A nuclear Fréchet space of C^∞-functions which has no basis

Dietmar Vogt
Department of Mathematics, University of Wuppertal
dvogt@math.uni-wuppertal.de

Abstract. An easy example is presented of a nuclear Fréchet space which consists of C^∞-functions and has no basis.

Keywords: nuclear Fréchet space, basis

MSC 2000 classification: primary 46A04, secondary 46E10

Dedicated to the memory of Klaus Floret

The aim of this paper is to present an easy example of a nuclear Fréchet space without basis, consisting of C^∞-functions. Of course, there are several examples of nuclear Fréchet spaces without basis. The first one is due to Mitjagin and Zobin [3] (see also [4,5]). Then there is a simpler one of Djakov and Mitjagin [1]. The present note owes much to the example of Moscatelli [6,7]. It is based on essentially the same idea.

Here is our example: Set

$$M = \{ (x,y) \in \mathbb{R}^2 : x \geq 0, |\sin y| \leq 2 e^{-\frac{1}{x}} \}$$

and

$$E = \{ f \in C^\infty(\mathbb{R}^2) : f|_M \in \mathcal{S}(M) \}$$

with the seminorms

$$\|f\|_k = \sup_{|x| \leq k} |f^{(\alpha)}(x)| + \sup_{x \in M} (1 + |x|)^k |f^{(\alpha)}(x)|,$$

Here $\mathcal{S}(M)$ denotes the space of all C^∞-functions on M which are rapidly decreasing for $|x| \to \infty$ with all their derivatives and we set $\exp(-1/0) = 0$.

1 Theorem. E is a nuclear Fréchet space without basis.

The plan of the paper is the following: first we write down a necessary condition for the existence of a basis in a nuclear Fréchet space, then we use it to prove Theorem 1. Finally we give some theoretical background. It would also be easy to develop a scheme how to construct many such examples.

In the following seminorm always means a continuous seminorm.
2 Definition. \(E \) has property \((\text{SpA})\) if for every seminorm \(p \) there is a seminorm \(q \geq p \) and \(S_0 \in L(E) \) so that \(\ker q \subset \ker S_0 \) and \(x - S_0 x \in \ker p \) for all \(x \in E \).

3 Remark. \(S_0 \) with the described properties corresponds to

\[S \in L(E/\ker q, E) \]

so that the following diagram commutes

\[
\begin{array}{ccc}
S & \rightarrow & E \\
\downarrow & & \downarrow \ \ q_1 \\
E/\ker q & \rightarrow & E/\ker p \\
\uparrow & & \uparrow \ \ q_2 \\
& & \\
\end{array}
\]

where \(q_1 \) and \(q_2 \) are the canonical quotient maps.

We have the following easy lemma:

4 Lemma.

(1) If \(E = \Pi_k E_k \) and every \(E_k \) has a continuous norm, then \(E \) has property \((\text{SpA})\).

(2) Property \((\text{SpA})\) is inherited by complemented subspaces.

(3) Every complemented subspace of a Köthe space has property \((\text{SpA})\).

Proof. (1) and (2) are immediate. (3) follows since every Köthe space fulfills the assumption of (1).

5 Proposition. Every nuclear Fréchet space with basis has property \((\text{SpA})\) and also each of its complemented subspaces.

Proof. This follows from Lemma 4 (3) and the Dynin-Mityagin theorem (see [2, 28.12]).

6 Lemma. The space of our example does not have \((\text{SpA})\).

Proof. Assume that for \(\| \|_0 \) we find \(\| \|_k \) and \(S_0 \in L(E) \) so that \(S_0|_{\ker} \|_k = 0 \) and \(S_0 f - f\|_0 = 0 \), i.e. \(S_0 f|_M = f \).

We set \(D = \{ (x, y) : x^2 + (y - k\pi)^2 \leq 1 \} \) and \(A = \{ (x, y) : \frac{1}{2} \leq x^2 + (y - k\pi)^2 \leq 1 \} \). Then we put \(K = D \cap M \), \(K_0 = A \cap M \). Due to [9, VI, 3.1, Theorem 5] (or e.g. [10, Satz 4.6]) there is a continuous linear extension operator \(\mathcal{E}(K_0) \rightarrow C^\infty(\mathbb{R}^2) \) and, in consequence, a continuous linear extension operator \(L_0 : \mathcal{E}(K) \rightarrow \mathcal{E}(M) \).
We choose \(\varphi \in \mathcal{D}(\mathbb{R}^2) \), so that \(\varphi \equiv 1 \) in a neighborhood of \(K \) and \(\text{supp} \varphi \cap \{(x, y) : x^2 + y^2 \leq k^2\} = \emptyset \). For \(f \in \mathcal{E}(K) \) we choose any extension \(F \) of \(L_0f \) to \(C^\infty(\mathbb{R}^2) \). We set \(Lf := S_0(\varphi F) \).

\(L \) is well defined: if \(F_1 \) and \(F_2 \) are extensions then \(\varphi F_1 - \varphi F_2 \in \ker \|\|_k \).

Moreover \(Lf = \varphi(L_0f) \) on \(M \), hence \(Lf = f \) on \(K \).

So we have an extension operator \(L : \mathcal{E}(K) \rightarrow C^\infty(\mathbb{R}^2) \). Since \(K \) is locally diffeomorphic at the point \((0, k\pi)\) to \(\{(x, y) : |y| \leq e^{-\frac{1}{x}}, 0 \leq x \leq \varepsilon\} \) the map \(L \) cannot exist by Tidten [10, Beispiel 2].

Since obviously \(E \) is a nuclear Fréchet space Theorem 1 is proved.

QED

We continue with a few comments on property (SpA). First we exhibit its theoretical relevance.

7 Theorem. A Fréchet space \(E \) has property (SpA) if and only if it is isomorphic to a complemented subspace of a countable product of Fréchet spaces with continuous norm.

Proof. One direction of the proof is given by Lemma 4. For the other we may assume that \(E \) has no continuous norm. We choose a fundamental system of seminorms \(\|\|_1 \leq \|\|_2 \leq \cdots \) for \(E \) and set \(E_k = E/\ker \|\|_k \) with the quotient topology. We consider the exact sequence

\[
0 \rightarrow E \xrightarrow{j} \prod_k E_k \xrightarrow{\sigma} \prod_k E_k \rightarrow 0
\]

where \(jx = (j^k x)_k \), \(\sigma x = (j^k_{k+1} x_{k+1} - x_k)_k \) and \(j^k, j^k_{k+1} \) are the natural quotient maps.

Since \(E \) has property (SpA) we may assume the fundamental system of seminorms chosen so that for every \(k = 2, 3, \ldots \) there is a map \(S_k \in L(E_k, E) \) with \(j^{k-1} \circ S_k = j^k_{k-1} \). We set

\[
Rx := \left(\sum_{\nu=2}^k j^k S_\nu x_\nu - x_k \right)_{k \in \mathbb{N}}.
\]

It is easily verified that \(R \) is a continuous linear right inverse for \(\sigma \). Therefore \(E \) is isomorphic to a complemented subspace of \(\prod_k E_k \).

In Moscatelli [6] there is mentioned the problem of Dubinsky, whether every Fréchet space is isomorphic to a product of Fréchet spaces having a continuous norm. This, of course, is solved in the negative in [6]. However a slightly more sophisticated version of the problem remains interesting. To formulate it we begin with a remark.

8 Remark. \(E \) has property (SpA) if for every seminorm \(p \) there is a seminorm \(q \geq p \) and \(T \in L(E) \) so that \(T|_{\ker q} = \text{id} \), \(R(T) \subset \ker p \).
Proof. The proof is given by setting $T = \text{id} - S_0$ and vice versa. \(\square\)

In view of this remark we could describe a Fréchet space with property (SpA) as a Fréchet space admitting a fundamental system of seminorms with “almost complemented” kernels. A Fréchet space admits a fundamental system of seminorms with complemented kernels if and only if it is isomorphic to the product of Fréchet spaces having a continuous norm. Köthe spaces have this property. We call it property (CSK).

9 Problem. It is not known to the author whether every nuclear Fréchet space with property (SpA) has property (CSK), nor even whether every complemented subspace of a nuclear Köthe space has it. A counterexample to the latter would solve in the negative the problem of Pełczyński [8], whether every complemented subspace of a nuclear Köthe space has a basis.

References