The domain
 of the Schrödinger operator $-\Delta+x^{2} y^{2}$

G. Metafune
Dipartimento di Matematica "Ennio De Giorgi", Università di Lecce, C.P.193, 73100, Lecce, Italy.
giorgio.metafune@unile.it
R. Schnaubelt
Fachbereich Mathematik und Informatik, Institut für Analysis, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Saale), Germany.
schnaubelt@mathematik.uni-halle.de

Abstract. We compute the domain of the Schrödinger operator $-\Delta+x^{2} y^{2}$ in $L^{2}\left(\mathbb{R}^{2}\right)$.
Keywords: Schrödinger operators
MSC 2000 classification: primary 35J10

1 Introduction

Let V be a nonnegative potential in \mathbb{R}^{d} which belongs to $L_{l o c}^{2}\left(\mathbb{R}^{d}\right)$. Then the quadratic form
$a(u, v)=\int_{\mathbb{R}^{d}}(\nabla u \cdot \nabla \bar{v}+V u \bar{v}) d x, \quad u, v \in H=\left\{u \in H^{1}\left(\mathbb{R}^{d}\right): V^{1 / 2} u \in L^{2}\left(\mathbb{R}^{d}\right)\right\}$
is closed, symmetric and nonnegative in $L^{2}\left(\mathbb{R}^{d}\right)$. Therefore a defines a selfadjoint operator $(A, D(A))$ in $L^{2}\left(\mathbb{R}^{d}\right)$ formally given by $A=-\Delta+V$, see e.g. [2, Chapter 8]. Moreover, A can be described by
$D(A)=\left\{u \in H: \exists f \in L^{2}\left(\mathbb{R}^{d}\right)\right.$ s.t. $\left.a(u, v)=\int_{\mathbb{R}^{d}} f \bar{v} d x \quad \forall v \in H\right\}, \quad A u=f$.
The test function space $C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ is a core for A since $V \in L_{l o c}^{2}\left(\mathbb{R}^{d}\right)$, due to $[6$, Corollary VII.2.7]. Thus the question arises whether $D(A)$ coincides with the intersection $H^{2}\left(\mathbb{R}^{d}\right) \cap D(V)$, see [5] where this problem seems to be considered for the first time from the point of view of operator inequalities like 3 . Here $H^{k}\left(\mathbb{R}^{d}\right)$ is the usual Sobolev space and $D(V)=\left\{u \in L^{2}\left(\mathbb{R}^{d}\right): V u \in L^{2}\left(\mathbb{R}^{d}\right)\right\}$ is the domain of the multiplication operator $V: u \mapsto V u$. The equality $D(A)=$ $H^{2}\left(\mathbb{R}^{d}\right) \cap D(V)$ holds if V satisfies the oscillation condition

$$
\begin{equation*}
|\nabla V(x)| \leq a V(x)^{3 / 2}+b \tag{2}
\end{equation*}
$$

for $x \in \mathbb{R}^{d}$ and positive a, b with $a^{2}<2$, see [3] and [4] where also potentials with local singularities are considered. We refer the reader to [1], [10], [11] for results in $L^{p}, 1<p<\infty$. Examples show that $D(A)$ can be strictly larger than $H^{2}\left(\mathbb{R}^{d}\right) \cap D(V)$ if (2) does not hold, see again [3] and [4] for counterexamples with singular potentials and [10] for smooth potentials. Surprisingly enough the situation is much better in $L^{1}\left(\mathbb{R}^{d}\right)$ where the domain of $-\Delta+V$ is always the intersection of the domains of $-\Delta$ and of the potential $V,[7]$.

In this note we prove that $D(A)=H^{2}\left(\mathbb{R}^{2}\right) \cap D(V)$ for the potential $V(x, y)=$ $x^{2} y^{2}$ which, as is easy to see, does not satisfy (2). The same potential was studied in detail in [12] where the compactness of the resolvent was proved, (see also [9] for a characterization of the discreteness of the spectrum for polynomial potentials). We point out that the equality $D(A)=H^{2}\left(R^{d}\right) \cap D(V)$ holds for every polynomial potential V, see [13] where methods of harmonic analysis are used. Our proof for $V=x^{2} y^{2}$ is, on the other hand, elementary and based on explicit computations with Hermite functions.

1 Notation. The norm of $L^{p}\left(\mathbb{R}^{d}\right)$ is denoted by $\|\cdot\|_{p} . H^{k}\left(\mathbb{R}^{d}\right)$ is the Sobolev space of all functions in $L^{2}\left(\mathbb{R}^{d}\right)$ having weak derivatives in $L^{2}\left(\mathbb{R}^{d}\right)$ up to the order $k . C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ is the space of test functions.

2 The result

We begin with the following elementary lemma.
2 Lemma. Let $0 \leq V \in L_{\text {loc }}^{2}(\mathbb{R})$. Assume that there exists a constant $C>0$ such that

$$
\begin{equation*}
\|V u\|_{2} \leq C\left\|-u^{\prime \prime}+V u\right\|_{2} \tag{3}
\end{equation*}
$$

for every $u \in C_{0}^{\infty}(\mathbb{R})$. Then the potential $V_{\lambda}(x)=\lambda^{-2} V(x / \lambda)$ satisfies (3) with the same constant C for every $\lambda>0$.

Proof. Applying (3) to the function $v(x)=u(\lambda x)$, we obtain

$$
\int_{\mathbb{R}}|V(x) u(\lambda x)|^{2} d x \leq C^{2} \int_{\mathbb{R}}\left|-\lambda^{2} u^{\prime \prime}(\lambda x)+V(x) u(\lambda x)\right|^{2} d x
$$

Setting $y=\lambda x$, this inequality leads to

$$
\int_{\mathbb{R}}|V(y / \lambda) u(y)|^{2} d y \leq C^{2} \int_{\mathbb{R}}\left|-\lambda^{2} u^{\prime \prime}(y)+V(y / \lambda) u(y)\right|^{2} d y
$$

which implies the assertion.
QED
In order to compute the domain of $-\Delta+x^{2} y^{2}$ we have to estimate the constant C in (3) for the potential $V(x)=x^{2}$.

3 Proposition. The estimate

$$
\left\|x^{2} u\right\|_{2} \leq C\left\|-u^{\prime \prime}+x^{2} u\right\|_{2}
$$

holds for every $u \in C_{0}^{\infty}(\mathbb{R})$ and a constant $C>0$ satisfying $C^{2}<2$.
Before proving this proposition, we show how the announced domain characterization follows from Proposition 3 and Lemma 2.

4 Theorem. The domain of $-\Delta+x^{2} y^{2}$ in $L^{2}\left(\mathbb{R}^{2}\right)$ coincides with $H^{2}\left(\mathbb{R}^{2}\right) \cap$ $D(V)$.

Proof. The representation (1) of A implies that $H^{2}\left(\mathbb{R}^{2}\right) \cap D(V)$ is contained in $D(A)$ and that $A u=-\Delta u+x^{2} y^{2} u$ for $u \in H^{2}\left(\mathbb{R}^{2}\right) \cap D(V)$. Since $C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$ is a core for $D(A)$, see [6, Corollary VII.2.7], it suffices to prove that the graph norm and the canonical norm of $H^{2}\left(\mathbb{R}^{2}\right) \cap D(V)$ are equivalent on $C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$. Clearly, $\|u\|_{2}+\|A u\|_{2} \leq\|u\|_{H^{2}}+\left\|x^{2} y^{2} u\right\|_{2}$ for $u \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$.

Thus it remains to establish the converse inequality. To estimate the H^{1} norm of $u \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$, we note that

$$
\int_{\mathbb{R}^{2}}(u+A u) \bar{u} d x d y=\int_{\mathbb{R}^{2}}\left(|u|^{2}+|\nabla u|^{2}+x^{2} y^{2}|u|^{2}\right) d x d y
$$

Hence, $\|u\|_{H^{1}} \leq c\left(\|u\|_{2}+\|A u\|_{2}\right)$ for a suitable $c>0$. We next treat the L^{2} norms of the functions $x^{2} y^{2} u$ and $D^{2} u$. We set $f=-\Delta u+x^{2} y^{2} u$ for $u \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$. Then $-u_{x x}+x^{2} y^{2} u=f+u_{y y}$. Fix $y \in \mathbb{R} \backslash\{0\}$. Proposition 3 and Lemma 2 with $\lambda^{4}=y^{-2}$ show that

$$
\int_{\mathbb{R}} x^{4} y^{4} u(x, y)^{2} d x \leq C^{2} \int_{\mathbb{R}}\left|f(x, y)+u_{y y}(x, y)\right|^{2} d x
$$

where C is the constant from Proposition 3. Integrating this estimate with respect to y, we obtain

$$
\int_{\mathbb{R}^{2}} x^{4} y^{4} u^{2} d x d y \leq C^{2} \int_{\mathbb{R}^{2}}\left|f+u_{y y}\right|^{2} d x d y
$$

In the same way one deduces that

$$
\int_{\mathbb{R}^{2}} x^{4} y^{4} u^{2} d x d y \leq C^{2} \int_{\mathbb{R}^{2}}\left|f+u_{x x}\right|^{2} d x d y
$$

Summing the last two inequalities and using $f=-\Delta u+x^{2} y^{2} u$, we conclude

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} x^{4} y^{4} u^{2} d x d y & \leq C^{2} \int_{\mathbb{R}^{2}}\left(f^{2}+f \Delta u+\frac{1}{2} u_{x x}^{2}+\frac{1}{2} u_{y y}^{2}\right) d x d y \\
& =C^{2} \int_{\mathbb{R}^{2}}\left(f^{2}-|\Delta u|^{2}+x^{2} y^{2} u \Delta u+\frac{1}{2} u_{x x}^{2}+\frac{1}{2} u_{y y}^{2}\right) d x d y
\end{aligned}
$$

On the other hand, we compute

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}|\Delta u|^{2} d x d y=\int_{\mathbb{R}^{2}}\left(u_{x x}^{2}+u_{y y}^{2}+2 u_{x y}^{2}\right) d x d y \tag{4}
\end{equation*}
$$

integrating by parts twice, which leads to

$$
\int_{\mathbb{R}^{2}} x^{4} y^{4} u^{2} d x d y \leq C^{2} \int_{\mathbb{R}^{2}}\left(f^{2}-\frac{1}{2}|\Delta u|^{2}+x^{2} y^{2} u \Delta u\right) d x d y
$$

Young's inequality then implies

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} x^{4} y^{4} u^{2} d x d y & \leq C^{2} \int_{\mathbb{R}^{2}}\left(f^{2}+\frac{1}{2} x^{4} y^{4} u^{2}\right) d x d y \\
\left\|x^{2} y^{2} u\right\|_{2}^{2} & \leq \frac{C^{2}}{1-C^{2} / 2}\|f\|_{2}^{2}
\end{aligned}
$$

since $1-C^{2} / 2>0$ by Proposition 3. This estimate and (4) further yield

$$
\left\|D^{2} u\right\|_{2}^{2} \leq C_{1}\|\Delta u\|_{2}^{2}=C_{1}\left\|x^{2} y^{2} u-f\right\|_{2}^{2} \leq C_{2}\|f\|_{2}^{2}
$$

As a result, $\|u\|_{H^{2}}+\left\|x^{2} y^{2} u\right\|_{2} \leq C_{3}\left(\|u\|_{2}+\|A u\|_{2}\right)$ for some constant C_{3}. QED Hermite functions

$$
H_{n}(x)=\frac{(-1)^{n}}{\sqrt{2^{n} n!\sqrt{\pi}}} e^{x^{2} / 2} \frac{d^{n}}{d x^{n}} e^{-x^{2}}=: \frac{1}{\sqrt{2^{n} n!\sqrt{\pi}}} \psi_{n}(x), \quad n \in \mathbb{N}_{0}
$$

for which we refer to $[8, \S 5.6 .2]$. The Hermite functions are an orthonormal basis of $L^{2}(\mathbb{R})$ and $-H_{n}^{\prime \prime}+x^{2} H_{n}=(2 n+1) H_{n}$. The functions ψ_{n} satisfy the identity $\psi_{n+1}=2 x \psi_{n}-2 n \psi_{n-1}$ for $n \in \mathbb{N}_{0}$, where $\psi_{-1}=0$. Using this recursion formula, one easily computes the integrals

$$
c_{n, m}=\int_{\mathbb{R}} x^{2} H_{n}(x) H_{m}(x) d x, \quad n, m \in \mathbb{N}_{0}
$$

obtaining

$$
\begin{align*}
c_{n, n-2} & =\frac{1}{2} \sqrt{n(n-1)} \quad(n \geq 2) \tag{5}\\
c_{n, n} & =\frac{1}{2}(2 n+1) \tag{6}\\
c_{n, n+2} & =\frac{1}{2} \sqrt{(n+2)(n+1)} \tag{7}\\
c_{n, m} & =0 \quad \text { if } m \neq n, n-2, n+2 \tag{8}
\end{align*}
$$

Proof of Proposition 3. Let $u \in C_{0}^{\infty}(\mathbb{R})$ and expand $f=-u^{\prime \prime}+x^{2} u$ with respect to the orthonormal basis $\left(H_{n}\right)$, i.e.,

$$
f=\sum_{m=0}^{\infty}\left\langle f, H_{m}\right\rangle H_{m}=\sum_{m=0}^{\infty} f_{m} H_{m}
$$

where the brackets denote the inner product of $L^{2}(\mathbb{R})$ and $f_{m}=\left\langle f, H_{m}\right\rangle$. Then we obtain

$$
u=\sum_{m=0}^{\infty}(2 m+1)^{-1} f_{m} H_{m} \quad \text { and } \quad x^{2} u=\sum_{m=0}^{\infty}(2 m+1)^{-1} f_{m} x^{2} H_{m}
$$

From the identities (5) it follows that

$$
\left\langle x^{2} u, H_{n}\right\rangle=\alpha_{n} f_{n-2}+\frac{1}{2} f_{n}+\beta_{n} f_{n+2}
$$

for $n \in \mathbb{N}_{0}$, where

$$
\alpha_{n}=\frac{\sqrt{n(n-1)}}{2(2 n-3)}, \quad \beta_{n}=\frac{\sqrt{(n+2)(n+1)}}{2(2 n+5)}, \quad f_{-2}=f_{-1}=0 .
$$

These equalities yield

$$
\begin{equation*}
x^{2} u=\frac{1}{2} f+\sum_{n=0}^{\infty}\left(\alpha_{n} f_{n-2}+\beta_{n} f_{n+2}\right) H_{n}=: \frac{1}{2} f+g \tag{9}
\end{equation*}
$$

We further estimate

$$
\begin{aligned}
\|g\|_{2}^{2}= & \sum_{n=0}^{\infty}\left(\alpha_{n} f_{n-2}+\beta_{n} f_{n+2}\right)^{2} \\
= & \alpha_{2}^{2} f_{0}^{2}+\alpha_{3}^{2} f_{1}^{2}+2 \alpha_{2} \beta_{2} f_{0} f_{4}+2 \alpha_{3} \beta_{3} f_{1} f_{5}+\sum_{n=2}^{\infty}\left(\alpha_{n+2}^{2}+\beta_{n-2}^{2}\right) f_{n}^{2} \\
& +2 \sum_{n=4}^{\infty} \alpha_{n} f_{n-2} \beta_{n} f_{n+2} \\
& =\alpha_{2}^{2} f_{0}^{2}+\alpha_{3}^{2} f_{1}^{2}+2 \alpha_{2} \beta_{2} f_{0} f_{4}+2 \alpha_{3} \beta_{3} f_{1} f_{5}+2 \sum_{n=2}^{\infty}\left(\alpha_{n+2}^{2}+\beta_{n-2}^{2}\right) f_{n}^{2}
\end{aligned}
$$

using Hölder's and Young's inequalities. Observe that $\alpha_{n+2}^{2}+\beta_{n-2}^{2} \leq \frac{7}{50}$ for
$n \geq 2$. Hence,

$$
\begin{aligned}
\|g\|_{2}^{2} \leq & \frac{1}{2} f_{0}^{2}+\frac{1}{6} f_{1}^{2}+\frac{\sqrt{6}}{9} f_{0} f_{4}+\frac{\sqrt{30}}{33} f_{1} f_{5}+\frac{14}{50} \sum_{n=2}^{\infty} f_{n}^{2} \\
\leq & \left(\frac{1}{2}+\frac{\sqrt{6}}{18}\right) f_{0}^{2}+\left(\frac{1}{6}+\frac{\sqrt{30}}{66}\right) f_{1}^{2}+\frac{14}{50} f_{2}^{2}+\frac{14}{50} f_{3}^{2}+\left(\frac{\sqrt{6}}{18}+\frac{14}{50}\right) f_{4}^{2} \\
& +\left(\frac{\sqrt{30}}{66}+\frac{14}{50}\right) f_{5}^{2}+\frac{14}{50} \sum_{n=6}^{\infty} f_{n}^{2} \\
\leq & \left(\frac{1}{2}+\frac{\sqrt{6}}{18}\right)\|f\|_{2}^{2}
\end{aligned}
$$

Together with (9), we conclude

$$
\left\|x^{2} u\right\|_{2} \leq\left(\frac{1}{2}+\sqrt{\frac{1}{2}+\frac{\sqrt{6}}{18}}\right)\|f\|_{2}=: C\|f\|_{2}
$$

The assertion is established since $C^{2}<2$.
5 Remark. As in the proof of Theorem 4 one can establish that $D(-\Delta+$ $b V)=H^{2}\left(\mathbb{R}^{2}\right) \cap D(V)$ for $b>0$ and $V(x, y)=x^{2} y^{2}$. But it seems that one cannot treat more general potentials by the method used in this paper.

References

[1] P. Cannarsa, V. Vespri: Generation of analytic semigroups in the L^{p} topology by elliptic operators in \mathbb{R}^{n}, Israel J. Math., 61, (1988), 235-255.
[2] E. B. Davies: Spectral Theory and Differential Operators, Cambridge U. P., 1995.
[3] E. B. DAVIES: Some norm bounds and quadratic form inequalities for Schödinger operators, J. Operator Theory, 9, (1983), 147-162.
[4] E. B. DAVIES: Some norm bounds and quadratic form inequalities for Schödinger operators II, J. Operator Theory, 12, (1984), 177-196.
[5] J. Glimm, A. Jaffe: Singular perturbation of self-adjoint operators, Comm. Pure Appl. Math., 22, (1969), 401-414.
[6] D. E. Edmunds, W. D. Evans: Spectral Theory and Differential Operators, Oxford U.P., 1990.
[7] T. Kato: L^{p}-theory of Schrödinger operators with a singular potential, in: R. Nagel, U. Schlotterbeck, M.P.H. Wolff (Eds.), it Aspects of Positivity in Functional Analysis, North-Holland, 1986.
[8] W. Magnus, F. Oberhettinger, R.P. Soni: Formulas and Theorems for the Special Functions in Mathematical Physics, Springer-Verlag, 1977.
[9] G. Metafune, D. Pallara: Discreteness of the spectrum for some differential operators with unbounded coefficients in \mathbb{R}^{n}, Rend. Mat. Acc. Lincei, s.9, 11, (2000), 9-19.
[10] G. Metafune, J. Prüss, A. Rhandi, R. Schnaubelt: L ${ }^{p}$-regularity for elliptic operators with unbounded coefficients, Preprint of the Institute of Analysis, Martin-Luther University, Halle-Wittenberg, 21, (2002).
[11] N. Okazawa: An L^{p} theory for Schrödinger operators with nonnegative potentials, J. Math. Soc. Japan, 36, (1984), 675-688.
[12] B. Simon: Some quantum operators with discrete spectrum but classically continuous spectrum, Annals of Physics, 146, (1983), 209-220.
[13] Z. Shen: L^{p} estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble), 45, (1995), 513-546.

