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1 Introduction

Since the pioneering papers of Kawai [12] and Hoérmander [8], the basic
question if
P(D) is surjective on A(2) (1)

has been studied by many authors. Here P(D) is a partial differential operators
with constant coefficients, Q2 C R™ is open and A(2) denotes the space of real
analytic functions on €. A by no means complete list of the corresponding papers
is contained in the references (see Andreotti and Nacinovich [1], Kaneko [10,11],
Zampieri [23], Braun [3], Braun, Meise and Taylor [4,5] and Langenbruch [13—
16], see also the references given in Langenbruch [15]).

For convex ) C R"™, a characterization of (1) was obtained by Hérmander [8]
using a Phragmen-Lindelof type condition valid on the complex characteristic
variety of the principal part P, of P. For general open sets €0, a different
characterization by means of locally regular elementary solutions was given in
Langenbruch [15].

In the present paper, we will concentrate on the case of half spaces

Q:=Hy:={xzeR"|(z,N) >0}, 0#N eR".
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Our main result is the following (see Theorem 1 below):

P(D) is surjective on A(Hy) if and only if P(D) is surjective on A(R"™) and
P(D) has a hyperfunction elementary solution F defined on R"™ such that F is
real analytic on Hy.

This improves the corresponding results of Langenbruch [15] and Zampie-
ri [23] considerably.

Besides the paper [8] of Hérmander, the present paper relies on the results
of Langenbruch [15,16], and the main part of our proof consists in showing that
P(D) has an elementary solution as above if P(D) is surjective on A(Hy).

The paper is organized as follows: In the first section, our main result is
stated in Theorem 1 and its proof is reduced to showing that

P(D)CA(Z) = Ca(Z) (2)
if P(D) is surjective on A(Hy). Here
Z = (R"x]0,00[) U (Hy x {0})

and Ca(Z) are the harmonic germs defined near Z.

Since Ca(Z) in a natural way is the projective limit of a projective spectrum
of (DFS)-spaces, the proof of (2) relies on the theory of projective spectra of
linear spaces and the corresponding Proj*-functors which were developed by
Palamodov [18,19] (see also Vogt [21] and the recent book of Wengenroth [22]).

The corresponding notions and the key result from Langenbruch [15, Theo-
rem 1.4] (see Theorem 3) are recalled in section 2.

In the last section, the proof of our main theorem is completed using a precise
result of Langenbruch [16] on the solvability of partial differential equations for
harmonic germs defined near non convex sets (see Theorem 6).

2 The main result

In this section, we will introduce some useful notation and formulate the
main result of this paper in Theorem 1. Using the results of Hormander [8] and
Langenbruch [15,16], the proof of the main theorem is then reduced to the proof
of the surjectivity of P(D) on a certain space of harmonic germs (see (4) below).

In the present paper, n € N always is at least 2 and €2 is an open set in R".
The real analytic functions on € are denoted by A(f2). P(D) is always a partial
differential operator in n variables with constant coefficients. The degree of P
is m and P,, denotes the principal part of P.

Our proofs will be based on harmonic germs in (n + 1) variables. Corre-
spondingly, we will use the following notations: A point in R**! is written as
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(z,y) E R" x R. A =3, .. (0/0xk)? + (8/0y)? denotes the Laplace operator
on R™"1. The harmonic germs near a set S C R"*! are denoted by Ca(S9). Of
course, P(D) = P(D,,) also operates on the harmonic germs, and in fact we will
solve the equation P(D,)f = g for harmonic germs f and g rather than for hy-
perfunctions f and g, that is, we will use the following well known representation
of hyperfunctions on 2

B(Q) := Ca( x (R {0}))/Ca( x R) (3)

(see Bengel [2] and Hormander [9, Chapter IX]). Here Ca (V) is the space of
harmonic functions on V' which are even w.r.t. y.
Let S™ denote the unit sphere in R™. The half space defined by N € S™ is
denoted by
Hy:={zeR"|(z,N)>0}.

For £ € R™ let
Ur(§) :=={z e R" | [z = &[| <k}, Uy := Ur(0)
and
Uy =UN{zeR" | (z,N) > 1/k}.

The main result of this paper is the following

1 Theorem. The following statements are equivalent:
(a) P(D) is surjective on A(Hy).

(b) P(D) is surjective on A(R™) and for any j € N there are § < 0 and a
hyperfunction F defined on {x € R™ | (x,N) > ¢ } such that

P(D)F =6 on{zx €R" | (x,N) >d} and F |y, . € A(Uj ).

(¢) P(D) is surjective on A(R™) and P(D) has an elementary solution E €
B(R™) such that E |gy€ A(HN).

(d) P(D) is surjective on A(R™) and for any g € B(R™) with g |py€ A(HN)
there is f € B(R™) with f |uy€ A(HN) such that P(D)f = g on R™.

The first characterization of surjective partial differential operators on A(€2)
for general open sets 2 C R™ has been given in Langenbruch [15]. For convex 2, a
different characterization has been given in the pioneering work of Hérmander [8]
by means of a suitable Phragmen-Lindelof type condition valid on the complex
zero variety of the principal part P, of P. Hence, the statements in Theorem 1
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are also equivalent to the corresponding statements for P,, instead of P, and
also to the statements for — IV instead of N, respectively.

The main feature of Theorem 1 is the implication ”(a) = (d)”. In fact, the
implications ”(d) = (¢) = (b)” are obvious, and the equivalence of (a) and
(b) easily follows from the results of Hormander [8] and Langenbruch [15].

Thus, Theorem 1 will be proved if we can show that (a) implies (d). Taking
into account the definition of hyperfunctions in (3) it is sufficient to show that

P(D)CA(Z) = Ca(Z) (4)
if P(D) is surjective on A(Hp ), where
Z = (R"x]0,00]) U (Hn x {0}).

Indeed, a hyperfunction g on R” is defined by a harmonic function g, defined on
R™x ]0, oo]. Since 9imy 1s real analytic, g4 can be extended to a harmonic germ
near Z. If P(D)f, = g4+ for some harmonic germ f, defined near Z then f,
defines a hyperfunction f which is analytic on Hy and which solves P(D)f = g.

3 Surjectivity via the Proj'-functor

As was noticed in (4), we have to prove that P(D) is surjective on Ca(Z)
for Z := (R"x]0,00[) U (Hx x {0}). The natural topology of this space is
rather complicated and can be defined as follows: Using a strictly decreasing
zero sequence Ax > 0 (to be chosen later, see the remarks before Theorem 8
below) we set

L = (VK X [AK,K]) U (VK’+ X [O,K])

where V}, and Vj, ; denote the closure of Uy and Uy, 4, respectively. Then

Ca(Z) = li% Ca(Zk),

that is, Ca(Z) is the projective limit of the projective spectrum
CX = {Ca(Zk),R} }
of (DFS)-spaces where the linking maps
RE : Ca(Z)) — CA(ZK) for J > K

are defined by restriction. Notice that the topology of Ca(Z) is independent of
the sequence A, while the proper choice of Ak is important for the proof of
the needed properties of the projective spectrum Cﬁ (see Theorem 3 below).
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Since the topology of Ca(Z) is so complicated the proof of (4) will rely on
the theory of projective spectra of linear spaces and the corresponding Proj*-
functors which were developed by Palamodov [18,19] (see also Vogt [21] and the
recent book of Wengenroth [22]). We will shortly introduce the corresponding
notions and facts which we need. The reader is referred to these papers for
further information.

For S € R*! let

Np(S) :={Ca(S) | P(D2)f =0}

and let
N :={Np(Zx),R} }

be the projective spectrum of the kernels of P(D,) in Ca(Zk). We thus have
the short sequence of projective spectra

0—>Ng—> fﬂcﬁ—m. (5)

The sequence (5) of projective spectra is called exact if for any K € N there is
J > K such that
P(D)Ca(Zk) D R} (Ca(Zy))- (6)

We now have the following key result which is essentially Theorem 5.1 of
Vogt [21] in our concrete situation (see also Langenbruch [15, Proposition 1.1]
for a proof which can easily be transferred to the present situation).

2 Proposition. Let the sequence of projective spectra (5) be exact. Then
P(D)CA(Z) = Ca(Z)

if (and only if) Proj'(N%) = 0.

The reader is referred to Palamodov [18,19], Vogt [21] or Wengenroth [22]
for the definition of the Proj!-functor. We do not need the definition here since
we will only use explicit criteria from Langenbruch [15] for the vanishing of the
Proj!-functor of projective (DFS)-spectra (see Theorem 3 below). We shortly
introduce the corresponding notions:

Let X = {Xk, RE} be a projective (DFS)-spectrum, that is, a projective
spectrum of (DFS)-spaces Xg = lim,_, Xk ; with Banach spaces Xk j and
compact inclusion mappings from X ;. into Xg 1. Let Bg j be the unit ball
in Xg . For X :=lim__g Xk let

RE . X — Xy

be the canonical mapping.
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To state our sufficient condition for Proj!(X) = 0 from Langenbruch [15]
we need two further notions: Firstly, we will use condition (Ps3) defined for the
spectrum X as follows (see Langenbruch [15, section 1]):

VK 3L VM 3k VI 3m,C : R¥(BL,) € C(RE(Basm) + Bir)- (7)

Secondly, we will need, that X is reduced in the sense of Braun and Vogt [6, p.
150], that is,

VK 3L VM > L : the closure of RX (X)) in Xg contains RE(X.).  (8)

In many concrete situations the following theorem allows to check if
Projl(X) = 0:

3 Theorem (Langenbruch [15, Theorem 1.4]). Proj'(X) = 0 if X is a
reduced projective (DFES)-spectrum satisfying property (Ps).

4 The proofs

In this section the proof of our main result Theorem 1 is completed. From
the discussion at the end of section 1, Proposition 2 and Theorem 3 we know
that we have to show that the sequence of projective spectra (5) is exact (which
roughly means that the equation P(D)f = g can be solved semiglobally in
Ca(Z)) and that the kernel spectrum is reduced (which is a density property)
and satisfies condition (Ps) (which is a decomposition with bounds in the kernel
spectrum). For this, we need the following two basic Lemmata (see Lemmata
1.1 and 1.2 in Langenbruch [16]). For compact sets Q C S C R™"*! let

R% : CA(S) — Ca(Q)

be the canonical mapping defined by restriction.
4 Lemma. Let Q C S C R™ ! be compact sets such that

RN\ Q does not have a bounded component. 9)
(and the same for S). Then
P(D)CA(Q) 2 BS(Ca(9))
if for any bounded set B in CA(Q); the set
B:={neCa(Q) | P(-D)p€ B}

is bounded in Ca(S)j.



Surjective partial differential operators 45

5 Lemma. Let Q C R"™! be compact with (9). Then for any bounded set
B in CA(Q) the set

B:={neCa(Q) | P(~D)uc B}

is bounded in Ca(conv(Q));.

To apply Lemma 4 we need an appropriate representation for Ca(Q);. This
is provided by the Grothendieck-Tillmann duality: Let

G(z,y) = ~|(z,y)|""/((n = Dens1) (10)

be the canonical even elementary solution of the Laplacian (see Hérmander [9],
and recall that (n + 1) > 3). For Q ¢ R"*! compact let

Cap®"TNQ) = { f € CAR"™\Q) | Jim f(§) =0}

endowed with the topology of C(R"™\Q). Ca o(R"1\Q) is a Fréchet space.
Let

() (@, y) == wu(2,y) == (), G(s =z, t —y)) for p € CA(Q)}-

Then we have the topological isomorphisms

21 Ca(Q)y — Cao(R"N\Q) = CA(R™N\Q)/Ca(R™) (11)

by the Grothendieck-Tillmann duality (Grothendieck [7, Theorem 4], Manto-
vani, Spagnolo [17], Tillmann [20, Satz 6]).

We will also use the precise surjectivity results for partial differential op-
erators on harmonic germs from Langenbruch [16], so we have to recall some
notions introduced in that paper: For a compact X C Q let

S(X,Q):={¢eR" |+ X CQ}

and let Sp(X, Q) be the component of 0 in S(X, 2). The Q-hull Xq of a compact
X C Q is defined by

Xoi={seR" |2+ 5(X,Q) c}= (] (2-9),
SESO(X7Q)

Let
J(c) :=[—c,c] for ¢ > 0.
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6 Theorem. Let P(D) be surjective on A(S2). Then for any compact X C Q
there is C' > 0 such that for any € > 0 there is 69 > 0 such that for any
0 <6 < &y, any compact convex Y C Q withY D X, := (Xq+ V:) N Vo and
any 0 <y < 9 there is 0 < 8 <~ such that

P(D)CA((X x J(8) U (Y x J(8)))
D Ca((Xe x J(8)) U (Y x J())) l(xxu(8))u(yxJ(8)) -

ProOOF. This is Langenbruch [16, Theorem 2.3.a and d] in the special case
where n = 0 and Y is convex. QED

We first apply the preceding result for 2 := Hy and for € := R"”, respec-
tively.
7 Corollary. Let P(D) be surjective on A(Hy).

(a) For any L € N there is 5, > 0 such that for any n > 0 there is E €
CA((VL,Jr X [=dp,00[) U (VL x [n,oo[)) such that

P(D)E =G near (Vi 4+ x [=6p,00]) U (VL X [n,00]).

(b) For any L € N there are Ly € N and dr, > 0 such that for any M € N,
any & € R™ with M > |§] > Lo and any n > 0 there is E¢ € C’A((VL X
[—dp,00[) U (Var x [n,00[)) such that

P(D)E: = G(- = &,) near (Vi x [—dp,00]) U (Var x [n,00]).

ProOF. (a) (I) Let 2 := Hy and
X:=CN+{zeR"|(z,N)>A,|z|<B}
for A, B,C > 0. Then
So(X,Hy) =S(X,Hy) ={2z€R" | (z,N) > -A—-C}

and
Xpy ={xzeR"|(z,N)>A+C} (12)

if B> A, since N € S”.
(IT) We now fix L € N and apply Theorem 6 for 2 := Hy and

X :=2LN+Vy=2LN+{zeR"|(x,N)>1/L,|z| <L}
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and get C' > 0 from Theorem 6. Using Theorem 6 for ¢ = 1/(2L) and (12) we
get

X100 = Xuy + Vijen) N Ve
= ({zeR"|(2,N) >2L+1/L} + Vyjor)) N Vo C2LN + Vy, 4+

for some Jy € N. From Theorem 6 we thus get §yp > 0 such that (with ¥V :=
2LN + W for W := conv(Vy,Vy, +) and 0 < v :=1n/2 < 69 /4)

P(D)CA(2LN + (Vo4 x J(00)) U (W x J(8))])
5 CA(2LN + [(Viy 4 x J(8))
U (W x J(0/2)]) l2LN+{(Vi+ xJ(50)) U (W xJ(B)]

for some 8 > 0. Since
G(- —2LN,-+n) € CA(2LN + [(Vyy,+ x J(00)) U (W x J(n/2))])
we may thus find
Ey € CA(2LN + (Vo4 x J(d)) U (W x J(8))])
such that
P(D)E; = G(- — 2LN, - + ) near 2LN + (Vi + x J(J0)) U (W x J(B))].

We now shift the sets and the functions by (—2L N, n) and restrict the functions
to get
By € Oa((Vs x (n+J(%))) U (Vi x (n+J(8))))

such that
P(D)Eg = (G near (VL7+ X (T] + J((50))) U (VL X (T] + J(ﬂ))) (13)

(III) Choose ¢ € C*(R) such that ¢ = 1 near | — co,n] and ¢ = 0 near
[n + /2, 00[. The function A(p(y)E2(z,y)) may be trivially extended (i.e. by
the value 0) to an infinitely differentiable function h defined on Uy, x R. By
the fundamental principle of Ehrenpreis-Palamodov we can find an infinitely
differentiable function h such that

P(D)h = (1 —¢)G and Ah = —h on Uy, x R. (14)
Indeed, U, x R is convex, and the relation

P(D)(~h) = A((1 - ¢)G) (15)
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is satisfied. This is trivial on Urx ] — oo,n[ and Urx |n + 3(/4,00[ while on
Upx]n—B,n+ B[ we get by (13)

P(D)(=h) = P(D2)A(=¢E2) = A(=¢P(D2)E)
= A(=¢G) = A((1 = 9)G). (16)

Set
E:=pFEs;+h.

By trivial extension of @FE5, E is then defined and harmonic on (Up x| —
207, 00[) U (UL x ]n,o0[) for o7, := dg/4 since n < §p/2. Moreover, P(D)E = G
by (14). This shows the claim in (a) for L — 1 and 27 instead of L and n,
respectively.

(b) Since P(D) is surjective on A(Hy), P(D) is also surjective on A(R™) by
Hoérmander [8]. We may therefore apply Theorem 6 for Q =R", X =V, e =1
and Y :=Vyy for M > Ly := C + 1. For £ € R™ with M > |{§| > Lo and n > 0
we thus obtain (with v :=n/2)

Ey € Ca((Ve x J(80) U (Vi x J(5)))
such that
P(D)Ey = G(- — &, - +n) near (Vi X J(6)) U (Var x J(B)).
For Ey := E1(-,- — 1) we thus get
P(D)E; = G(- — &) mear (Vi x (n+J(80))) U (Var x (n+ J(8))).

The proof of b) is now completed as in (a.Ill) above. QED

Let Ax > 0 be a strictly decreasing zero sequence such that
A < dorc41/2 (17)
for do 41 from Corollary 7(a) and let
Zks = (Vk x [Ax — 6, K +6]) U (Vi 4+ x [=6, K +9]).

8 Theorem. Let P(D) be surjective on A(Hy). Then for any K € N there
1s Jo > K such that for any J > Jy there is dg > 0 such that for any 0 < § < &
and any 0 < v < §

P(D)Ca(ZksV Z1y) D Ca(Zios U Z205) |25 502, -
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PROOF. (a) We will use Lemma 4 for S := Z;, sUZ2;, and Q := Zg sUZ 5.
Let B be bounded in Ca(Q);, and let

Bi={neCa@) | P(~D)ue B},
By Lemma 5, B is bounded in
Ca(Vy x [=6,J +4]);. (18)

(b) Let J > Jp > 2K. Fix n > 0 and let

1
Sy lol < J+1)

(z,y) € My == {(x,y) e R" ™ |y € [-1, Ag;—y—1), (z,N) <
Let 0 < 6 < min(A;/2, Ax — Ay) and choose
E € Ca((Vagq1,4 x [—24,,00]) U (Vaysr x [n,00[))
by Corollary 7(a) for L :=2J + 1 (recall that Ay < d9541/2 by (17)). Since
Q—M = (ZgsUZjy) — M C (Vagqi,4 x [-247,00]) U (Vagq1 X [0,00]))

we get by Corollary 7(a)
up (2, y) = (s, G(s — 2,8 = y)) = (i(s,), P(D)E(s — x,t — y))
= (P(=D)p(s ), E(s — z,t —y)) for (z,y) € M.

Since
{E(—=z,-—y)|(x,y) e M}
is bounded in CA(Q) and B is bounded in Ca(Q);, this implies that

{uu | e B} is uniformly bounded on Mj. (19)
Let

1 1
M, ::{($7y) 6Rn+l|y€ [_17_7_77]7§§<$7N> §70,|33| SJ—i—l}

Then
Q— My C (Vagpi4 x [-247,00[) U (Vajs1 X [,00]))

and we conclude as above that

u, | p € B} is uniformly bounded on Ms. 20
“w
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(c) Let 0 < 99 < dg+1 for di41 from Corollary 7(b). Let Jy > Lo+ 1, where
Ly is chosen for L := K + 1 by Corollary 7(b) and set

Ri={¢(cR" | Jp<|¢|<T+1}.

Since R is compact we may choose &1,...,&- € R such that
U)o r
j=1

Fix n > 0 and choose

Egj € CA((VK_H X [—dK—i-laOO[) U (VJ-i-l X [77700[))

by Corollary 7(b). Since

Q— (Vi x[=1, =y =n]) € (Vi1 X [=dry1,00[) U (Vg1 x [, 00[),

we get forx € Vi, y€[-1,—y—n]and j <r

uu(gj +xay) = (M(s,t)aG(S - é.] - xat - y)>
= <:u'(s,t)7P(D)E5j (S —x,t— y)> = (P(_D)N(s,t)a EEJ‘ (3 —x,t— y)>
Since
{Ee,(- —x,-—y) | j<rxeViyc[-1,—y—n]}
is bounded in Ca(Q), this implies as above that

{uy | pe B} is uniformly bounded on Ms (21)

for M3 = (VJ+1 \ UJO) X [—1, -y — T]].
(d) The claim follows from Lemma 4 by (18)-(21) and (11). QED

9 Corollary. Let P(D) be surjective on A(Hp). Then the sequence of pro-
jective spectra (5) is exact.

Proor. To check (6) we fix K € N and apply Theorem 8 for K + 1 instead
of K and J := Jy and set J := 2Jo. If f € Ca(Z5), then f € Ca(Z24,5) for
some 0 < 0 < §p and by Theorem 8 there is g € Ca(Zx+1,5) such that

P(D)g=f |ZK+1,6 :

Since Zx 41,5 is a neighborhood of Zx we can identify g with an element gz, €
Ca(Zk) and P(D)gz, = RJ[f(f)
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10 Corollary. Let P(D) be surjective on A(Hy). Then the projective spec-
trum NE is reduced.

PROOF. (a) To check (8), we fix v € Ca(Zk)’ such that v |y, (z,, )= 0 for
some M > 2K, and we will show that v |y, (z,,)= 0. In part (a.ILi) of the proof
of Langenbruch [15, Proposition 4.3] we already showed that

P(—D)u = v for some p € CA(R™ 1Y, (22)

By Lemma 5 we have
e Ca(Vk x [0, K]) (23)

since conv(Zg) C Vi x [0, K].
Since Ca(R™"1) is dense in Ca (Vi x [0, K]), (22) implies that

(v, f) = (P(=D)p, f) = {u, P(D) f) if f € Ca(Vie x [0, K]) (24)

hence
(v, f) =0if f € Np (Vg x [0, K]) (25)

(b) By Corollary 7(a) applied to L := 2K + 1 there are dax+1 > 0 and
FE ¢ CA((VQKJ,_L_F X [—025+1,00[) U (Vag 41 X [n,oo[)) such that

P(D)E = (G near (V2K+17+ X [_52K+17 OO[) @] (V2K+1 X [T], OO[) . (26)

On the other hand, by the fundamental principle of Ehrenpreis-Palamodov there
is F' € CA(R™x]0,00[) such that

P(D)F = G on R"x]0, 00]. (27)
For z € Ux4+1 and y €] — 2, —1[ we therefore have
PD)F(-—z,-—y)=G(-—=x,-—y) = P(D)E(- — z,- — y) near Vi x [0, K].

Hence,
F(-—z,-—y)=E(—xz,-—y)+hgy=0
for some hyy € Np(Vi x [0, K]). Since therefore v(h,,) = 0 by (25), we get
for x € Ugy1 and y €] — 2, —1]
U’M(‘Tay) = (N(s,t)a G(S —z,t— y)> = (M(s,t)a P(DS)F(S —x,t— y)>
= <P(_D):u‘(s,t)7 F(S —x,t— y)> = <V(S,t)7F(S —x,t— y)> (28)
= <V(S,t)7E(s - ﬂj‘,t - y)> = ,U($7y)7

where (28) follows from (24). v is harmonic on

My = {(z,y) e R [y €] =2, g, [a] < K + 1, (2, N) < 1/(2K) }
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since by (17)

Zg — M C (Vagq1,4+ X [=0241,00[) U (Vag41 % [n,00[)

if 0 << Ag — Ask. Using also (23) we have thus shown that p € Ca(Zok ).
Since Ca(R™*1) is dense in Ca(Z2x) we have P(—D)u = v also in Ca(Zak)'.
Thus

(v, f) = (P(=D)u, f) = (n, P(D)f) = 0 for f € Np(Z2x).

QED

We finally must check that the projective spectrum N g satisfies the property
(P3) (see (7)). For this we need to specify the (DFS)-structure of the step spaces
Np(Zgk): For K, k,c >0 let

U= {€ € R" | [¢] < ¢} and Zg (k) := Zg + Uy .
For an open set W C R™"*! let
CBA(W) :={f € Ca(W)| f is bounded on W }

and
NBp(W) := Np(W)NCBA(W).

Then the (DFS)-structure of Np(Zk) is given by

NP(ZK) = klinolo NBP(ZK(k))

11 Theorem. Let P(D) be surjective on A(Hy).Then the projective spec-
trum Ng satisfies property (Ps3).

PRrROOF. The proof is similar as for Langenbruch [15, Theorem 4.5]. It is
based on Theorem 8: We will first decompose functions in Np(Zp41(l)) as har-
monic functions (see (a) below) and then use Theorem 8 (see (c)) to obtain a
decomposition as harmonic zero solutions of P(D) (in (d)).

In the proof below we will often use the notation from section 2.

(a) For any L,l € N there is a continuous linear operator

R = (Rl,Rg) : CBA(ZL_H(Z)) — CBA(Yl,l) X CBA(YLQ)
such that Ri(f) + Rao(f) = f on int(Zp11,9;). Here
Y171 = UL+17+X] — O0,0[ U int(ZL_H’Ql)

and
YLQ = RnX] — 1/(21),00[ .
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PRrROOF. Choose ¢ € D(Z41(l)) with ¢ =1 near Zy1; 9.
For f € CBA(Z1+1(1)), ¢f can be considered as a function on Y 2, and

JF = A(Spf) ‘Y1,2

defines a function f; on R"*! by trivial extension (i.e. by setting f; = 0 outside
Yi2). fi is bounded and has compact support. Thus,

Rl(f) =Gx*fi |Y1,1

and

Ry(f) := (of =G = f1) i

have the required properties. QED

(b) For f € NBp(Zr+1(1)) we have by (a)
P(D)Ry(f) = —P(D)Ra(f) on Y11 N Y12 =int(Zp41.9)
Thus, a continuous and linear operator

R: NBp(Zr41(1)) — Ca(Y1),
Yi = Yi1 UYig = (R"] — 1(20),00]) U (Up41,4 % R),

is defined by

R(f) = P(D)Rl(f) on Y171

and
R(f) := —P(D)Ry(f) on Y1.

(c) Fix K € N and choose Jy =: L for K + 2 instead of K by Theorem 8.
Let M > L and fix k € N with

k> max(l/(so, (K + 2)2, 1/(Ax — AL))v

where dg is chosen for J := M + 2 by Theorem 8. Then for | > k + (M + 2)?
there is a continuous linear operator

S:Ca (Y1) — CBA(Y),Y := Zi(k + 2) U Zps (50),

such that
P(D)S(f) = fonY for f € Ca(YV1) (29)
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PRrROOF. Let W := ZK+2,1/k U ZM+2,1/(3l)' Since

Y12 Zr 1wV Zars2),1/@30)

the mapping
P(D)~": Ca(Y1) — Ca(W)/Np(W)

is defined, linear and continuous by Theorem 8 and the closed graph theorem.
For an open set Y in R**! let

(L2)a(Y) = Lo(Y) N Ca(Y).
(L2)a(Y) is a Hilbert space and
(L)p(Y) = (L)a(Y) N ker(P(D))
is a closed subspace. By the choice of k and 1,
Yo = Zgy1(k+1) U Zp4a(4) CC int(W),
and the restriction defines a continuous linear mapping
Ji: Ca(W)/Np(W) — (L2)a(Y2)/(L2)p(Y2).

Let
11 (Lo)a(Y2)/(L2)p(Ya) — ((La)p(¥))*

be the canonical topological isomorphism. Since
Y = Zg(k+2)U Zp(51) CC Yo,

the restriction .
Jo: ((L2)p(Y2))” — CBa(Y)

is defined and continuous. Then
S:=JyolloJ o P(D)™': Ca(Y1) — CBA(Y)

is defined, linear and continuous and satisfies (29). QED

(d) Since
ZK(k + 2) C Y171 and ZM(5Z) C Y172

by the choice of k, we may use the operators constructed in b) and (c¢) to define

T = (Tl,Tg) : NBP(ZL_H(Z)) — NBP(ZK(k)) X NBP(ZM(5Z))
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by N
Ti(f) == (Ri(f) = S o R(f))| z,c (k+2)

and

To(f) == (Ra(f) + S o R(f)) |z, 50)

for f € NBp(Zr41(1)). Notice that P(D)T = 0 by the definition of R in b) and
by (29). By (a) it is clear that

Ty(f) + T2(f) = f on Zk (k +2) N Zn(51)

if f € NBp(Zr+1(1)). This proves (Ps) since T is continuous. QED

Using the remarks at the end of section 1, the proof of Theorem 1 is now
completed by the following

12 Theorem. Let P(D) be surjective on A(Hy). Then
P(D)Ca(Z) = Ca(2).

PROOF. The sequence of projective spectra (5) is exact by Corollary 9. N g
is a reduced projective spectrum satisfying property (P3;) by Corollary 10 and
Theorem 11. The claim thus follows from Proposition 2 and Theorem 3.
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