Note di Matematica 25, n. 2, 2005/2006, 97–103.

The domain of the Schrödinger operator $-\Delta + x^2 y^2$

G. Metafune

Dipartimento di Matematica "Ennio De Giorgi", Università di Lecce, C.P.193, 73100, Lecce, Italy. giorgio.metafune@unile.it

R. Schnaubelt

Fachbereich Mathematik und Informatik, Institut für Analysis, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Saale), Germany. schnaubelt@mathematik.uni-halle.de

Abstract. We compute the domain of the Schrödinger operator $-\Delta + x^2 y^2$ in $L^2(\mathbb{R}^2)$.

Keywords: Schrödinger operators

MSC 2000 classification: primary 35J10

1 Introduction

Let V be a nonnegative potential in \mathbb{R}^d which belongs to $L^2_{loc}(\mathbb{R}^d)$. Then the quadratic form

$$a(u,v) = \int_{\mathbb{R}^d} (\nabla u \cdot \nabla \bar{v} + V u \bar{v}) \, dx, \quad u,v \in H = \{ u \in H^1(\mathbb{R}^d) : V^{1/2} u \in L^2(\mathbb{R}^d) \}$$

is closed, symmetric and nonnegative in $L^2(\mathbb{R}^d)$. Therefore *a* defines a selfadjoint operator (A, D(A)) in $L^2(\mathbb{R}^d)$ formally given by $A = -\Delta + V$, see e.g. [2, Chapter 8]. Moreover, *A* can be described by

$$D(A) = \{ u \in H : \exists f \in L^2(\mathbb{R}^d) \text{ s.t. } a(u,v) = \int_{\mathbb{R}^d} f\bar{v} \, dx \quad \forall v \in H \}, \qquad Au = f.$$

The test function space $C_0^{\infty}(\mathbb{R}^d)$ is a core for A since $V \in L^2_{loc}(\mathbb{R}^d)$, due to [6, Corollary VII.2.7]. Thus the question arises whether D(A) coincides with the intersection $H^2(\mathbb{R}^d) \cap D(V)$, see [5] where this problem seems to be considered for the first time from the point of view of operator inequalities like 3. Here $H^k(\mathbb{R}^d)$ is the usual Sobolev space and $D(V) = \{ u \in L^2(\mathbb{R}^d) : Vu \in L^2(\mathbb{R}^d) \}$ is the domain of the multiplication operator $V : u \mapsto Vu$. The equality D(A) = $H^2(\mathbb{R}^d) \cap D(V)$ holds if V satisfies the oscillation condition

$$\left|\nabla V(x)\right| \le aV\left(x\right)^{3/2} + b \tag{2}$$

for $x \in \mathbb{R}^d$ and positive a, b with $a^2 < 2$, see [3] and [4] where also potentials with local singularities are considered. We refer the reader to [1], [10], [11] for results in L^p , 1 . Examples show that <math>D(A) can be strictly larger than $H^2(\mathbb{R}^d) \cap D(V)$ if (2) does not hold, see again [3] and [4] for counterexamples with singular potentials and [10] for smooth potentials. Surprisingly enough the situation is much better in $L^1(\mathbb{R}^d)$ where the domain of $-\Delta + V$ is always the intersection of the domains of $-\Delta$ and of the potential V, [7].

In this note we prove that $D(A) = H^2(\mathbb{R}^2) \cap D(V)$ for the potential $V(x, y) = x^2y^2$ which, as is easy to see, does not satisfy (2). The same potential was studied in detail in [12] where the compactness of the resolvent was proved, (see also [9] for a characterization of the discreteness of the spectrum for polynomial potentials). We point out that the equality $D(A) = H^2(\mathbb{R}^d) \cap D(V)$ holds for every polynomial potential V, see [13] where methods of harmonic analysis are used. Our proof for $V = x^2y^2$ is, on the other hand, elementary and based on explicit computations with Hermite functions.

1 Notation. The norm of $L^p(\mathbb{R}^d)$ is denoted by $\|\cdot\|_p$. $H^k(\mathbb{R}^d)$ is the Sobolev space of all functions in $L^2(\mathbb{R}^d)$ having weak derivatives in $L^2(\mathbb{R}^d)$ up to the order k. $C_0^{\infty}(\mathbb{R}^d)$ is the space of test functions.

2 The result

We begin with the following elementary lemma.

2 Lemma. Let $0 \leq V \in L^2_{loc}(\mathbb{R})$. Assume that there exists a constant C > 0 such that

$$\|Vu\|_{2} \le C \| - u'' + Vu\|_{2} \tag{3}$$

for every $u \in C_0^{\infty}(\mathbb{R})$. Then the potential $V_{\lambda}(x) = \lambda^{-2}V(x/\lambda)$ satisfies (3) with the same constant C for every $\lambda > 0$.

PROOF. Applying (3) to the function $v(x) = u(\lambda x)$, we obtain

$$\int_{\mathbb{R}} |V(x)u(\lambda x)|^2 \, dx \le C^2 \int_{\mathbb{R}} |-\lambda^2 u''(\lambda x) + V(x)u(\lambda x)|^2 \, dx.$$

Setting $y = \lambda x$, this inequality leads to

$$\int_{\mathbb{R}} |V(y/\lambda)u(y)|^2 \, dy \le C^2 \int_{\mathbb{R}} |-\lambda^2 u''(y) + V(y/\lambda)u(y)|^2 \, dy,$$

which implies the assertion.

In order to compute the domain of $-\Delta + x^2y^2$ we have to estimate the constant C in (3) for the potential $V(x) = x^2$.

QED

Domain of $-\Delta + x^2 y^2$

3 Proposition. The estimate

 $||x^{2}u||_{2} \leq C ||-u''+x^{2}u||_{2}$

holds for every $u \in C_0^{\infty}(\mathbb{R})$ and a constant C > 0 satisfying $C^2 < 2$.

Before proving this proposition, we show how the announced domain characterization follows from Proposition 3 and Lemma 2.

4 Theorem. The domain of $-\Delta + x^2y^2$ in $L^2(\mathbb{R}^2)$ coincides with $H^2(\mathbb{R}^2) \cap D(V)$.

PROOF. The representation (1) of A implies that $H^2(\mathbb{R}^2) \cap D(V)$ is contained in D(A) and that $Au = -\Delta u + x^2y^2u$ for $u \in H^2(\mathbb{R}^2) \cap D(V)$. Since $C_0^{\infty}(\mathbb{R}^2)$ is a core for D(A), see [6, Corollary VII.2.7], it suffices to prove that the graph norm and the canonical norm of $H^2(\mathbb{R}^2) \cap D(V)$ are equivalent on $C_0^{\infty}(\mathbb{R}^2)$. Clearly, $\|u\|_2 + \|Au\|_2 \le \|u\|_{H^2} + \|x^2y^2u\|_2$ for $u \in C_0^{\infty}(\mathbb{R}^2)$.

Thus it remains to establish the converse inequality. To estimate the H^1 norm of $u \in C_0^{\infty}(\mathbb{R}^2)$, we note that

$$\int_{\mathbb{R}^2} (u + Au)\bar{u} \, dx \, dy = \int_{\mathbb{R}^2} (|u|^2 + |\nabla u|^2 + x^2 y^2 |u|^2) \, dx \, dy,$$

Hence, $||u||_{H^1} \leq c (||u||_2 + ||Au||_2)$ for a suitable c > 0. We next treat the L^2 norms of the functions x^2y^2u and D^2u . We set $f = -\Delta u + x^2y^2u$ for $u \in C_0^{\infty}(\mathbb{R}^2)$.
Then $-u_{xx} + x^2y^2u = f + u_{yy}$. Fix $y \in \mathbb{R} \setminus \{0\}$. Proposition 3 and Lemma 2
with $\lambda^4 = y^{-2}$ show that

$$\int_{\mathbb{R}} x^4 y^4 u(x,y)^2 \, dx \le C^2 \int_{\mathbb{R}} |f(x,y) + u_{yy}(x,y)|^2 \, dx,$$

where C is the constant from Proposition 3. Integrating this estimate with respect to y, we obtain

$$\int_{\mathbb{R}^2} x^4 y^4 u^2 \, dx \, dy \le C^2 \int_{\mathbb{R}^2} |f + u_{yy}|^2 \, dx \, dy.$$

In the same way one deduces that

$$\int_{\mathbb{R}^2} x^4 y^4 u^2 \, dx \, dy \le C^2 \int_{\mathbb{R}^2} |f + u_{xx}|^2 \, dx \, dy.$$

Summing the last two inequalities and using $f = -\Delta u + x^2 y^2 u$, we conclude

$$\int_{\mathbb{R}^2} x^4 y^4 u^2 \, dx \, dy \le C^2 \int_{\mathbb{R}^2} (f^2 + f\Delta u + \frac{1}{2}u_{xx}^2 + \frac{1}{2}u_{yy}^2) \, dx \, dy$$
$$= C^2 \int_{\mathbb{R}^2} (f^2 - |\Delta u|^2 + x^2 y^2 u\Delta u + \frac{1}{2}u_{xx}^2 + \frac{1}{2}u_{yy}^2) \, dx \, dy.$$

G. Metafune, R. Schnaubelt

On the other hand, we compute

$$\int_{\mathbb{R}^2} |\Delta u|^2 \, dx \, dy = \int_{\mathbb{R}^2} (u_{xx}^2 + u_{yy}^2 + 2u_{xy}^2) \, dx \, dy \tag{4}$$

integrating by parts twice, which leads to

$$\int_{\mathbb{R}^2} x^4 y^4 u^2 \, dx \, dy \le C^2 \int_{\mathbb{R}^2} (f^2 - \frac{1}{2} \, |\Delta u|^2 + x^2 y^2 u \Delta u) \, dx \, dy.$$

Young's inequality then implies

$$\begin{split} \int_{\mathbb{R}^2} x^4 y^4 u^2 \, dx \, dy &\leq C^2 \int_{\mathbb{R}^2} (f^2 + \frac{1}{2} x^4 y^4 u^2) \, dx dy, \\ \|x^2 y^2 u\|_2^2 &\leq \frac{C^2}{1 - C^2/2} \|f\|_2^2 \,, \end{split}$$

since $1 - C^2/2 > 0$ by Proposition 3. This estimate and (4) further yield

$$||D^{2}u||_{2}^{2} \leq C_{1} ||\Delta u||_{2}^{2} = C_{1} ||x^{2}y^{2}u - f||_{2}^{2} \leq C_{2} ||f||_{2}^{2}.$$

As a result, $||u||_{H^2} + ||x^2y^2u||_2 \le C_3 (||u||_2 + ||Au||_2)$ for some constant C_3 . QED

In order to prove Proposition 3 we need some elementary properties of the Hermite functions

$$H_n(x) = \frac{(-1)^n}{\sqrt{2^n n! \sqrt{\pi}}} e^{x^2/2} \frac{d^n}{dx^n} e^{-x^2} =: \frac{1}{\sqrt{2^n n! \sqrt{\pi}}} \psi_n(x), \qquad n \in \mathbb{N}_0,$$

for which we refer to [8, §5.6.2]. The Hermite functions are an orthonormal basis of $L^2(\mathbb{R})$ and $-H''_n + x^2H_n = (2n+1)H_n$. The functions ψ_n satisfy the identity $\psi_{n+1} = 2x\psi_n - 2n\psi_{n-1}$ for $n \in \mathbb{N}_0$, where $\psi_{-1} = 0$. Using this recursion formula, one easily computes the integrals

$$c_{n,m} = \int_{\mathbb{R}} x^2 H_n(x) H_m(x) \, dx, \qquad n, m \in \mathbb{N}_0,$$

obtaining

$$c_{n,n-2} = \frac{1}{2}\sqrt{n(n-1)} \quad (n \ge 2)$$
 (5)

$$c_{n,n} = \frac{1}{2}(2n+1) \tag{6}$$

$$c_{n,n+2} = \frac{1}{2}\sqrt{(n+2)(n+1)}$$
(7)

$$c_{n,m} = 0 \text{ if } m \neq n, n-2, n+2.$$
 (8)

Domain of $-\Delta + x^2 y^2$

PROOF OF PROPOSITION 3. Let $u \in C_0^{\infty}(\mathbb{R})$ and expand $f = -u'' + x^2 u$ with respect to the orthonormal basis (H_n) , i.e.,

$$f = \sum_{m=0}^{\infty} \langle f, H_m \rangle H_m = \sum_{m=0}^{\infty} f_m H_m$$

where the brackets denote the inner product of $L^2(\mathbb{R})$ and $f_m = \langle f, H_m \rangle$. Then we obtain

$$u = \sum_{m=0}^{\infty} (2m+1)^{-1} f_m H_m$$
 and $x^2 u = \sum_{m=0}^{\infty} (2m+1)^{-1} f_m x^2 H_m$.

From the identities (5) it follows that

$$\langle x^2 u, H_n \rangle = \alpha_n f_{n-2} + \frac{1}{2} f_n + \beta_n f_{n+2}$$

for $n \in \mathbb{N}_0$, where

$$\alpha_n = \frac{\sqrt{n(n-1)}}{2(2n-3)}, \qquad \beta_n = \frac{\sqrt{(n+2)(n+1)}}{2(2n+5)}, \qquad f_{-2} = f_{-1} = 0.$$

These equalities yield

$$x^{2}u = \frac{1}{2}f + \sum_{n=0}^{\infty} (\alpha_{n}f_{n-2} + \beta_{n}f_{n+2})H_{n} =: \frac{1}{2}f + g.$$
(9)

We further estimate

$$\begin{aligned} \|g\|_{2}^{2} &= \sum_{n=0}^{\infty} (\alpha_{n} f_{n-2} + \beta_{n} f_{n+2})^{2} \\ &= \alpha_{2}^{2} f_{0}^{2} + \alpha_{3}^{2} f_{1}^{2} + 2\alpha_{2} \beta_{2} f_{0} f_{4} + 2\alpha_{3} \beta_{3} f_{1} f_{5} + \sum_{n=2}^{\infty} (\alpha_{n+2}^{2} + \beta_{n-2}^{2}) f_{n}^{2} \\ &+ 2 \sum_{n=4}^{\infty} \alpha_{n} f_{n-2} \beta_{n} f_{n+2} \\ &\leq \alpha_{2}^{2} f_{0}^{2} + \alpha_{3}^{2} f_{1}^{2} + 2\alpha_{2} \beta_{2} f_{0} f_{4} + 2\alpha_{3} \beta_{3} f_{1} f_{5} + 2 \sum_{n=2}^{\infty} (\alpha_{n+2}^{2} + \beta_{n-2}^{2}) f_{n}^{2} \end{aligned}$$

using Hölder's and Young's inequalities. Observe that $\alpha_{n+2}^2 + \beta_{n-2}^2 \leq \frac{7}{50}$ for

 $n \geq 2$. Hence,

$$\begin{split} \|g\|_{2}^{2} &\leq \frac{1}{2}f_{0}^{2} + \frac{1}{6}f_{1}^{2} + \frac{\sqrt{6}}{9}f_{0}f_{4} + \frac{\sqrt{30}}{33}f_{1}f_{5} + \frac{14}{50}\sum_{n=2}^{\infty}f_{n}^{2} \\ &\leq \left(\frac{1}{2} + \frac{\sqrt{6}}{18}\right)f_{0}^{2} + \left(\frac{1}{6} + \frac{\sqrt{30}}{66}\right)f_{1}^{2} + \frac{14}{50}f_{2}^{2} + \frac{14}{50}f_{3}^{2} + \left(\frac{\sqrt{6}}{18} + \frac{14}{50}\right)f_{4}^{2} \\ &\quad + \left(\frac{\sqrt{30}}{66} + \frac{14}{50}\right)f_{5}^{2} + \frac{14}{50}\sum_{n=6}^{\infty}f_{n}^{2} \\ &\leq \left(\frac{1}{2} + \frac{\sqrt{6}}{18}\right)\|f\|_{2}^{2}. \end{split}$$

Together with (9), we conclude

$$|x^{2}u||_{2} \leq \left(\frac{1}{2} + \sqrt{\frac{1}{2} + \frac{\sqrt{6}}{18}}\right) ||f||_{2} =: C ||f||_{2}.$$

The assertion is established since $C^2 < 2$.

5 Remark. As in the proof of Theorem 4 one can establish that $D(-\Delta + bV) = H^2(\mathbb{R}^2) \cap D(V)$ for b > 0 and $V(x, y) = x^2 y^2$. But it seems that one cannot treat more general potentials by the method used in this paper.

References

- [1] P. CANNARSA, V. VESPRI: Generation of analytic semigroups in the L^p topology by elliptic operators in \mathbb{R}^n , Israel J. Math., **61**, (1988), 235–255.
- [2] E. B. DAVIES: Spectral Theory and Differential Operators, Cambridge U. P., 1995.
- [3] E. B. DAVIES: Some norm bounds and quadratic form inequalities for Schödinger operators, J. Operator Theory, 9, (1983), 147–162.
- [4] E. B. DAVIES: Some norm bounds and quadratic form inequalities for Schödinger operators II, J. Operator Theory, 12, (1984), 177–196.
- [5] J. GLIMM, A. JAFFE: Singular perturbation of self-adjoint operators, Comm. Pure Appl. Math., 22, (1969), 401–414.
- [6] D. E. EDMUNDS, W. D. EVANS: Spectral Theory and Differential Operators, Oxford U.P., 1990.
- [7] T. KATO: L^p-theory of Schrödinger operators with a singular potential, in: R. Nagel, U. Schlotterbeck, M.P.H. Wolff (Eds.), it Aspects of Positivity in Functional Analysis, North-Holland, 1986.
- [8] W. MAGNUS, F. OBERHETTINGER, R.P. SONI: Formulas and Theorems for the Special Functions in Mathematical Physics, Springer–Verlag, 1977.

QED

Domain of $-\Delta + x^2 y^2$

- [9] G. METAFUNE, D. PALLARA: Discreteness of the spectrum for some differential operators with unbounded coefficients in \mathbb{R}^n , Rend. Mat. Acc. Lincei, s.9, **11**, (2000), 9–19.
- [10] G. METAFUNE, J. PRÜSS, A. RHANDI, R. SCHNAUBELT: L^p-regularity for elliptic operators with unbounded coefficients, Preprint of the Institute of Analysis, Martin-Luther University, Halle-Wittenberg, 21, (2002).
- [11] N. OKAZAWA: An L^p theory for Schrödinger operators with nonnegative potentials, J. Math. Soc. Japan, 36, (1984), 675–688.
- [12] B. SIMON: Some quantum operators with discrete spectrum but classically continuous spectrum, Annals of Physics, 146, (1983), 209–220.
- [13] Z. SHEN: L^p estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble), 45, (1995), 513–546.