything
modulo 2n, (3) (a) then follows.

If q ≡ 1 mod 4 then 2n dividing (s∗−s)(q+1) implies that n divides (s∗−s),
since all prime divisors divide q − 1 and (q + 1)/2 is odd. This proves (b) for n
even or odd.

If n ≡ 2 mod 4 and q ≡ −1 mod 4 then 2n dividing (s∗ − s)(q + 1) implies
that n/2 divides (s∗ − s), as n/2 is odd and all prime divisors of n divide
q − 1. QED

12 Lemma. If θs∗ : (x, y) 7−→ (xqws∗ , y) generates Hx modulo A (the group
corresponding to A), then

(1) y = x maps onto y = xq−1
w−s∗q−1

.

(2) If θs∗ is a generator then so is (x, y) 7−→ (xqws∗w±2n, y).

(3) The spread is

{
x = 0, y = 0, {y = x, y = ws∗−s}Hy

}
,

where s∗ − s = ±n/2 or n (see above lemma).

Proof. (1) is clear and (2) follows since w±2n has order (qn−1)/2n. QED

13 Lemma. Let s∗− s = ±n/k, where k = 1 or 2. There exists an element
j0 such that

vqj0 + s(qj0 − 1)/(q − 1) ≡ ±n/k mod 2n,

and pt = q−j0.

Proof. y = xws∗−s is in { y = xpt
wv }Hy. QED
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Now recall that

for q ≡ 1 mod 4 or n odd, let s = 2, v = 1, t ≥ 0, or

for q ≡ −1 mod 4 and n ≡ 2 mod 4, let s = 1, v = n, t ≥ 0 and even, or

for q ≡ 3 mod 8 and n ≡ 0 mod 4, let s = 1, v = 2[n]2′ , t ≥ 0 and even.

Note that for

q ≡ −1 mod 4 and n ≡ 2 mod 4, let s = 1, v = n, t ≥ 0 and even,

it follows that

vqj0 + s(qj0 − 1)/(q − 1) ≡ ±n/k mod 2n,

has a solution for k = 1 and j0 = 0.
Furthermore, when

q ≡ 3 mod 8 and n ≡ 0 mod 4, s = 1, v = 2[n]2′ , t ≥ 0, even,

then
2[n]2′ ≡ n/2 mod 2n,

provided n/4 is odd.

14 Lemma. If the spread is

{x = 0, y = 0, {y = x, y = wn}Hy } ,
then the spread is a nearfield plane so that the case q ≡ 3 mod 8 and n ≡ 0 mod 4
does not occur.

Proof. Simply note that wnqj
is congruent to wn modulo A, implying that

θ : (x, y) 7−→ (x, ywn) is a homology. However, θ is not in Hy, which implies
that the plane is a nearfield plane. QED

15 Lemma. If q ≡ −1 mod 4 then there is not a solution to

nqj0 + (qj0 − 1)/(q − 1) ≡ ±n/2 mod 2n.

Proof. Let q = pr, then r is odd. Since ptqj0 is the identity and t is even,
it follows that j0 is even. But, n/2 is odd and (qj0 − 1)/(q − 1) is even, so we
must have 2 dividing n/2, a contradiction. QED

16 Theorem. If a transitive near nearfield plane is obtained and the spread
is not a nearfield plane then q ≡ 3 mod 8, n ≡ 0 mod 4 and the spread is as
follows: {

x = 0, y = 0, {y = x, y = w±n/2}Hy

}
,

which implies that n/4 is odd.
Furthermore, if pt = 0, we obtain the spread for ±n/2 = n/2 and when

pt = qn/2 then we obtain the spread for ±n/2 = −n/2.
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Proof. We must have

2[n]2′q
j0 + (qj0 − 1)/(q − 1) ≡ ±n/2 mod 2n,

and pt = q−j0.

By the above lemmas, we must have q = pr, r odd and j0 must be even. But,
then [n]2′q

j0 is odd, (qj0 − 1)/2(q − 1), is even as 4 divides q+ 1, and n is even.
This forces n/4 to be odd.

Since we have n/4 odd, it follows that we have a solution when pt = 1 and
±n/2 = n/2 = 2[n]2′ . It remains to consider the case when

n

2
qj0 + (qj0 − 1)/(q − 1) ≡ −n/2 mod 2n.

Clearly this is valid if and only if

n divides (qj0 − 1)/(q − 1),

where j0 is even. If n = 4 then this works for any even j0 since 4 divides q + 1.
If u divides q − 1 (see [5, lemma (2.3)]) then u divides (qu − 1)/(q − 1). So, for
any even j0, 4 divides (qj0 − 1)/(q− 1) and n/4 divides (qn/4− 1)/(q− 1). Since
(qn/4 − 1)/(q − 1) divides (qn/2 − 1)/(q − 1), it follows that n always divides
(qn/2−1)/(q−1) provided n divides (q−1). Furthermore, by Corollary (2.5) (a)
of [5], if all prime divisors of n divide (q − 1) then n divides (qn/2 − 1)/(q − 1).
Hence, we may always choose pt = 1 or qn/2. This completes the proof. QED

17 Lemma. A spread is obtained when q ≡ 1 mod 4 if and only if n = 1.
In this case, the spread is Desarguesian.

Proof. By Draayer (4.2)(2), we must have that {q, n} is a Dickson pair.
Hence, the prime divisors of n divide q − 1. However, n divides (q + 1) and n
is odd, so we have a contradiction unless n = 1. But, in this case, we have that
the kernel contains GF (q) so the plane is Desarguesian of order q. QED

18 Theorem. Let π be a translation plane of order qn = pnr, for p a prime,
that admits two homology groups of order (qn− 1)/2. Then one of the following
occurs:

(1) π is Desarguesian,
(2) qn = 72 and the plane is the irregular nearfield plane,
(3) qn = 72 and the plane is the exceptional Lüneburg plane,
(4) qn = 232 and the plane is the irregular nearfield plane,
(5) π is a generalized André plane and the associated right and middle nuclei

of the (sub) homology groups are equal. In this case, the representation of the
plane is as follows: Then the spread may be represented as follows:

x = 0, y = xqi
ws(qi−1)/(q−1)α, y = xptqj

wvqj
ws(qj−1)/(q−1)β
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where α, β ∈ A a subgroup of GF (qn)∗ of order (qn − 1)/2n, where i, j =
0, 1, . . . , n− 1 and where t and v have the following restrictions:

for q ≡ 1 mod 4 or n odd, let s = 2, v = 1, t ≥ 0, or

for q ≡ −1 mod 4 and n ≡ 2 mod 4, let s = 1, v = n, t ≥ 0 and even.

Furthermore, we have the congruence:

s(pt − 1) ≡ v(q − 1) + 2nz mod (qn − 1), for some z.

(6) π is a generalized André plane such that there are subnuclei of the asso-
ciated (sub) homology groups of index two and are not equal. Then one of two
situations occurs:

(a) π is a Dickson nearfield plane and the orbit lengths of components
under the full group is 2, qn − 1 or

(b) π is not a nearfield plane but nevertheless, there is a transitive
autotopism group and the spread may be represented as follows:

x = 0, y = 0, y = xqi
ws(qi−1)/(q−1)α,

y = xptqj
wvqj

ws(qj−1)/(q−1)β,

where α, β ∈ Z−, the cyclic subgroup of GF (qn)∗ of order (qn − 1)/2n, i, j =
1, . . . , n, w a primitive element of GF (qn)∗ and

q ≡ 3 mod 8 and [n]2 = 4, s = 1, and v = n/2 and t ∈ (0, nr/2).

Proof. The argument given in [12, (5.2)] or in [11, (5.1)] incorrectly con-
cludes that if the right and middle nuclei are not equal then the plane is a
nearfield plane. This result was used to classify the planes of order 72, as the
basic analysis shows these orders to be somewhat sporadic. Hence, in order to
complete the theorem, we need to assume that the right and middle subnuclei
of orders 24 are not equal and the group generated by the two associated affine
homology groups acts as a transitive autotopism group. If there are two cyclic
homology groups of order 8 then the plane is either Desarguesian or André or
constructed from a Desarguesian affine plane Σ by (q + 1)-nest replacement,
for q = 7, using the results of Johnson and Pomareda [17, Theorem (2.1)]. In
the latter case, there is an associated homology group of order 8 and a kernel
homology group of order 8 both collineation groups of Σ. That is, the two ho-
mology groups with different axes must define equal subnuclei; there is a right
subnucleus of order 8 that is equal to a middle subnucleus of order 8. This says
that the orbit of y = x is the same for both groups of order 8. However, we have
a right subnucleus homology group of order 24 that has two orbits of compo-
nents of length 24 and these two orbits are permuted by the middle subnucleus
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homology group also of order 24. We have assumed that the two orbits under
the right subnucleus homology group are inverted by the middle subnucleus
group. A Sylow 2-subgroup of order 8 of a right subnucleus homology group
therefore has 6 orbits of length 8 and none of these can be fixed by the full
Sylow 2-subgroup of a middle subnucleus homology group.

Thus, if there are two cyclic groups of order 8 then the plane is either
Desarguesian or an André plane.

So, assume that at least one of the homology groups has non-cyclic Sylow
2-subgroups of order 8. In a translation plane, there is a unique involutory
homology for a fixed axis and co-axis. Hence, there is a quaternion Sylow 2-
subgroup of order 8 of one of the homology groups. Planes of order 49 with
quaternion groups of homologies are classified by Heimbeck [10]. In particular,
see the second table on page 1211 of Charnes and Dempwolff [4]. However, it is
not necessary to appeal to this work as the following argument shows.

Now note that the intersection of the right and middle nuclei has order 12
so that there is a normal subgroup of order 12 in the right and middle nuclei.
Assume that the right nucleus H has a Sylow 2-subgroup of order 8 and a
normal subgroup of order 12. The center of a Sylow 2-subgroup is in the center
Z of GL(2, 7). If Z is in H then we have a regulus-inducing homology group of
order 6. However, by the work of Johnson [16], there is a corresponding flock
of a hyperbolic quadric in PG(3, 7). However, by the classification theorem of
such flocks, all associated planes are nearfield planes (see Thas [23] and Bader,
Lunardon [1]). Thus, the quotient of H by Z ∩H is A4 so that H is isomorphic
to SL(2, 3). However, there is not a subgroup of SL(2, 3) of order 12. (That is,
if so then there is either a normal Sylow 3-subgroup or a normal 2-subgroup of
order 4, neither of which can hold in SL(2, 3).)

Hence, we may always assume that either the plane is a nearfield plane or
the right and middle reguli may be assumed equal.

This completes the proof to the theorem. QED

It is always of interest to determine those translation planes that admit an
autotopism group that acts transitively on one of the sides of the autotopism
triangle. Any ‘near nearfield’ plane of order qn has an autotopism group that
has two orbits of lengths (qn − 1)/2 on each side of the autotopism triangle.

19 Lemma. (1) gn : (x, y) 7−→ (xwn, ywn) is a collineation of any near
nearfield plane.

(2) 〈gn,Hy〉 is transitive on the non-zero points of the co-axis x = 0 of Hy.
Similarly, 〈gn,Hx〉 is transitive on the non-zero points of the co-axis y = 0 of
Hx.

Proof. Note that gn fixes y = x, and if σ : (x, y) 7−→ (x, yqws), then
σgn : (x, y) 7−→ (x, yqwswn(q−1)), since 2n divides n(q − 1), it follows that gn
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normalizes Hy. Also, y = xpt
wv maps to y = xpt

wvwn(pt−1) so is in (y =

xpt
wv)Hy. Thus, gn is a collineation. It then follows from Foulser [7, (15.3), p.

467], that 〈gn,Hy〉 is transitive on the non-zero points of the co-axis x = 0 of
Hy. Similarly, 〈gn,Hx〉 is transitive on the non-zero points of the co-axis y = 0
of Hx. QED

20 Definition. We shall say that an autotopism group is ‘side transitive’ if
it is transitive on one side of the autotopism triangle and ‘affine side transitive’
if it is transitive on an affine side of the autotopism triangle. The group is ‘affine
transitive’ if it is transitive on both affine sides of the autotopism triangle and
‘triangle transitive’ if it is transitive on all three sides of the autotopism triangle.
We shall also use the same terminology to describe the plane that admits such
collineation groups.

21 Corollary. Any near nearfield plane is affine transitive.

22 Corollary. A near nearfield plane of order qn has an affine transitive
autotopism group G of order (qn − 1)2/2. When {q, n} is not a Dickson prime,
G is a triangle transitive group.

Proof. 〈gn,Hx,Hy〉 has order (qn − 1)2/2. QED

In one of the following sections, we shall show that the only near nearfield
planes that are triangle transitive are the nearfield planes and what we have
called ‘transitive’ near nearfield planes.

3 Isomorphisms

We have not yet dealt with the possibility that the two spreads of orders qn

where q ≡ 3 mod 8 and n ≡ 0 mod 4, with n/4 odd may be isomorphic. Recall
that the spreads are

{
x = 0, y = 0, {y = x, y = w±n/2}Hy

}
.

Since these planes are generalized André planes, we may assume that a collin-
eation σ fixes or interchanges x = 0 and y = 0, and since we have a transitive
autotopism group on each plane, we assume that σ fixes y = x. Say the ‘plus’-
plane is mapped onto the ‘minus’-plane by σ.

Consider

σ : (x, y) 7−→ (xqw, yqw).

Note that y = xwn/2 maps onto y = wqn/2. So, the question is whether

wqn/2 = w−n/2αo,
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where αo has order dividing (qn − 1)/2n. This is equivalent to

(q + 1)n/2 ≡ 0 mod 2n,

which is valid since 4 divides q + 1. It only remains to show that σ normalizes
Hy.

But, we need only check that σ normalizes the generators of Hy. Let ρ∗ :
(x, y) 7−→ (x, yρ). Then ρ∗σ = ρ∗q, for ρ ∈ A. Furthermore, if g is (x, y) 7−→
(x, yqw), then gσ = g.

Hence, we obtain the following theorem.

23 Theorem. Let π be a non-nearfield translation plane of order qn that
admits two distinct homology groups of order (qn − 1)/2. Then the axis and
co-axis of one group is the co-axis and axis, respectively, of the second group.

If the associated right and middle nuclei are not equal then
(1) q ≡ 3 mod 8, n ≡ 0 mod 4, n/4 is odd.
(2) The spread may be represented as follows:

{
x = 0, y = 0, {y = x, y = wn/2}Hy

}
,

where

Hy =
〈
(x, y) 7−→ (x, yqi

w(qi−1)/(q−1)α);α ∈ A, where i = 0, 1, . . . , n− 1
〉
,

and, where A is a cyclic group of order (qn − 1)/2n in GF (qn)∗.

4 Transitive autotopism groups

In the previous sections, we have completely determined the set of transla-
tion planes of orders qn that admit two homology groups of orders (qn − 1)/2,
say Hy and Hx such that 〈Hy,Hx〉 is a transitive autotopism group (fixes two in-
finite points, and an affine point and acts transitively on the remaining points of
the infinite side of the autotopism triangle). However, it might be possible that
there is a transitive autotopism group and the two homology groups have the
same two orbits on the line at infinity. In this case, there would be an element
g that interchanges the two orbits of Hy and fixes x = 0 and y = 0.

Specifically, suppose that we have a non-Desarguesian translation plane of
order qn = pnr with two homology groups of order (qn − 1)/2. Since we have
a generalized André plane (except for the indicated few special orders), there
are two components x = 0 and y = 0 that are fixed or interchanged. Suppose
that there is a group G containing the homology groups such that G is a tran-
sitive autotopism group (i.e. fixes x = 0 and y = 0 and is transitive on the
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remaining components). If the two homology groups lead to different right and
middle nuclei, we have a complete classification. However, it may be possible
such transitive autotopism groups G (infinite side transitive) where the two right
and middle nuclei are actually equal. We explore this situation in the current
section.

Recall that we have the spreads

x = 0, y = xqi
ws(qi−1)/(q−1)α, y = xptqj

wvqj
ws(qj−1)/(q−1)β

where α, β ∈ A a subgroup of GF (qn)∗ of order (qn − 1)/2n, where i, j =
0, 1, . . . , n− 1 and where t and v have the following restrictions:

for q ≡ 1 mod 4 or n odd, let s = 2, v = 1, t ≥ 0, or

for q ≡ −1 mod 4 and n ≡ 2 mod 4, let s = 1, v = n, t ≥ 0 and even.

Furthermore, we have the congruence:

s(pt − 1) ≡ v(q − 1) + 2nz mod (qn − 1), for some z, I ⇐⇒
s(pt − 1) ≡ v(q − 1) mod 2n.

If we assume that q ≡ −1 mod 4, so that s = 1 and v = n then n divides pt− 1.
The other possibility is that assume q ≡ 1 mod 4 (n may be even or odd),

let s = 2, v = 1, t ≥ 0,

2(pt − 1) ≡ (q − 1) mod 2n.

In any case, since G is an autotopism group, by our previous results, either
the plane is a Dickson nearfield plane or the homology group Hy is normal in
G. Hence, we may assume that there exists an element g in G that interchanges
the two Hy-orbits of components. Furthermore, we know that there is an affine
transitive autotopism group acting transitively on each of the affine axes of
the autotopism triangle. Since the group element gn : (x, y) 7−→ (xwn, ywn)
normalizes both Hy and Hx, and fixes y = x, we may assume that gn is in G.
Let G− = 〈gn,Hy,Hx〉 and note that G− normalizes Hy. Let g interchange the
two Hy-orbits of components, we claim that g may be assumed to fix some point
(1, z). Assume that g maps 1 to s0. Then, there exists an element of G− that
maps (s0, g(z)) to (1, d) for some element d. So, we may assume, without loss
of generality, that g fixes 1 on y = 0.

24 Remark. Foulser [8] determines the full collineation group of a gener-
alized André plane. In particular, if the plane is not Desarguesian or a Hall
plane then the collineation group fixes the autotopism triangle and fixes or in-
terchanges the two infinite vertices. Furthermore, the collineation group may be
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represented using the group ΓL(2, qn) and the automorphism group of GF (qn)
that fixes the kernel elementwise. (In Foulser, the case of order 34 is left open,
but this has been taken care of in Rao’s work [21].)

If the plane is not Desarguesian or Hall, has order qn = pw, then the collin-
eation group is a subgroup of

〈
ΓL(2, qn){x=0,y=0}, (x, y) 7−→ (x, yp)

〉
.

In the following lemmas, we assume the conditions given above.

25 Lemma. Let g fix x = 0, y = 0 and interchange the two component
orbits of Hy. (1) We we may assume that g has the following form:

g : (x, y) 7−→ (xpa
, ypc

win), i = 0 or 1.

(2) s(pa − 1) ≡ s(pc − 1) ≡ 0 mod 2n.
(3) If y = x maps to

y = xpz
win = xptqj

wvqj
ws(qj−1)/(q−1)α

under g then
vqj + s(qj − 1)/(q − 1) + in ≡ 0 mod 2n.

Proof. By Foulser [7, (15.4)], if the group on y = 0 is
〈
wd∗ , we∗αs∗

〉
,

where wd∗ is x 7−→ xwd∗and α : x 7−→ xp, for q = pr, then G1 acting on
y = 0 is

〈
αd∗s∗

〉
. In this case, the order of wd∗ is (qn − 1)/d∗ and the or-

der of αs∗ is nr/s∗. Furthermore, we know that (d∗, e∗) = 1. We know that
〈wn〉 is a subgroup of order (qn − 1)/n dividing (qn − 1)/d∗, so that d∗ divides
n. We also have from Foulser that nr ≡ 0 mod s∗d∗. Now follow by apply-
ing 〈wn,Hx, on x = 0〉. Hence, we then have without loss of generality that

g : (x, y) 7−→ (xpjs∗d∗

, ypks1d1 ) or (x, y) 7−→ (xpjs∗d∗

, ypks1d1wn), where the group
on x = 0 is

〈
wd1 , we1αs1

〉
, for some integers j and k. Hence, y = x maps to

y = xpz
or to y = xpz

wn, for some integer z. Hence, we may assume that g has
the form g : (x, y) 7−→ (xpa

, ypc
win). Now g must normalize both Hx and Hy.

Let h : (x, y) −→ (xqk
ws(qk−1)/(q−1)α, yqj

ws(qj−1)/(q−1)β), for α, β ∈ A. Noting
that g−1 : (x, y) 7−→ (xp−a

, yp−c
w−p−cin) then

ghg−1 : (x, y) 7−→ (xqk
ws(qk−1)/(q−1)pa

αpa
, yqj

ws(qj−1)pc
βpc

w−in(qj−1)).

Hence, we must have

ws(qk−1)/(q−1)pa
= ws(qk−1)/(q−1)δ, for each k and some δ ∈ A.

Thus, we require that

w(s(pa−1))(qk−1)/(q−1) ∈ A.
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This is true if and only if

s(pa − 1) ≡ 0 mod 2n.

Note that
w−in(qj−1) ∈ A,

since 2 divides qj − 1, hence we also require that

s(pc − 1) ≡ 0 mod 2n.

Since y = xpz
win = xptqj

wvqj
ws(qj−1)/(q−1)α, it follows that

vqj + s(qj − 1)/(q − 1) + in ≡ 0 mod 2n.

This proves all parts of the lemma. QED

26 Lemma. If q ≡ 1 mod 4 then the plane is a nearfield plane.

Proof. From the previous lemma and our initial set up, we have

qj + 2(qj − 1)/(q − 1) + in ≡ 0 mod 2n.

If n is even then qj is forced to be even, a contradiction.
Hence, n is odd.
In addition,

2(pa − 1) ≡ 0 mod 2n, 2(pc − 1) ≡ 0 mod 2n,

ptqj ≡ pz mod (qn − 1), z = c− a.

Moreover, g2 is (x, y) 7−→ (xp2a
, yp2c

win(pa+1)) produces an element:

g1 : (x, y) 7−→ (xp2a
, yp2c

)

that maps y = x into y = xp2(c−a)
. Hence, p2(c−a) = qk, where

w(qk−1)/(q−1) ∈ A.

Thus, we have:
2n divides (qk − 1)/(q − 1).

By Draayer [5, (2.5) (b)], it follows that n divides k, so we may assume that n =
k. If a = c then y = x is fixed by g, a contradiction, or (x, y) 7−→ (xpa

, ypa
wn) is

a collineation that maps y = x onto y = xwn. Hence, the spread is a nearfield
spread by Lemma 14. If a or c is 0 then we have an ‘extra’ homology, implying
that the plane is a nearfield plane. Thus, xp2a

= xp2c
, and since n is odd, it
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follows that since 2(c − a) = rn, it follows that either a = c, a contradiction as
above or r is even and c = a+ rn/2 so that pc = pa√q n. So, the image of y = x
under g is y = x

√
q n
win, n odd. It also follows that n divides (

√
q n − 1) since

n divides pa − 1 and pc − 1. In any case, when we do satisfy all of this, is this
plane a nearfield plane? Note that the spread is as follows:

{
x = 0, y = 0, (y = x, y = x

√
q n

win)Hy

}
.

The question then is whether h : (x, y) 7−→ (x, y
√

q n
win) is a collineation group.

But, in fact, this is a collineation group: h will map y = x onto y = x
√

q n
win and

map y = x
√

q n
win onto (y = x

√
q 2n

win(
√

q n+1)) = (y = xα0), for α0 ∈ A. Hence,
we have shown that whenever, q ≡ 1 mod 4 and there is a triangle transitive
autotopism group then the plane is a nearfield plane. QED

27 Lemma. If q ≡ −1 mod 4 then the plane is a nearfield plane.

Proof. So, we have s = 1, v = n and n divides pt − 1. Furthermore,

vqj + s(qj − 1)/(q − 1) + in ≡ 0 mod 2n

becomes
nqj + (qj − 1)/(q − 1) + in ≡ 0 mod 2n.

In this setting, n divides (qj − 1)/(q − 1), by Draayer [5, (2.5) (b)], either j is
odd and n divides j or j is even and [n]2′ divides j. In the latter case, since
n/2 = [n]2′ , it follows that n/2 divides j so that n still divides j. Hence, in
either case, j = n. This implies that ptqj = pt, i.e. that z = t. We require that

(pa − 1) ≡ 0 mod 2n, (pc − 1) ≡ 0 mod 2n,

implying that n divides pa− 1 and pc− 1 and now y = x maps onto y = xpt
win,

implying that i = 1. Thus, pa+t = pc. Then we would require that pa+t − pa

would be divisible by 2n, so that 2n must divide pt − 1. And, we must have

(pt − 1) ≡ n(q − 1) mod 2n,

which is equivalent to the previous statement. So, the spread is represented ex-
actly as before with the additional requirement that g : (x, y) 7−→ (xpa

, ypa+t
wn)

is a collineation. Note that g2 maps y = xpt
wn onto y = xp2t

wn(pa+1) so that
(y = xp2t

) = (y = xqj
w(qj−1)/(q−1)α), hence, we require that p2t = qj and 2n

divides (qj − 1)/(q − 1). Since q ≡ −1 mod 4, if j is odd then n divides j and if
j is even then [n]2′ = n/2 divides j.

So, in any case, n divides j, so we may assume that p2t = qn, so that pt = 1
or qn/2. Now (qn/2−1)/(q−1) is odd and (q−1)/2 is odd. Hence, (qn/2−1)2 = 2.



Triangle transitive 49

But, we require that 2n divides pt−1 = qn/2−1, so that 4 must divide qn/2−1,
a contradiction. Therefore, it can only be that pt = qn = 1. Hence, the spread
is

{x = 0, y = 0, {y = x, y = xwn}Hy } .

However, by Lemma 14, the plane is a nearfield plane. This completes the proof
of the lemma. QED

Hence, we have the following general result:

28 Theorem. Let π be a non-Desarguesian affine plane of order pw that
admits two affine homology groups Hx and Hy of order (pw − 1)/2 with axis
(respectively, co-axis) x = 0 and co-axis (respectively, axis) y = 0.

Then there is an autotopism group that is triangle transitive if and only if
either

(1) the plane is a Dickson nearfield plane,

(2) pw = 72 or 232 and the plane is an irregular nearfield plane,

(3) pw = qn and the plane is a generalized André plane of order qn, where

q ≡ 3 mod 8, n ≡ 0 mod 4, n/4 is odd.

Furthermore, the spread may be represented as follows:

{
x = 0, y = 0, {y = x, y = wn/2}Hy

}
.

Proof. From the classification theorem of the introduction, Theorem 5, it
remains to consider the exceptional Lüneburg plane of order 72. In this case,
there is a collineation group SL(2, 3)× SL(2, 3), where the SL(2, 3) groups are
homology groups. However, in this case, Lüneburg [19] has shown that the full
translation complement has rank 5. The five point orbits of G0, are the sets
of points on x = 0, on y = 0, { 0 } and the points on lines of any SL(2, 3)-
component orbit of length 24. Hence, the plane cannot be triangle transitive.

QED

5 Large triangle transitive groups

29 Remark. The triangle transitive planes that we have constructed are
generalized André planes of order qn that have autotopism groups of order
(qn − 1)2/2.

The question is how large an autotopism group must be in order to ensure
that the plane is a generalized André plane?
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30 Theorem. Let π be a triangle transitive translation plane of order pr.

(1) If π is non-solvable (admits a non-solvable) then π is the irregular
nearfield plane of order 112, 292 or 592 with non-solvable group.

(2) If π is the Hall plane of order 9, then π is a triangle transitive translation
plane.

If π is solvable assume that q2 is not in
{

52, 72, 112, 232, 34
}
.

(1) If pr− 1 admits a p-primitive divisor u and if π admits a group of order
divisible by (pr − 1)22′ then π is a generalized André plane.

(2) If pr − 1 does not admit a p-primitive divisor and r = 2, assume that
the order of the group is divisible by (p2 − 1)2/2.

Then π is a generalized André plane.

Proof. This proof is a modification of ideas in the proof of Kallaher and
Ostrom [20, Theorem (2.2)] and Hiramine and Johnson [12, Theorem (3.1)]. Let
G be a non-solvable triangle transitive autotopism group. By Johnson [15], the
plane is an irregular nearfield plane with non-solvable group of order 112, 292 or
592.

Thus, the groupG is non-solvable and induces a solvable group on each affine
axis. Except for the special orders of Huppert [13]—p2 = 32, 52, 72, 112, 232 and
34—we have that G on each affine axis is a subgroup of ΓL(1, pr). If we have a
prime p-primitive divisor u, let ua be the highest u-power dividing pr−1, then we
obtain an Abelian group of order u2a, which is the direct product of homology
groups of order ua. It follows exactly as in Kallaher and Ostrom [20, Theorem
(2.2)], there exist homology groups Hx and Hy of orders ua. We claim that each
homology group Hx or Hy of order ua is normal in G. Since Hx acts on its
co-axis y = 0, as a subgroup of GL(1, pr), Hx is characteristic in the restriction
of G to y = 0. Hence, Hx is normal in G/G[y=0], where G[y=0] is the group fixing
y = 0 pointwise. If h is in Hx and g in G then g−1hg is in HxG[y=0], but g−1hg
is an affine homology with axis x = 0 so g−1hg is in Hx, if it is in HxG[y=0].

Therefore Hx and Hy are normal in G so that Hx × Hy is Abelian and
normal in G. It now follows exactly as in the proof of Hiramine and Johnson [12,
Theorem (3.1)] that π is a generalized André plane.

However, if π is non-Desarguesian and non-Hall then the automorphism
group of a generalized André plane is solvable.

Hence, G is solvable to begin with and our above analysis still applies to
show that the plane is a generalized André plane.

Let G2 = 22(a+1)+b−1.

If pr − 1 does not admit a p-primitive divisor, let r = 2 and p+ 1 = 2a. We
still have by Ganley, Jha, Johnson [9], that we may assume that G induces a
solvable group on each affine axis. Hence, G induced on x = 0 is a subgroup of
T (pr).
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Let S2 be Sylow 2-subgroup of order 22a+1+b. Since the group induced on
any side x = 0 is a subgroup of ΓL(1, p2), and ΓL(1, p2)2 = 22+a, we must
have a homology group Hy of order divisible by 2a−1+b with axis x = 0. Fur-
thermore, we have a characteristic normal subgroup H−

y of order divisible by

2a−2+b. Hence, arguing as above, we have an Abelian normal subgroupH−
x ×H−

y

of order by 22(a−2+b). Now the stabilizer of a component ℓ distinct from x = 0
and y = 0 has Sylow 2-subgroups of order 2a+b and let Sℓ denote any such
subgroup. Consider SℓH

−
x ×H−

y of order 2a+b+2(a−2+b)/I, where I denotes the
order of the intersection. Thus,

2a+b+2(a−2+b)/I ≤ 22a+1+b,

implying that
I ≥ 2a+2b−5.

We wish to show that (H−
x ×H−

y )ℓ acts irreducibly. So, assume that there
is a proper subspace W left invariant by the group. Since ℓ is a 2-dimensional
GF (p)-subspace, W is a 1-dimensional GF (p)-subspace. Since (p − 1)2 = 2,
it follows that we have a subgroup R of order at least 2a+2b−6 that fixes W
pointwise. Let M be a Maschke complement of W fixed by R. Then, there is
a subgroup R− of R of order at least 2a+2b−7 that fixes M pointwise, implying
that R− fixes ℓ pointwise. But, R− fixes x = 0 and y = 0 so R− = 〈1〉. Hence,

a+ 2b− 7 ≤ 1.

In particular, a ≤ 8. So, p+ 1 = 2a ≤ 28.
a = 2, p = 3, is Hall or Desarguesian. a = 3 then p = 7, excluded. a = 4,

p = 15, a contradiction. a = 5, p = 31. a = 6, p = 63, a contradiction.
a = 7, p = 127. a = 8, p = 255, a contradiction. Thus, p = 31 or 127 are
on the only possibilities. QED

6 Final remarks

With the exception of a few possible exceptional orders, we have shown that
if a triangle transitive autotopism group is large enough then the corresponding
translation plane is generalized André. We have considered those translation
planes of order qn and kernel containing GF (q) that admit symmetric affine
homology groups of order (qn− 1)/2 and have completely classified the possible
triangle transitive planes.

There is a related study of translation planes of order qn that admit sym-
metric affine homology groups of order (qn−1)/3 by Draayer [6] and, except for
a few sporadic orders, the planes must be generalized André planes. Since each
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homology group of order (qn − 1)/3 must permute the three orbits of the other
homology group, it is possible that there are triangle transitive planes among
the class of generalized André planes with such homology groups or perhaps
merely ‘large’ homology groups.

We therefore close with the following problem:

31 Problem. Determine the triangle transitive generalized André planes
that admit ‘large’ symmetric homology groups.
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