Note di Matematica 25, n. 2, 2005/2006, 105–112.

A new class of Gleason parts homeomorphic to the unit disk

Raymond Mortini

Département de Mathématiques, Université de Metz, Ile du Saulcy, F-57045 Metz mortini@math.univ-metz.fr

Abstract. We show that the Gleason part of every cluster point of an interpolating sequence of type 1 in the set of nontrivial points in the spectrum of H^{∞} is homeomorphic to the unit disk.

Keywords: bounded analytic functions, interpolating sequences in the spectrum of H^{∞} , homeomorphic Gleason parts

MSC 2000 classification: primary 46J15

To the memory of Professor Klaus Floret

1 Introduction

Let A be a uniform algebra. Its spectrum, denoted by M(A), is the set of all (nonzero) multiplicative linear functionals endowed with the weak-*-topology. M(A) is a compact Hausdorff space. The algebras we are dealing with will be the algebra L^{∞} of (equivalence classes) of essentially bounded, Lebesgue measurable functions on the unit circle $\mathbb{T} = \partial \mathbb{D}$ and the Banach algebra H^{∞} of all bounded analytic functions in the open unit disk \mathbb{D} . By the famous Corona-Theorem of Carleson, \mathbb{D} can be considered as a dense subset of $M(H^{\infty})$.

We refer the reader to the books of Browder [1] or Gamelin [4] for a detailed exposition of the theory of uniform algebras and to the books of Garnett [5] and Hoffman [9] for information about the algebras H^{∞} and L^{∞} . In the sequel, we shall always identify $f \in H^{\infty}$ with its Gelfand transform \hat{f} defined on $M(H^{\infty})$ by $\hat{f}(m) = m(f)$.

In this paper we are concerned with the structure of the Gleason parts in $M(H^{\infty})$. Recall that the Gleason part, P(m), associated with a point $m \in M(H^{\infty})$, is defined as follows:

$$P(m) = \{ x \in M(H^{\infty}) : \rho(x,m) < 1 \},\$$

where

$$\rho(x,m) = \sup\{ |f(x)| : f \in H^{\infty}, ||f||_{\infty} \le 1, f(m) = 0 \}$$

is the pseudohyperbolic distance on $M(H^{\infty})$. We note that Schwarz's Lemma implies that

$$\rho(x,m) = \sup\{ \rho_{\mathbb{D}}(f(x), f(m)) : f \in H^{\infty}, ||f||_{\infty} < 1 \},\$$

where $\rho_{\mathbb{D}}(z, w) = \left|\frac{z-w}{1-\overline{z}w}\right|$ is the usual pseudohyperbolic distance on the unit disk \mathbb{D} . Moreover, " $m \sim x$ if and only if $\rho(m, x) < 1$ " defines an equivalence relation on $M(H^{\infty})$. Hence the Gleason parts are exactly the equivalence classes of this relation.

K. Hoffman [10] showed that, within $M(H^{\infty})$, the Gleason parts are either singletons or maximal analytic disks. Moreover, there exists a continuous map L_m of \mathbb{D} onto the part P(m) such that $f \circ L_m$ is analytic for every $f \in H^{\infty}$ and $L_m(0) = m$. This Hoffman map L_m is given by $L_m(z) = \lim \frac{z+z_{\alpha}}{1+\overline{z}_{\alpha}z}$, where (z_{α}) is any net in \mathbb{D} converging to m, and where the limit is taken in the topology of $M(H^{\infty})^{\mathbb{D}}$. The set of all points $m \in M(H^{\infty})$ for which P(m) is nontrivial, that is for which P(m) is not a singleton, is denoted by G. Of course, \mathbb{D} is a nontrivial Gleason part. Hoffman showed that $m \in G$ if and only if m lies in the closure of an interpolating sequence in \mathbb{D} , that is a sequence (a_n) satisfying

$$\inf_{k} \prod_{j: j \neq k} \left| \frac{a_j - a_k}{1 - \overline{a}_j a_k} \right| \ge \delta > 0.$$

If $m \in G$, then the Hoffman map L_m is a bijection of \mathbb{D} onto P(m). However, L_m is, in general, not a homeomorphism. In [8] and [12] several characterizations of those parts P(m) were given for which P(m) is homeomorphic to \mathbb{D} . Note that P(m) is homeomorphic to \mathbb{D} if and only if L_m is a homeomorphism. This holds because continuous bijective mappings of \mathbb{D} onto itself are automatically homeomorphisms. But there were only very few examples. The classical one of Hoffman states that if m lies in the closure of a thin interpolating sequence, that is a sequence (a_n) satisfying

$$\lim_{k \to \infty} \prod_{j: j \neq k} \left| \frac{a_j - a_k}{1 - \overline{a}_j a_k} \right| = 1,$$

then P(m) is homeomorphic to \mathbb{D} . In [7], it is shown that every cluster point x of a sequence (x_n) of nontrivial points lying in different fibers of the spectrum of H^{∞} has the property that it belongs to a homeomorphic part. In this paper we shall now present a much bigger class of sequences in $M(H^{\infty})$ whose cluster points enjoy that property.

Homeomorphic Gleason parts

1 Definition.

- (i) A sequence $(x_n) \in M(H^{\infty})^{\mathbb{N}}$ is said to be interpolating for H^{∞} if for every bounded sequence $(w_n) \in \mathbb{C}^{\mathbb{N}}$ there exists a function $f \in H^{\infty}$ such that $f(x_n) = w_n$ for all n.
- (ii) The interpolating sequence (x_n) is said to be of type 1 if the norm of f can be chosen to be 1 whenever (w_n) is in the unit ball of ℓ^{∞} .

Interpolating sequences of type 1 were characterized in [6] (see section 1). Due to the maximum principle, they are necessarily contained in the Corona $M(H^{\infty}) \setminus \mathbb{D}$ of H^{∞} . Sequences whose elements lie in different fibers, are examples (see [6]). Our result of the present paper will be that the Gleason part of every cluster point of an interpolating sequence of type 1 in G is an analytic disk which is homeomorphic to \mathbb{D} .

2 Prerequisites

For the reader's convenience, we recall here some facts and fix our notation. As usual, we shall identify the Shilov boundary of H^{∞} with $M(L^{\infty})$. Let $m \in M(H^{\infty})$. A probability measure μ_m defined on the Borel sets of the Shilov boundary of H^{∞} is called a representing measure for m if

$$m(f) = \int_{M(L^{\infty})} f d\mu_m \text{ for every } f \in H^{\infty}.$$

It is well known (see [9, p. 182]) that every $m \in M(H^{\infty})$ admits a unique representing measure μ_m . The smallest compact subset of $M(L^{\infty})$ with μ_m measure 1 is called the support set of μ_m , or simply m, and will be denoted by supp m. We note that $\operatorname{supp} \Phi_{z_0} = M(L^{\infty})$ for all $z_0 \in \mathbb{D}$, where $\Phi_{z_0} : f \mapsto f(z_0)$ is the evaluation functional at $z_0 \in \mathbb{D}$. All other support sets S are very thin, in the sense that there exists $\lambda \in \mathbb{T}$ such that $S \subseteq M(L^{\infty}) \cap M_{\lambda}$, where M_{λ} is the fiber

$$M_{\lambda} = \{ m \in M(H^{\infty}) : \mathrm{id}(m) = \lambda \}.$$

(Here id denotes the coordinate function id(z) = z.)

The following is a well known result from the theory of uniform algebras. We refer the reader to the books of Gamelin [4] and Leibowitz [11]. For part (b) and (c), see also [3].

2 Lemma. Let $x \in M(H^{\infty})$. Then

(a)
$$L_x(\mathbb{D}) = P(x) \subseteq M(H^{\infty}|_{\operatorname{supp} x}) = \{ m \in M(H^{\infty}) : \operatorname{supp} m \subseteq \operatorname{supp} x \}$$

- (b) If $||f||_{\infty} = 1$ and |f(x)| = 1, then f is constant on $M(H^{\infty}|_{\operatorname{supp} x})$. In particular $f \equiv f(x) = e^{i\sigma}$ on P(x).
- (c) If u is an inner function invertible in $H^{\infty}|_{\operatorname{supp} x}$, then $u \equiv e^{i\sigma}$ on $M(H^{\infty}|_{\operatorname{supp} x})$.

Recall that the zero set Z(f) of $f \in H^{\infty}$ is the set of all $x \in M(H^{\infty})$ for which f(x) = 0.

A Blaschke product with zero sequence (a_n) in the open unit disk \mathbb{D} is a function of the form

$$B(z) = e^{i\theta} z^N \prod_{n=1}^{\infty} \frac{\overline{a}_n}{|a_n|} \frac{a_n - z}{1 - \overline{a}_n z},$$

where (a_n) satisfy $\sum_n (1 - |a_n|) < \infty$. This infinite product converges unconditionally and locally uniformly in \mathbb{D} .

The function B is called *normalized*, if B(0) > 0.

A Blaschke product B for which the zero sequence is an interpolating sequence is called an interpolating Blaschke product with *uniform separation con*stant $\delta(B)$ defined by

$$\delta(B) := \inf_{k \in \mathbb{N}} \prod_{j: j \neq k} \left| \frac{a_j - a_k}{1 - \overline{a}_j a_k} \right|.$$

We note that

$$\delta(B) = \inf_{n} (1 - |a_n|^2) |B'(a_n)|.$$

3 Lemma (Hoffman's Lemma. See [10], p. 86, 106 and [5] p. 404, 310). Let $\varepsilon, \eta, \delta$ be numbers satisfying $0 < \varepsilon < \eta < \delta < 1$, $\frac{2\eta}{1+\eta^2} < \delta$ and $0 < \varepsilon < \eta \frac{\delta-\eta}{1-\delta\eta}$. Suppose that B is an interpolating Blaschke product with zeros $\{z_n : n \in \mathbb{N}\}$ such that

$$\delta(B) = \inf_{n \in \mathbb{N}} (1 - |z_n|^2) |B'(z_n)| \ge \delta.$$

Then

- (1) Z(B) is the closure of the zero set of B in \mathbb{D} ,
- (2) $\rho(x,y) \ge \delta$ for any $x, y \in Z(B), x \neq y$, and
- $\begin{array}{l} (3) \ \{ m \in M(H^{\infty}) : |B(m)| < \varepsilon \} \subseteq \{ m \in M(H^{\infty}) : \rho(m, Z(B)) < \eta \} \subseteq \\ \{ m \in M(H^{\infty}) : |B(m)| < \eta \}. \end{array}$

4 Lemma. Let E be a closed subset in $M(H^{\infty})$ and suppose that $x \in G \setminus E$. Then for every $\sigma \in]0,1[$, there exists an interpolating Blaschke product B such that B(x) = 0 and $|B| \ge \sigma \rho^2(x, E)$ on E. Homeomorphic Gleason parts

PROOF. Let $\eta = \sqrt{\sigma}\rho(x, E)$. Since the pseudohyperbolic distance $\rho(\cdot, E)$ is lower semi-continuous ([10, p. 103]), there exists a neighborhood U of x in $M(H^{\infty})$ such that $\rho(U, E) > \eta$. Choose $\delta \in [0, 1[$ such that $\frac{2\eta}{1+\eta^2} < \delta$. By Hoffman ([10, p. 90]) there exists an interpolating Blaschke product B with $\delta(B) > \delta$, $Z(B) \subseteq U$ and B(x) = 0. In particular $\rho(Z(B), E) > \eta$. Hence, by Lemma 3, $|B| > \eta(\delta - \eta)/(1 - \eta\delta) > \eta^2$ on E.

5 Lemma. Let λ and β be complex numbers of modulus 1. Then, for every r with 0 < r < 1 there exists a normalized Blaschke factor $L_a(z) = \frac{|a|}{a} \frac{a-z}{1-\overline{a}z}$ such that |a| = r and $L_a(\lambda) = \beta$.

PROOF. Let r be chosen with 0 < r < 1, and let $a = re^{i\theta}$. Then we have to solve $\frac{r}{re^{i\theta}} \frac{re^{i\theta} - \lambda}{1 - re^{-i\theta}\lambda} = \beta$ for $e^{i\theta}$. Our equation is equivalent to $L_r(\lambda e^{-i\theta}) = \beta$. Since L_r is its own inverse, we let $e^{i\theta} = \lambda L_r(\overline{\beta})$ to obtain our solution.

3 Homeomorphic Gleason parts

The following two facts will be the major tools for the proof of our main result. The first deals with a description of the interpolating sequences of type 1.

6 Theorem ([6]). A sequence (x_n) in $M(H^{\infty})$ is an interpolating sequence of type 1 for H^{∞} if and only if

$$M(H^{\infty}|_{\operatorname{supp} x_n}) \cap \overline{\bigcup_{j \neq n} M(H^{\infty}|_{\operatorname{supp} x_j})} = \emptyset$$

The second fact, proved in [8], characterizes the class of homeomorphic Gleason parts.

7 Theorem ([8]). Let $m \in M(H^{\infty}) \setminus \mathbb{D}$. Then the following assertions are equivalent:

- (a) P(m) is homeomorphic to \mathbb{D} ;
- (b) There exists an interpolating Blaschke product B with $Z(B) \cap P(m) = \{m\}$.
- (c) There exists a function $f \in H^{\infty}$ with $Z(f) \cap P(m) = \{m\}$.

Actually only the equivalence of (a) and (b) are explicitly in [8]. But using Hoffman's [10] theory it easily follows that if $Z(f) \cap P(m) = \{m\}$, then the order of the zero of $f \circ L_m$ is finite, and so f must have a Blaschke factor bwhich is interpolating and satisfies b(m) = 0 (see [10, p. 100]). So (c) implies (b). That (b) implies (c), is trivial.

We are now ready to prove our main Theorem.

8 Theorem. Let $\{x_n : n \in \mathbb{N}\}, x_n \in G$, be an interpolating sequence of type 1. Then the Gleason part of every cluster point of that sequence is homeomorphic to \mathbb{D}

PROOF. Let x be a cluster point of $\{x_n : n \in \mathbb{N}\}$. In order to show that P(x) is homeomorphic to \mathbb{D} , we apply Theorem 7 and show that there exists a function $f \in H^{\infty}$ such that $Z(f) \cap P(x) = \{x\}$.

Let $0 < \varepsilon_n < 1$ be so that $\prod_n \varepsilon_n$ converges. Using Theorem 6 we may choose neighborhoods U_n of $M(H^{\infty}|_{supp x_n})$ in $M(H^{\infty})$ so that

$$\overline{U}_n \bigcap \overline{\bigcup_{j \neq n} U_j} = \emptyset.$$

Fix *n*. Since $\rho\left(x_n, \overline{\bigcup_{j\neq n} U_j}\right) = 1$ and $x_n \in G$, there is, by Lemma 4, a normalized interpolating Blaschke product b_n with $b_n(x_n) = 0$ and $|b_n| > \varepsilon_n$ on $\overline{\bigcup_{j\neq n} U_j}$. We may assume that

$$\sum_{j=1}^{\infty} (1 - |a_{j,n}|) \le 2^{-n},\tag{1}$$

where $(a_{j,n})_j$ is the zero sequence of b_n in \mathbb{D} (otherwise delete a finite number of zeros of each b_n).

By ([10, p. 91]), there is a sequence of unimodular constants and normalized factors $b_j^{(n)}$ of b_n such that $b_j^{(n)}(x_n) = 0$ and such that $e^{i\theta_{n,j}}b_j^{(n)} \circ L_{x_n}$ converges, with j to infinity, locally uniformly on \mathbb{D} to the identity function id. Hence there exists a normalized interpolating Blaschke product B_n dividing b_n such that $B_n(x_n) = 0$ and

$$\sup\left\{ \left| (e^{i\theta_n} B_n \circ L_{x_n})(z) - z \right| : |z| < 1 - \frac{1}{n} \right\} \le \frac{1}{n}.$$
 (2)

By Lemma 5 we can get rid of the constants $e^{i\theta_n}$ by replacing them with factors of the form $L_n(z) = \frac{|a_n|}{a_n} \frac{a_n - z}{1 - \overline{a_n} z}$, where the a_n are chosen so that $\sum_n (1 - |a_n|) < \infty$ and $L_n(\lambda_n) = e^{i\theta_n}$. Here $\lambda_n \in \mathbb{T}$ is that number for which $x_n \in M_{\lambda_n}$. In particular $L_n \circ L_{x_n} \equiv e^{i\theta_n}$.

Thus we obtain normalized Blaschke products $B_n^* = L_n B_n$ satisfying

$$\sup\left\{ \left| (B_n^* \circ L_{x_n})(z) - z \right| : |z| < 1 - \frac{1}{n} \right\} \le \frac{1}{n}.$$
 (3)

(1) and the choice of (a_n) imply that the collection of all zeros $\{a_{j,n} : j, n \in \mathbb{N}\} \cup \{a_n : n \in \mathbb{N}\}$ is a Blaschke sequence. Since B_n and L_n are normalized,

110

the unconditional convergence of Blaschke products implies that the infinite product $B = \prod_n B_n^*$ converges locally uniformly in \mathbb{D} to a Blaschke product B.

Next we note that $|L_n| = 1$ on $M(H^{\infty}) \setminus \mathbb{D}$ and that $|B_n| \ge |b_n|$. Since for $j \ne n$ we have $|B_j^*| > \varepsilon_j$ on $\bigcup_{k \ne j} U_k \supset U_n$, we therefore get for every $z \in \mathbb{D} \cap U_n$ that

$$\prod_{j \neq n} |B_j^*(z)| \ge \prod_{j \neq n} \varepsilon_j =: \varepsilon > 0.$$
(4)

Note that by the Corona-theorem $\overline{U}_n = \overline{U_n \cap \mathbb{D}}$. Hence, by (4)

$$\left|\prod_{j\neq n} B_j^*\right| \ge \varepsilon \text{ on } U_n$$

Since $M(H^{\infty}|_{\operatorname{supp} x_n}) \subseteq U_n$, we get that $\prod_{j \neq n} B_j^*$ is invertible in the restriction algebra $H^{\infty}|_{\operatorname{supp} x_n}$. Therefore, by Lemma 2, $\prod_{j \neq n} B_j^*$ is constant $e^{i\sigma_n}$ on $M(H^{\infty}|_{\operatorname{supp} x_n})$ for some $\sigma_n \in \mathbb{R}$.

Thus $B = e^{i\sigma_n} B_n^*$ on $M(H^{\infty}|_{\operatorname{supp} x_n})$. Since we cannot control the factors $e^{i\sigma_n}$, we have to get rid of them. Since $\{x_n : n \in \mathbb{N}\}$ is an interpolating sequence of type 1, there exists a norm one function $h \in H^{\infty}$ such that $h(x_n) = e^{-i\sigma_n}$ for every n. Hence f := hB is a norm one function with

$$f \circ L_{x_n} = B_n^* \circ L_{x_n}$$

By (3) we get that $f \circ L_{x_n}$ converges locally uniformly in \mathbb{D} to the identity function.

Let x be cluster point x of $\{x_n : n \in \mathbb{N}\}$. Suppose $x_{n(\alpha)} \to x$. Then, by ([10, p. 92]) or $[2], L_{x_{n(\alpha)}} \to L_x$ in the topology of $M(H^{\infty})^{\mathbb{D}}$. In particular we see that $(f \circ L_{x_{n(\alpha)}})(z) \to (f \circ L_x)(z)$ for every $z \in \mathbb{D}$. Thus $(f \circ L_x)(z) = z$ from which we conclude that $Z(f) \cap P(x) = \{x\}$. Thus, by Theorem 7, P(x) is homeomorphic to \mathbb{D} .

If we merely assume that (x_n) is an interpolating sequence, then the assertion of the theorem is no longer true: indeed, any point $m \in G$ lies in the closure of an interpolating sequence in \mathbb{D} . On the other hand, the assumption of being an interpolating sequence of type one, is not necessary, either. Any thin interpolating sequence in \mathbb{D} fulfills the conclusion of the Theorem, but is not of type 1. Since the thin sequences are exactly the asymptotic interpolating sequences of type one in \mathbb{D} , (see [6]), we ask the following question:

Let (x_n) be an asymptotic interpolating sequence of type one, for short (asi1), in $M(H^{\infty})$. Is the Gleason part of every cluster point of (x_n) homeomorphic to \mathbb{D} whenever $x_n \in G$ for all n? Recall that (x_n) is an (asi1), if for every

 (w_n) in the unit ball of ℓ^{∞} there exists a function $f \in H^{\infty}$ with norm less than or equal to one such that $|f(x_n) - w_n| \to 0$.

References

- A. BROWDER: Introduction to function algebras, W.A. Benjamin Inc., New York, Amsterdam, 1969.
- [2] P. BUDDE: Support sets and Gleason parts, Michigan Math. J., 37, (1990), 367–383.
- [3] K. CLANCEY, J. GOSSELIN: On the local theory of Toeplitz operators, Illinois J. Math., 22, (1978), 449–458.
- [4] T. GAMELIN: Uniform Algebras, 2nd ed., Chelsea, New York, 1984.
- [5] J. GARNETT: Bounded Analytic Functions, Academic Press, New York 1981.
- [6] P. GORKIN, R. MORTINI: Asymptotic interpolating sequences in uniform algebras, J. London Math. Soc., 67, (2003), 481–498.
- [7] P. GORKIN, K. IZUCHI, R. MORTINI: Sequences separating fibers in the spectrum of H[∞], Topology Applic., **129**, (2003), 221–238.
- [8] P. GORKIN, H.-M. LINGENBERG, R. MORTINI: Homeomorphic disks in the spectrum of H[∞], Indiana Univ. Math. J., **39**, (1990), 961–983.
- [9] K. HOFFMAN: Banach Spaces of Analytic Functions, Dover Publ., New York 1988, reprint of 1962.
- [10] K. HOFFMAN: Bounded analytic functions and Gleason parts, Ann. Math., 86, (1967), 74–111.
- [11] G. LEIBOWITZ: Lectures on Complex Function Algebras, Scott, Foresman & Co., Glenview, Il, 1970.
- [12] D. SUAREZ: Homeomorphic analytic maps into the maximal ideal space of H[∞], Canad. J. Math., 51, (1999), 147–163.