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1 Introduction

Let V be a nonnegative potential in R? which belongs to L? (R%). Then the
quadratic form

a(u,v) = / (Vu-Vo+Vuv)de, u,veH={ueH®RY: VY% e L*RY)}
R4

is closed, symmetric and nonnegative in L?(R%). Therefore a defines a self-
adjoint operator (A, D(A)) in L*(R?%) formally given by A = —A + V, see
e.g. [2, Chapter 8|. Moreover, A can be described by

D(A) ={ue H:3f € L*(RY) s.t. a(u,v):/ fodx Yve H}, Au = f.

Rd

(1)
The test function space C§°(R?) is a core for A since V € L2 (R?), due to [6,
Corollary VII.2.7]. Thus the question arises whether D(A) coincides with the
intersection H2(R?) N D(V), see [5] where this problem seems to be considered
for the first time from the point of view of operator inequalities like 3. Here
HF(R?) is the usual Sobolev space and D(V) = {u € L*(RY) : Vu € L2(R%)}
is the domain of the multiplication operator V : u — Vu. The equality D(A) =
H?(R?) N D(V) holds if V satisfies the oscillation condition

IVV(2)| < aV (2)*? +b (2)
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for x € R? and positive a,b with a? < 2, see [3] and [4] where also potentials
with local singularities are considered. We refer the reader to [1], [10], [11] for
results in LP, 1 < p < oo. Examples show that D(A) can be strictly larger than
H?(R¥) N D(V) if (2) does not hold, see again [3] and [4] for counterexamples
with singular potentials and [10] for smooth potentials. Surprisingly enough the
situation is much better in L'(R?) where the domain of —A 4 V is always the
intersection of the domains of —A and of the potential V', [7].
In this note we prove that D(A) = H?(R?)ND(V) for the potential V (z,y) =
2?y? which, as is easy to see, does not satisfy (2). The same potential was
Studled in detail in [12] where the compactness of the resolvent was proved, (see
also [9] for a characterization of the discreteness of the spectrum for polynomial
potentials). We point out that the equality D(A) = H2(R%) N D(V) holds for
every polynomial potential V', see [13] where methods of harmonic analysis are
used. Our proof for V = 2242 is, on the other hand, elementary and based on
explicit computations with Hermite functions.

1 Notation. The norm of LP(R?) is denoted by |- ||,. H*(R?) is the Sobolev
space of all functions in L?(R?) having weak derivatives in L?(R%) up to the
order k. C5°(R?) is the space of test functions.

2 The result

We begin with the following elementary lemma.

2 Lemma. Let0 <V € L? (R). Assume that there exists a constant C' > 0
such that
Vaullz < Cl = u" + Vul (3)

for every u € C§°(R). Then the potential Vy(x) = A2V (z/)\) satisfies (3) with
the same constant C' for every A > 0.

PROOF. Applying (3) to the function v(z) = u(Ax), we obtain
/ V(2)u(a) 2 de < 02/ |— X2 (\e) + V(@)u(he) P da.
Setting y = Ax, this inequality leads to
L WP s < 62 [ 1= 3" @) + VAP s

which implies the assertion. QED

In order to compute the domain of —A 4 z2y? we have to estimate the
constant C' in (3) for the potential V (z) = z2.
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3 Proposition. The estimate
lz?ullz < C| =" + 2*ul

holds for every u € C§°(R) and a constant C > 0 satisfying C? < 2.

Before proving this proposition, we show how the announced domain char-
acterization follows from Proposition 3 and Lemma 2.

4 Theorem. The domain of —A +xy? in L2(R?) coincides with H*(R?)N
D(V).

PROOF. The representation (1) of A implies that H?(R?)ND(V) is contained
in D(A) and that Au = —Au + 2%y?u for u € H*(R?) N D(V). Since C§°(R?)
is a core for D(A), see [6, Corollary VII.2.7], it suffices to prove that the graph
norm and the canonical norm of H2(R?) N D(V) are equivalent on C§°(R?).
Clearly, [|ull2 + [[Aullz < [|ullg2 + [J2?y*ul]2 for u € C§F°(R?).

Thus it remains to establish the converse inequality. To estimate the H'-
norm of u € C$°(R?), we note that

/RQ(u + Au)udx dy = /Rz(\ulz + |Vul? + 2292 |u)?) dz dy,

Hence, ||ul|z: < c(|jull2 + ||Aul|2) for a suitable ¢ > 0. We next treat the L?-
norms of the functions z?y?u and D*u. We set f = —Au+z?y*u for u € C$°(R?).
Then —ug, + 2%y?u = f + uy,. Fix y € R\ {0}. Proposition 3 and Lemma 2
with A* = y~2 show that

/ a:4y4u(a:,y)2 de < C2/ |f(z,y) + uyy(a:,y)]2 dz,
R R

where C' is the constant from Proposition 3. Integrating this estimate with
respect to y, we obtain

/ syt de dy < Cz/ |f 4 uyy | da dy.
R2 R2

In the same way one deduces that
/ gyt de dy < 02/ |f + Uy |* d dy.
R2 R2

Summing the last two inequalities and using f = —Au + 2%y?u, we conclude

1 1
/ syt de dy < 02/ (f2+ fAu+ —u?, + —uzy) dz dy
R2 R2 2 2

1 1
=C? /2(‘)"2 — |Au? 4 2%y2ulu + Zu?, + 5%2/9) dx dy.
R
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On the other hand, we compute

/R2 |Au|? dz dy = /R2 (u2, + uf/y + 2u§y) dz dy (4)

integrating by parts twice, which leads to
1
/ ctytu? de dy < Cz/ (f? — = |Aul?® + 2%y*ulu) dz dy.
R2 R2 2

Young’s inequality then implies

1
/ syt de dy < 02/ (f? + zz'y*u?) dady,
R2 R2 2
02
2.2 112 2
lesPull < = 171B.

since 1 — C%/2 > 0 by Proposition 3. This estimate and (4) further yield
ID*ul3 < C1[|Aul3 = C1 ll2®y*u — fI13 < C2 || f113.

As aresult, ||ul| g2+ || z%y%ull2 < Cs (||ull2+]||Aul|2) for some constant Cs. QED

In order to prove Proposition 3 we need some elementary properties of the
Hermite functions

V2rnl/m daz™ VSN

for which we refer to [8, §5.6.2]. The Hermite functions are an orthonormal basis
of L(R) and —H! + x?H,, = (2n+ 1)H,,. The functions 1, satisfy the identity
Up+1 = 22, — 20,1 for n € Ny, where ¢y_; = 0. Using this recursion formula,
one easily computes the integrals

Cnm = / 2 H,, (x)H,, (z) d, n,m € Ny,
R

obtaining
P % win—1) (n>2) (5)
P %(2714—1) (6)
Comss = % CEDICES) (1)

chm = 0 if m#nn—-2n+2. (8)
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PROOF OF PROPOSITION 3. Let u € C§°(R) and expand f = —u” + x%u
with respect to the orthonormal basis (Hy), i.e.,

f= Z(faHm>Hm = Z JmHm
m=0 m=0
where the brackets denote the inner product of L?(R) and f,,, = (f, H,,). Then
we obtain
u= Z 2m+ 1) f, Hpy and 2y = Z (2m + 1)  fr2?H,p,.

m=0 m=0

From the identities (5) it follows that

1
<:L'2’LL, Hn> = anfn—2 + §fn + ﬁnfn+2

for n € Ng, where

n(n—1) (n+2)(n+1)
n = ) n = ’ —2=f-1=0.
= 90— 3) b 2(2n + 5) f2 =i
These equalities yield
x2u = 1f + i(anfn—2 + ﬂnfn+2)Hn = 1f +g9. (9)
2 n=0 2
We further estimate
lgl3 =" (anfu—z + Bufus2)?
n=0
= a3 f¢ + a3 ff + 20282 fofs + 20383 f1 f5 + Z(aiH + B2 o) f2
n=2
+2 Z anfn—2 5nfn+2
n=4
< 03 f5 + 03 f1 + 200082 fo f1 + 20385 f1 5 + 2 Z(aiw + B2_5) f2
n=2

using Holder’s and Young’s inequalities. Observe that a2 1ot B, < % for
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n > 2. Hence,

1 V6 \/_

lgll3 < 5./8 + f1 +—f0f4+ f1f5+_2fn

2

1 21\/%2142142\/6142
< | = Yy - e
=lg* 0 {5 " 66 f1+50f2+50f3+ 18 T50 )
14) ., 14X,
+ 66 +% f5+%zf"
n=6
1 V6 5
< | = —_— .
< (5+% 113
Together with (9), we conclude
1 1 V6
2
<|z+4z+2= = .
leulls < [ 5445+ | 1l = Cllfls
The assertion is established since C? < 2. QED

%)

5 Remark. As in the proof of Theorem 4 one can establish that D(—A +

= H*(R?>) N D(V) for b > 0 and V(z,y) = z%y%. But it seems that one

cannot treat more general potentials by the method used in this paper.
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