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Abstract. The linear nonhomogeneous thermoelastodynamic problem in a half-cylinder is
considered subject to assigned initial conditions, and to the displacement and temperature
being specified over the base, and vanishing on the lateral boundary. Spatial stability, derived
from a differential inequality, establishes that the mean-square volume integrals of displacement
and temperature are bounded above by a decaying function of axial distance for each finite
positive time instant. Structural stability, which here relates to continuous dependence of the
displacement on the thermal coupling, depends upon the construction of further differential
inequalities
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1 Introduction

This paper treats the spatial and structural stability of a half-cylinder com-
posed of linear thermoelastic material and which is moving subject to homoge-
neous lateral Dirichlet boundary conditions, specified displacement and temper-
ature distributed over the cylinder’s base, and with prescribed initial data. For
spatial stability, we construct a decaying upper bound for certain mean-square
measures of the solution. Extension of the analysis to include homogeneous me-
chanical traction and thermal flux prescribed on the lateral boundary is possible
but is not pursued here. It is known for homogeneous lateral and initial data
( see, e.g., [2]) and for given base traction and thermal flux that a suitable
measure of the total energy is bounded above by a function that decays like
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exp(−x3/ν(t)
√
t), where x3 is the axial distance, and ν(t) is a positive func-

tion of time t. Our result is similar but is valid for non-zero initial data and
with the base traction and thermal flux replaced by prescribed distributions of
displacement and temperature.

The aspect of structural stability that we consider is with respect to thermal
coupling. We retain the same data as for spatial stability and discuss the effect
on the displacement when the thermal coupling coefficients and their derivatives
tend to zero. In the limit the isothermal theory is recovered, thermal dissipa-
tion, caused by the coupling, disappears, and effects due to the specified base
displacement propagate with finite speed, as demonstrated in [3]. By contrast, in
the corresponding coupled thermoelastic problem effects due to base data prop-
agate with infinite speed and are simultaneously experienced at all points of
the cylinder. Nevertheless, we are able to prove that the mean-square difference
between the displacement in the thermal and isothermal problems vanishes in
the limit as the thermal coupling tends to zero. Ames and Payne [1] consider the
complementary problem, but backward in time, of convergence to the ordinary
heat problem.

The method of proof for both spatial and structural stability relies upon
the derivation and integration of differential inequalities for time integrals of
the total energy contained in a volume of the cylinder. Section 2 describes the
notation together with certain other preliminaries, while Section 3, devoted to
spatial stability in the non-homogeneous thermoelastic initial boundary value
problem, establishes the decay estimate. The final Section discusses structural
stability and related issues.

Throughout, a solution of sufficient smoothness to justify the following oper-
ations is assumed to exist. The comma notation to indicate partial differentiation
and the summation convention are adopted with Greek suffixes, apart from η,
ranging over [1, 2] and Latin suffixes over [1, 2, 3].

2 Notation and other preliminaries

We consider a prismatic cylinder B ⊂ IR3 of semi-infinite length whose plane
base lies in the x1x2− coordinate plane of a three-dimensional Cartesian coor-
dinate system whose positive x3− axis is directed along that of the cylinder.
The uniform plane cross-section D ⊂ IR2 has piecewise smooth boundary ∂D,
and to emphasise that quantities at a distance x3 from the base are under con-
sideration, we employ the notation D(x3). We also introduce the notation:

B(z) = {x ∈ B : z ≤ x3} (1)
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to indicate that part of the cylinder whose points are each at an axial distance
no less than z from the base.

The cylinder is occupied by a classical linear inhomogeneous anisotropic
thermoelastic material in motion subject to prescribed initial Cauchy data, and
with the displacement ui(x, t) and temperature θ(x, t) supposed zero on the lat-
eral boundary ∂D×[0,∞) and prescribed non-zero over the base D(0). The data
is assumed always to produce a bounded total energy, implying the asymptotic
vanishing with respect to axial distance of the displacement and temperature
together with their respective spatial gradients, and time derivative of the dis-
placement.To be explicit, we impose on our solution the asymptotic behaviour:

lim
x3→∞

∫ t

0

∫

D(x3)
(uiui + u,ηu,η + ui,jui,j + θ2 + θ,iθ,i) dS dη = 0. (2)

Accordingly, the thermoelastic problem is specified by:

(cijklekl),j + (βijθ),j = ρüi, (x, t) ∈ B × [0, T ), (3)

−βij u̇i,j + θ̇ = (kijθ,i),j , (x, t) ∈ B × [0, T ), (4)

where a superposed dot indicates time differentiation, [0, T ] is the maximal time
interval of existence of a sufficiently smooth solution, ρ(x) is the mass density,
βij(x) are the thermal (stress-temperature) coupling coefficients, kij(x) are the
thermal conductivities, the linear strain components eij are given by

eij =
1

2
(ui,j + uj,i), (5)

and by suitable rescaling the positive specific heat in (4) is taken as unity. The
nonhomongeous mass density is supposed smooth, to possess the bounds:

0 < ρ0 ≤ ρ(x) ≤ ρ1, x ∈ B, (6)

where ρ0, ρ1 are given uniform positive constants, and for simplicity, to be in-
dependent of the axial variable x3. The elasticities cijkl(x), similarly assumed
independent of x3, satisfy the symmetries

cijkl = cjikl = cklij , (7)

and are positive-definite and bounded in the sense that

c0ψijψij ≤ cijklψijψkl, ψij = ψji, x ∈ B, (8)

cijklξiξkζjζl ≤ c1ξiξiζjζj , x ∈ B, (9)
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for uniform positive constants c0, c1, and ξ ∈ IR, ζ ∈ IR. It is straightforward to
adapt the following analysis to include generally inhomogeneous mass density
and elasticities subject to additional conditions on their derivatives with respect
to the axial variable. The thermal conductivities are symmetric and positive-
definite so that

kij = kji, x ∈ B, (10)

k0ξiξi ≤ kijξiξj , x ∈ B, (11)

where k0 is a uniform positive constant, while the component k33(x) is assumed
to be bounded:

max
x∈B

k33 ≤M2
1 , (12)

for given positive constantM1. The thermal coupling coefficients are supposed to
be continuously differentiable in B and consequently there are positive constants
M2,M3 such that:

sup
x∈B

βijβij ≤M2
2 , sup

x∈B
βij,jβik,k ≤M2

3 . (13)

The lateral boundary conditions become

ui(x, t) = θ(x, t) = 0, (x, t) ∈ ∂D × [0,∞) × [0, T ], (14)

while the base distributions of displacement and temperature are given by:

ui(x, t) = li(xα, t), θ(x, t) = Φ(xα, t), (x, t) ∈ D(0) × [0, T ), (15)

where li(xα, t),Φ(xα, t) are prescribed functions. The initial conditions are spec-
ified to be:

θ(x, 0) = f(x), x ∈ B × {0}, (16)

ui(x, 0) = gi(x), x ∈ B × {0}, (17)

u̇i(x, 0) = hi(x), x ∈ B × {0}, (18)

where f, gi, hi are given and for all t ≥ 0 are assumed to further satisfy the
boundedness condition:

∫ ∞

0
exp (zγ−1(t))R(z) dz <∞, (19)

where γ(t) is defined in (32) and

R(z) ≡
∫

B(z)
[ρhihi + cijklgi,jgk,l + f2] dx. (20)
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A sufficient condition for (19) is the asymptotic behaviour

lim
x3→∞

expx3γ
−1(t)

∫

D(x3)
(ρhihi + cijklgi,jgk,l + f2) dx1 dx2 = 0. (21)

Let vi(x, t) and eij(v) be the displacement and strain respectively in the
corresponding isothermal problem whose governing equations are given by

(cijklekl(v)),j = ρv̈i, (x, t) ∈ B × [0, T ), (22)

The isothermal solution is subject to the same smoothness, respective asymp-
totic behaviour, boundary and initial conditions as are prescribed in the ther-
moelastic problem.

As previously stated, in Section 4 we establish that vanishingly small βij

together with that of its derivatives imply the convergence of the thermal dis-
placement ui(x, t) to that in the corresponding isothermal problem, provided
convergence is measured in appropriate mean-square norms.

Before, however, discussing convergence with respect to vanishing βij , we
prove that the thermoelastic solution, represented by mean-square measures of
ui(x, t), θ(x, t), exponentially decays to zero in the limit as x3 → ∞ for each
given finite t.

3 Spatial Stability

We consider the thermoelastic initial boundary value problem specified in
Section 2 and first obtain a decaying upper bound for the total energy E(z, t),
defined by expression

E(z, t) =

∫ t

0

∫

B(z)

[
ρui,ηui,η + cijkleijekl + θ2 + 2(t− η)kijθ,iθ,j

]
dx dη. (23)

We record here for subsequent use the following result which is immediate from
(23):

dE(z, t)

dz
= −

∫ t

0

∫

D(z)

[
ρui,ηui,η + cijkleijekl + θ2 + 2(t− η)kijθ,iθ,j

]
dS dη,

(24)
for each fixed t, where dS is the element of cross-sectional area.

To obtain the decay estimate, we first note that (3)-(7), the lateral boundary
conditions (14), and the divergence theorem enable the energy E(z, t) to be
represented alternatively as:

E(z, t) = I(z, t) + tR(z), (25)
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where R(z) is defined in (20) and

I(z, t) = 2

∫ t

0

∫

D(z)
(t− η) [cijkleijuk,ηnl + βijui,ηθnj + kijθθ,inj ] dS dη, (26)

in which ni are the components of the unit outward normal on ∂B(z). We next
apply Schwarz’s inequality, followed by the arithmetic-geometric mean inequal-
ity, to derive the bounds:

I(z, t) ≤2

[∫ t

0

∫

D(z)
(t− η)cijkleijekl dS dη

∫ t

0

∫

D(z)
(t− η)cijklui,ηuk,ηnjnl dS dη

] 1
2

+2

[∫ t

0

∫

D(z)
(t− η)θ2 dS dη

∫ t

0

∫

D(z)
(t− η) (βijui,ηnj)

2 dS dη

] 1
2

+2

[∫ t

0

∫

D(z)
(t− η)θ2kijninj dS dη

∫ t

0

∫

D(z)
(t− η)kijθ,iθ,j dS dη

] 1
2

≤t
√
c1
ρ

[
γ1

∫ t

0

∫

D(z)
cijkleijekl dS dη + M1

∫ t

0

∫

D(z)
ρui,ηui,η dS dη

]

+M2

∫ t

0

∫

D(z)
θ2 dS dη +

M1t
1/2

γ3

∫ t

0

∫

D(z)
(t− η)kijθ,iθ,j dS dη, (27)

where γi(t), i = 1, 2, 3 are positive functions of time to be chosen, M1,M2 are
given respectively by (12) and (13), whereas

M1 =
1

γ1
+

M2

c
1/2
1 γ2

, M2 =
M2tγ2

ρ
1/2
0

+M1t
1/2γ3.

Indeed, on setting for each fixed t:

γ1 = ǫp, γ2 =
ǫM2p

(ǫ2p2 − 1)c
1/2
1

, γ3 = p/ǫ, (28)

where ǫ(t) and p(t) are given by

ǫ2 =
1

2p2

{
(1 + q2 + 2p4) ±

√
(1 − q2 − 2p4)2 + 4q2

}
], (29)

and

p2 =
M1ρ

1/2
0

2(c1t)1/2
, q2 =

M2
2

c1
, (30)
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we conclude after noting (24) that substitution of inequality (27) in (25) gives

E(z, t) ≤ −γ(t)dE(z, t)

dz
+ tR(z), (31)

where γ(t) is given by

γ(t) =
ǫ√
2
M

1/2
1

(
c1
ρ0

)1/4

t3/4. (32)

Integration of (31) for each fixed t then yields:

E(z, t) ≤
(
E(0, t) + tγ−1(t)

∫ z

0
exp (yγ−1(t))R(y) dy

)
exp(−zγ−1(t)), (33)

in which the decay rate γ−1(t) depends on the thermal conductivity k33 only
through the bound M1 given by (12). Furthermore, we notice that the decay
rate becomes respectively small or large for large or small but fixed values of t,
and that for finite t ≥ 0 the energy E(z, t) decays exponentially with respect to
axial distance.

All terms, except E(0, t), on the right of (33) depend explicitly upon the
data, but without a similar dependence being established for E(0, t) the bound
is incomplete. Before discussing this topic, however, we discuss spatial stabil-
ity with respect to the temperature and displacement. This is easily demon-
strated for the temperature since (33) immediately delivers an estimate for its
mean-square measure. To obtain a corresponding estimate for the displacement
requires separate discussion of the transverse and axial components. Conse-
quently, let us first remark that Poincaré’s inequality yields:

∫ t

0

∫

D(z)
uαuα dS dη ≤ λ−1

∫ t

0

∫

D(z)
uα,βuα,β dS dη, (34)

where λ is the smallest positive eigenvalue of

φ,αα + λφ = 0, xα ∈ D, φ = 0, xα ∈ ∂D. (35)

An obvious algebraic identity and the divergence theorem lead to:

∫ t

0

∫

D(z)
uα,βuα,β dS dη = 2

∫ t

0

∫

D(z)
(eαβeαβ − uα,αuβ,β) dS dη

≤ 2

∫ t

0

∫

D(z)
eαβeαβ dS dη

≤ −(2/c0)
dE(z, t)

dz
, (36)
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where we recall (24). Integration of (36) and an appeal to either (2) or (33) then
yield:

∫ t

0

∫

B(z)
uαuα ≤(2/λc0)E(z, t)

≤(2/λc0)

(
E(0, t) + tγ−1(t)

∫ ∞

0
exp(yγ−1(t))R(y) dy

)
exp(−z/γ(t)), (37)

which is the required estimate for the transverse displacement.
For the axial displacement, we employ the argument presented in [4], which

is summarised here for completeness. On letting

V (z, t) =

∫ t

0

∫

B(z)
u2

3 dx dη, (38)

for fixed t, and on using Schwarz’s inequality together with (2), we have:

−dV (z, t)

dz
=

∫ t

0

∫

D(z)
u2

3 dS dη

= −2

∫ t

0

∫

B(z)
u3u3,3 dx dη

≤ (2/c
1/2
0 )V 1/2(z, t)E1/2(z, t). (39)

Integration of the last inequality and use of (33) enables us to conclude that

V (z, t) ≤ 4γ2(t)c−1
0

(
E(0, t) + tγ−1

∫ ∞

0
exp (yγ−1)R(y) dy

)
exp (−zγ−1(t)),

(40)
which completes the bounds for the displacement.

It remains to provide an upper bound for E(0, t) in terms of the data. It
follows from (25) and (26) that we have:

E(0, t) = −2

∫ t

0

∫

D(0)
(t− η) {ci3k3ui,3lk,η + ciαk3li,αlk,η

+βi3li,ηΦ + kijθθ,inj} dS dη + tR(0).

(41)

Let us consider the first term on the right of (41). By Schwarz’s inequality,
we obtain:

−2

∫ t

0

∫

D(0)
(t− η)ci3k3ui,3lk,η dS dη ≤ 2

[∫ t

0

∫

D(0)
(t− η)ci3k3ui,3uk,3 dS dη

×
∫ t

0

∫

D(0)
(t− η)ci3k3li,ηlk,η dS dη

]1/2

.

(42)
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We bound the first term on the right by noting that (3) implies:

∫ t

0

∫

B
(t− η)ui,3 [ρui,ηη − (cijkluk,l),j − (βijθ),j ] dx dη = 0. (43)

An application of the divergence theorem and subsequent rearrangement
yield the identity:

∫ t

0

∫

D(0)
(t− η)ci3k3ui,3uk,3 dS dη =

∫ t

0

∫

D(0)
(t− η)ciαkβli,αlk,β dS dη

− 2

∫ t

0

∫

B
(t− η)ui,ηηui,3 dx dη

+ 2

∫ t

0

∫

B
(t− η)ui,3{βij,jθ + βijθ,j} dx dη.

(44)

We next seek bounds for the last two integrals on the right in the previous
identity, and for this purpose let γ4 . . . γ6 be positive functions of time that
are to be determined. By successive application of the Schwarz and arithmetic-
geometric mean inequalities, and appeal to the bound (13), we obtain

2

∫ t

0

∫

B
(t−η)ui,3βij,jθ dx dη ≤ (M3tγ4)

∫ t

0

∫

B
ui,jui,j dx dη+

M3t

γ4

∫ t

0

∫

B
θ2 dx dη,

(45)
and

2

∫ t

0

∫

B
(t− η)ui,3βijθ,j dx dη ≤M2γ5

(
t

k0

)1/2 ∫ t

0

∫

B
ui,jui,j dx dη

+
M2

γ5

(
t

k0

)1/2 ∫ t

0

∫

B
(t− η)kijθ,iθ,j dx dη.

(46)

The second integral on the right of (44) is treated by rearrangement of terms
succeeded by integration, use of the data (15)-(18), together with standard
inequalities. Because we have that

2

∫ t

0

∫

B
(t− η)ρui,ηηui,3 dx dη = 2

∫ t

0

∫

B
(t− η) [(ρui,ηui,3),η − ρui,ηui,η3] dx dη,
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we obtain:

− 2

∫ t

0

∫

B
(t− η)ρui,ηηui,3 dx dη ≤ γ6

∫ t

0

∫

B
ρui,ηui,η dx dη

+
ρ1

γ6

∫ t

0

∫

B
ui,jui,j dx dη + 2t

∫

B
ρhigi,3 dx

−
∫ t

0

∫

D(0)
(t− η)ρli,ηli,η dS dη. (47)

We now derive a bound for the first integral on the right of (45), which
appears also in (46) and (47), and again apply an argument presented in [4,
eqn.(5.7) ff.]. We commence with the identity

∫ t

0

∫

B
ui,jui,j dx dη =

∫ t

0

∫

B
(2eijeij − 2uα,3u3,α − uα,βuβ,α − u2

3,3) dx dη, (48)

which after an integration by parts and standard inequalities yields
∫ t

0

∫

B
ui,jui,j dx dη ≤ 2c−1

0

∫ t

0

∫

B
cijkleijekl dx dη−2

∫ t

0

∫

D(0)
l3lα,α dS dη. (49)

Substitution of (45)-(49) in (44) then leads to

∫ t

0

∫

D(0)
(t− η)ci3k3ui,3uk,3 dS dη ≤ 2

c0

[
ρ1

γ6
+ γ5M2

(
t

k0

)1/2

+ γ4M3t

]
×

×
∫ t

0

∫

B
cijkleijekl dx dη + γ6

∫ t

0

∫

B
ρui,ηui,η dx η +

M3t

γ4

∫ t

0

∫

B
θ2 dx dη

+
M2

γ5

(
t

k0

)1/2 ∫ t

0

∫

B
(t− η)kijθ,iθ,j dx dη +Q1(t), (50)

where Q1(t), dependent upon the data, is expressed by

Q1(t) =

∫ t

0

∫

D(0)
(t− η)ciαkβli,αlk,β dS dη + 2t

∫

B
ρhigi,3 dx

−
∫ t

0

∫

D(0)
(t− η)li,ηli,η dS dη

− 2

[
(ρ1/γ6) + γ5M2

(
t

k0

)1/2

+ γ4M3t

]∫ t

0

∫

D(0)
l3lα,α dS dη.

(51)

In order to bound the final term in the integral appearing in (41), we introduce
the auxiliary function defined by:

ψ(x, t) = Φ(xα, t) exp(−δx3), (52)
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where δ is an arbitrary positive constant. Note that ψ(xα, 0, t) = θ(xα, 0, t), so
that we have

∫ t

0

∫

D(0)
(t− η)kijθθ,inj dS dη =

∫ t

0

∫

D(0)
(t− η)kijψθ,inj dS dη

=

∫ t

0

∫

B
(t− η)[ψ(kijθ,i),j + kijθ,iψ,j ] dx dη =

∫ t

0

∫

D(0)
(t− η)Φβi3li,η dS dη

+

∫ t

0

∫

B
(t− η)(βij,jψ + βijψ,j)ui,η dx dη +

∫ t

0

∫

B
ψθ dx dη

−
∫ t

0

∫

B
(t− η)ψ,ηθ dx dη +

∫ t

0

∫

B
(t− η)kijθ,iψ,j dx dη

−t
∫

B
fΦ(xα, 0) exp(−δx3) dx, (53)

where the last equation is obtained from (4), the divergence theorem, and the
asymptotic assumption (2). Let γ7, . . . , γ11 be positive functions of time that
are to be chosen. Standard inequalities applied to (53) give:

∫ t

0

∫

D(0)
(t− η)kijθθ,injdSdη

≤ t

2(2δρ0)1/2
[γ7M3 + γ8M2]

∫ t

0

∫

B
ρui,ηui,ηdxdη

+
1

2(2δ)1/2
[γ9 + γ10t]

∫ t

0

∫

B
θ2 dx dη

+
γ11

2δ1/2

∫ t

0

∫

B
(t− η)kijθ,iθ,j dx dη +Q2(t), (54)

where the data term Q2(t) is given by:

Q2(t) =

∫ t

0

∫

D(0)
(t− η)Φβi3li,η dS dη − t

∫

B
fΦ(xα, 0) exp(−δx3) dx

+
1

2

[
M3t

γ7
√

2δρ0
+
M2tδ

3/2

γ8
√

2ρ0
+

1

γ9

√
2δ

+
δ3/2M2

1 t

2γ11

]∫ t

0

∫

D(0)
Φ2 dS dη

+
t

4γ11δ1/2

[∫ t

0

∫

D(0)
(kαβΦ,αΦ,β − 2δkα3ΦΦ,α) dS dη

]

+
M2t

2γ8
√

2δρ0

∫ t

0

∫

D(0)
Φ,αΦ,α dS dη +

t

2γ10

√
2δ

∫ t

0

∫

D(0)
Φ2

,η dS dη. (55)

On replacing the respective terms in (41) by the bounds (50) and (54) and
after further use of the arithmetic-geometric mean inequality, we obtain for the
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arbitrary positive function γ12(t) the inequality:

E(0, t) ≤
[
γ6γ12 + t(2δρ0)

−1/2{γ7M3 + γ8M2}
] ∫ t

0

∫

B
ρui,ηui,η dx dη

+2γ12c
−1
0

[
γ−1

6 ρ1 + γ5M2(t/k0)
1/2 + γ4M3t

] ∫ t

0

∫

B
cijkleijekl dx dη

+
[
γ−1

4 γ12M3t+ (2δ)−1/2{γ9 + γ10t}
] ∫ t

0

∫

B
θ2 dx dη

+
[
γ12γ

−1
5 (t/k0)

1/2 + γ11δ
−1/2

] ∫ t

0

∫

B
(t− η)kijθ,iθ,j dx dη +Q(t),

(56)

where Q(t) is expressed in terms of data by:

Q(t) = γ12Q1(t) + 2Q2(t) − 2

∫ t

0

∫

D(0)
(t− η)ciαk3li,αlk,η dS dη

−2

∫ t

0

∫

D(0)
(t− η)βi3li,ηΦ dS dη

+
1

2γ12

∫ t

0

∫

D(0)
(t− η)ci3k3li,ηlk,η dS dη + tR(0). (57)

Finally, on selecting the functions γ4, . . . , γ12 to be

γ4 = (c0/2)

(
1 +

√
8c−1

0 + 1

)
, γ5 =

1

2

√
(c0/M2), (58)

γ6 =
√

(2ρ1/c0), γ9 = 2γ12

√
(2ρ1δ/c0), (59)

γ7 = γ8 =
2(2δρ0)

1/2M3γ12γ4

c0(M2 +M3)
, (60)

γ10 = γ12M3

√
(2δ), γ11 = 2

√
(2δ)γ12

√
(ρ1/c0), (61)

and

γ12 =
c
1/2
0 r√

2
[
ρ
1/2
1 +

√
(M2t/2k0) +M3tγ4

√
(2/c0)

] , (62)

where r is any positive number with value in the open range (0, 1), we conclude
that the estimate (56) reduces to

E(0, t) ≤ Q(t)

1 − r
, (63)

which is the required upper bound for the amplitude E(0, t) in the decay es-
timate (33). Observe that Q(t) → 0 as t → 0 and that δ may be chosen to
optimise Q(t) for a given t.
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In the next section, we demonstrate structural stability, or equivalently con-
tinuous dependence, with respect to the thermal coupling coefficients βij .

4 Structural stability with respect to thermal cou-
pling

The treatment is developed in terms of the difference displacement wi(x, t)
defined by

wi(x, t) = ui(x, t) − vi(x, t), (x, t) ∈ B × [0, T ), (64)

where we recall from the previous notation that ui and vi represent the dis-
placement components in the thermal and isothermal problems respectively.

From (3), (22), (14), (17),(18), and (15) it easily follows that

(cijklekl(w)),j + (βijθ),j = ρẅi, (x, t) ∈ B × [0, T ), (65)

where

eij(w) =
1

2
(wi,j + wj,i), (66)

and the corresponding boundary and initial conditions become:

wi(x, t) = 0, (x, t) ∈ ∂D × [0, T ), (67)

wi(x, 0) = ẇi(x, 0) = 0, x ∈ B × {0}, (68)

wi(xα, 0, t) = 0, (x, t) ∈ D(0) × [0, T ). (69)

The aim is to prove that wi(x, t) tends to zero in mean square measure as
βij → 0, and βij,k → 0. For this purpose, we introduce the energy functional

W (t) =

∫ t

0

∫

B
(t− η) [ρwi,ηwi,η + cijkleij(w)ekl(w)] dx dη. (70)

By virtue of the governing equations (65), and the homogeneous data (67)-(69),
we have that:

Ẇ (t) = 2

∫ t

0

∫

B
(t− η)(βijθ),jwi,η dx dη. (71)

Expansion of the integrand followed by application of Schwarz’s inequality then
gives:

Ẇ (t) ≤2

[
M2

2

ρ0k0

∫ t

0

∫

B
(t− η)kijθ,iθ,j dx dη

∫ t

0

∫

B
(t− η)ρw,ηw,η dx dη

]1/2

+2

[
tM2

3

ρ0

∫ t

0

∫

B
θ2 dx dη

∫ t

0

∫

B
(t− η)ρw,ηw,η dx dη

]1/2

≤2A(t)W (t)1/2E(0, t)1/2, (72)
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where we have appealed to (11),(8),(13), and (70), and where

A(t) =

(
M3(

t

ρ0
)1/2 +

M2√
(2k0ρ0)

)
. (73)

We may then conclude after further integration, standard inequalities, and
from (23) that

W (t) ≤
∫ t

0
A2(s) ds

∫ t

0
E(0, s) ds. (74)

Now, the uniform convergence to zero of the thermal coupling and its spatial
derivative implies that M2 → 0,M3 → 0 and consequently that A(t) → 0, for
all finite t. It follows from (74) and the boundedness of E(0, t), established in
the previous section, that W (t) → 0 for all finite t. Finally, on recalling the
data (67) and (69), we may use an argument similar to that employed for the
estimate (49) in order to derive the bound

∫ t

0

∫

B
(t− η)wiwi dx dη ≤ 2(λc0)

−1W (t), (75)

and the proof of the main result is complete.

We may deduce from the last inequality that the mean-square cross-sectional
measure of the difference displacement also vanishes with the thermal coupling
and its derivatives. The conclusion follows by virtue of definition (1), the asymp-
totic behaviour (2), and successive use of standard inequalities, together with
(49), (64), and (70). We have:

∫ t

0

∫

D(z)
(t− η)wiwi dS dη = −2

∫ t

0

∫

B(z)
(t− η)wiwi,3 dx dη

≤2

[∫ t

0

∫

B(z)
(t− η)wiwi dx dη

∫ t

0

∫

B(z)
(t− η)wi,3wi,3 dx dη

]1/2

≤2

[∫ t

0

∫

B
(t− η)wiwi dx dη

∫ t

0

∫

B
(t− η)wi,jwi,j dx dη

]1/2

≤4c−1
0 λ−1/2W (t), (76)

and the assertion is proved.

Remark. Detailed consequences for the decay rate of a vanishing thermal
coupling may be examined by means of the arguments presented here. An ex-
tended analysis will be developed elsewhere.
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