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1 Introduction

Let V be a nonnegative potential in R
d which belongs to L2

loc(R
d). Then the

quadratic form

a(u, v) =

∫

Rd

(∇u ·∇v̄+V uv̄) dx, u, v ∈ H = {u ∈ H1(Rd) : V 1/2u ∈ L2(Rd) }

is closed, symmetric and nonnegative in L2(Rd). Therefore a defines a self-
adjoint operator (A,D(A)) in L2(Rd) formally given by A = −∆ + V , see
e.g. [2, Chapter 8]. Moreover, A can be described by

D(A) = {u ∈ H : ∃f ∈ L2(Rd) s.t. a(u, v) =

∫

Rd

f v̄ dx ∀v ∈ H}, Au = f.

(1)
The test function space C∞0 (Rd) is a core for A since V ∈ L2

loc(R
d), due to [6,

Corollary VII.2.7]. Thus the question arises whether D(A) coincides with the
intersection H2(Rd) ∩D(V ), see [5] where this problem seems to be considered
for the first time from the point of view of operator inequalities like 3. Here
Hk(Rd) is the usual Sobolev space and D(V ) = {u ∈ L2(Rd) : V u ∈ L2(Rd) }
is the domain of the multiplication operator V : u 7→ V u. The equality D(A) =
H2(Rd) ∩D(V ) holds if V satisfies the oscillation condition

|∇V (x)| ≤ aV (x)3/2 + b (2)
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for x ∈ R
d and positive a, b with a2 < 2, see [3] and [4] where also potentials

with local singularities are considered. We refer the reader to [1], [10], [11] for
results in Lp, 1 < p <∞. Examples show that D(A) can be strictly larger than
H2(Rd) ∩D(V ) if (2) does not hold, see again [3] and [4] for counterexamples
with singular potentials and [10] for smooth potentials. Surprisingly enough the
situation is much better in L1(Rd) where the domain of −∆ + V is always the
intersection of the domains of −∆ and of the potential V , [7].

In this note we prove that D(A) = H2(R2)∩D(V ) for the potential V (x, y) =
x2y2 which, as is easy to see, does not satisfy (2). The same potential was
studied in detail in [12] where the compactness of the resolvent was proved, (see
also [9] for a characterization of the discreteness of the spectrum for polynomial
potentials). We point out that the equality D(A) = H2(Rd) ∩D(V ) holds for
every polynomial potential V , see [13] where methods of harmonic analysis are
used. Our proof for V = x2y2 is, on the other hand, elementary and based on
explicit computations with Hermite functions.

1 Notation. The norm of Lp(Rd) is denoted by ‖·‖p. Hk(Rd) is the Sobolev
space of all functions in L2(Rd) having weak derivatives in L2(Rd) up to the
order k. C∞0 (Rd) is the space of test functions.

2 The result

We begin with the following elementary lemma.

2 Lemma. Let 0 ≤ V ∈ L2
loc(R). Assume that there exists a constant C > 0

such that

‖V u‖2 ≤ C ‖ − u′′ + V u‖2 (3)

for every u ∈ C∞0 (R). Then the potential Vλ(x) = λ−2V (x/λ) satisfies (3) with
the same constant C for every λ > 0.

Proof. Applying (3) to the function v(x) = u(λx), we obtain

∫

R

|V (x)u(λx)|2 dx ≤ C2

∫

R

| − λ2u′′(λx) + V (x)u(λx)|2 dx.

Setting y = λx, this inequality leads to

∫

R

|V (y/λ)u(y)|2 dy ≤ C2

∫

R

| − λ2u′′(y) + V (y/λ)u(y)|2 dy,

which implies the assertion. QED

In order to compute the domain of −∆ + x2y2 we have to estimate the
constant C in (3) for the potential V (x) = x2.
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3 Proposition. The estimate

‖x2u‖2 ≤ C ‖ − u′′ + x2u‖2
holds for every u ∈ C∞0 (R) and a constant C > 0 satisfying C2 < 2.

Before proving this proposition, we show how the announced domain char-
acterization follows from Proposition 3 and Lemma 2.

4 Theorem. The domain of −∆ +x2y2 in L2(R2) coincides with H2(R2)∩
D(V ).

Proof. The representation (1) ofA implies thatH2(R2)∩D(V ) is contained
in D(A) and that Au = −∆u + x2y2u for u ∈ H2(R2) ∩D(V ). Since C∞0 (R2)
is a core for D(A), see [6, Corollary VII.2.7], it suffices to prove that the graph
norm and the canonical norm of H2(R2) ∩ D(V ) are equivalent on C∞0 (R2).
Clearly, ‖u‖2 + ‖Au‖2 ≤ ‖u‖H2 + ‖x2y2u‖2 for u ∈ C∞0 (R2).

Thus it remains to establish the converse inequality. To estimate the H1-
norm of u ∈ C∞0 (R2), we note that

∫

R2

(u+Au)ū dx dy =

∫

R2

(|u|2 + |∇u|2 + x2y2|u|2) dx dy,

Hence, ‖u‖H1 ≤ c (‖u‖2 + ‖Au‖2) for a suitable c > 0. We next treat the L2-
norms of the functions x2y2u andD2u. We set f = −∆u+x2y2u for u ∈ C∞0 (R2).
Then −uxx + x2y2u = f + uyy. Fix y ∈ R \ {0}. Proposition 3 and Lemma 2
with λ4 = y−2 show that

∫

R

x4y4u(x, y)2 dx ≤ C2

∫

R

|f(x, y) + uyy(x, y)|2 dx,

where C is the constant from Proposition 3. Integrating this estimate with
respect to y, we obtain

∫

R2

x4y4u2 dx dy ≤ C2

∫

R2

|f + uyy|2 dx dy.

In the same way one deduces that
∫

R2

x4y4u2 dx dy ≤ C2

∫

R2

|f + uxx|2 dx dy.

Summing the last two inequalities and using f = −∆u+ x2y2u, we conclude
∫

R2

x4y4u2 dx dy ≤ C2

∫

R2

(f2 + f∆u+
1

2
u2

xx +
1

2
u2

yy) dx dy

= C2

∫

R2

(f2 − |∆u|2 + x2y2u∆u+
1

2
u2

xx +
1

2
u2

yy) dx dy.
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On the other hand, we compute
∫

R2

|∆u|2 dx dy =

∫

R2

(u2
xx + u2

yy + 2u2
xy) dx dy (4)

integrating by parts twice, which leads to
∫

R2

x4y4u2 dx dy ≤ C2

∫

R2

(f2 − 1

2
|∆u|2 + x2y2u∆u) dx dy.

Young’s inequality then implies
∫

R2

x4y4u2 dx dy ≤ C2

∫

R2

(f2 +
1

2
x4y4u2) dxdy,

‖x2y2u‖22 ≤
C2

1− C2/2
‖f‖22 ,

since 1− C2/2 > 0 by Proposition 3. This estimate and (4) further yield

‖D2u‖22 ≤ C1 ‖∆u‖22 = C1 ‖x2y2u− f‖22 ≤ C2 ‖f‖22 .

As a result, ‖u‖H2+‖x2y2u‖2 ≤ C3 (‖u‖2+‖Au‖2) for some constant C3. QED

In order to prove Proposition 3 we need some elementary properties of the
Hermite functions

Hn(x) =
(−1)n

√
2nn!
√
π
ex

2/2 dn

dxn
e−x2

=:
1√

2nn!
√
π
ψn(x), n ∈ N0 ,

for which we refer to [8, §5.6.2]. The Hermite functions are an orthonormal basis
of L2(R) and −H ′′n + x2Hn = (2n+ 1)Hn. The functions ψn satisfy the identity
ψn+1 = 2xψn−2nψn−1 for n ∈ N0, where ψ−1 = 0. Using this recursion formula,
one easily computes the integrals

cn,m =

∫

R

x2Hn(x)Hm(x) dx, n,m ∈ N0,

obtaining

cn,n−2 =
1

2

√
n(n− 1) (n ≥ 2) (5)

cn,n =
1

2
(2n+ 1) (6)

cn,n+2 =
1

2

√
(n+ 2)(n + 1) (7)

cn,m = 0 if m 6= n, n− 2, n + 2. (8)
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Proof of Proposition 3. Let u ∈ C∞0 (R) and expand f = −u′′ + x2u
with respect to the orthonormal basis (Hn), i.e.,

f =
∞∑

m=0

〈f,Hm〉Hm =
∞∑

m=0

fmHm

where the brackets denote the inner product of L2(R) and fm = 〈f,Hm〉. Then
we obtain

u =

∞∑

m=0

(2m + 1)−1fmHm and x2u =

∞∑

m=0

(2m + 1)−1fmx
2Hm.

From the identities (5) it follows that

〈x2u,Hn〉 = αnfn−2 +
1

2
fn + βnfn+2

for n ∈ N0, where

αn =

√
n(n− 1)

2(2n − 3)
, βn =

√
(n+ 2)(n + 1)

2(2n + 5)
, f−2 = f−1 = 0.

These equalities yield

x2u =
1

2
f +

∞∑

n=0

(αnfn−2 + βnfn+2)Hn =:
1

2
f + g. (9)

We further estimate

‖g‖22 =

∞∑

n=0

(αnfn−2 + βnfn+2)2

= α2
2f

2
0 + α2

3f
2
1 + 2α2β2f0f4 + 2α3β3f1f5 +

∞∑

n=2

(α2
n+2 + β2

n−2)f2
n

+ 2

∞∑

n=4

αnfn−2 βnfn+2

≤ α2
2f

2
0 + α2

3f
2
1 + 2α2β2f0f4 + 2α3β3f1f5 + 2

∞∑

n=2

(α2
n+2 + β2

n−2)f2
n

using Hölder’s and Young’s inequalities. Observe that α2
n+2 + β2

n−2 ≤ 7
50 for
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n ≥ 2. Hence,

‖g‖22 ≤
1

2
f2
0 +

1

6
f2
1 +

√
6

9
f0f4 +

√
30

33
f1f5 +

14

50

∞∑

n=2

f2
n

≤
(

1

2
+

√
6

18

)
f2
0 +

(
1

6
+

√
30

66

)
f2
1 +

14

50
f2
2 +

14

50
f2
3 +

(√
6

18
+

14

50

)
f2
4

+

(√
30

66
+

14

50

)
f2
5 +

14

50

∞∑

n=6

f2
n

≤
(

1

2
+

√
6

18

)
‖f‖22 .

Together with (9), we conclude

‖x2u‖2 ≤


1

2
+

√
1

2
+

√
6

18


 ‖f‖2 =: C ‖f‖2 .

The assertion is established since C2 < 2. QED

5 Remark. As in the proof of Theorem 4 one can establish that D(−∆ +
bV ) = H2(R2) ∩ D(V ) for b > 0 and V (x, y) = x2y2. But it seems that one
cannot treat more general potentials by the method used in this paper.
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