Surjective partial differential operators on real analytic functions defined on a halfspace

Michael Langenbruch
Faculty V, Mathematics Dept., University of Oldenburg, 26129 Oldenburg, Germany
michael.langenbruch@uni-oldenburg.de

Abstract

Let $P(D)$ be a partial differential operator with constant coefficients and let $A(\Omega)$ denote the real analytic functions defined on an open set $\Omega \subset \mathbb{R}^{n}$. Let H be an open halfspace. We show that $P(D)$ is surjective on $A(H)$ if and only if $P(D)$ is surjective on $A\left(\mathbb{R}^{n}\right)$ and $P(D)$ has a hyperfunction elementary solution which is real analytic on H .

Keywords: partial differential equations, elementary solutions, surjectivity on real analytic functions

MSC 2000 classification: primary 35E20, secondary 35E05, 35A20, 46F15

Dedicated to the memory of Prof. Dr. Klaus Floret

1 Introduction

Since the pioneering papers of Kawai [12] and Hörmander [8], the basic question if

$$
\begin{equation*}
P(D) \text { is surjective on } A(\Omega) \tag{1}
\end{equation*}
$$

has been studied by many authors. Here $P(D)$ is a partial differential operators with constant coefficients, $\Omega \subset \mathbb{R}^{n}$ is open and $A(\Omega)$ denotes the space of real analytic functions on Ω. A by no means complete list of the corresponding papers is contained in the references (see Andreotti and Nacinovich [1], Kaneko [10,11], Zampieri [23], Braun [3], Braun, Meise and Taylor [4,5] and Langenbruch [1316], see also the references given in Langenbruch [15]).

For convex $\Omega \subset \mathbb{R}^{n}$, a characterization of (1) was obtained by Hörmander [8] using a Phragmen-Lindelöf type condition valid on the complex characteristic variety of the principal part P_{m} of P. For general open sets Ω, a different characterization by means of locally regular elementary solutions was given in Langenbruch [15].

In the present paper, we will concentrate on the case of half spaces

$$
\Omega:=H_{N}:=\left\{x \in \mathbb{R}^{n} \mid\langle x, N\rangle>0\right\}, 0 \neq N \in \mathbb{R}^{n} .
$$

Our main result is the following (see Theorem 1 below):
$P(D)$ is surjective on $A\left(H_{N}\right)$ if and only if $P(D)$ is surjective on $A\left(\mathbb{R}^{n}\right)$ and $P(D)$ has a hyperfunction elementary solution E defined on \mathbb{R}^{n} such that E is real analytic on H_{N}.

This improves the corresponding results of Langenbruch [15] and Zampieri [23] considerably.

Besides the paper [8] of Hörmander, the present paper relies on the results of Langenbruch [15,16], and the main part of our proof consists in showing that $P(D)$ has an elementary solution as above if $P(D)$ is surjective on $A\left(H_{N}\right)$.

The paper is organized as follows: In the first section, our main result is stated in Theorem 1 and its proof is reduced to showing that

$$
\begin{equation*}
P(D) C_{\Delta}(Z)=C_{\Delta}(Z) \tag{2}
\end{equation*}
$$

if $P(D)$ is surjective on $A\left(H_{N}\right)$. Here

$$
Z:=\left(\mathbb{R}^{n} \times\right] 0, \infty[) \cup\left(H_{N} \times\{0\}\right)
$$

and $C_{\Delta}(Z)$ are the harmonic germs defined near Z.
Since $C_{\Delta}(Z)$ in a natural way is the projective limit of a projective spectrum of (DFS)-spaces, the proof of (2) relies on the theory of projective spectra of linear spaces and the corresponding Proj^{k}-functors which were developed by Palamodov $[18,19]$ (see also Vogt [21] and the recent book of Wengenroth [22]).

The corresponding notions and the key result from Langenbruch [15, Theorem 1.4] (see Theorem 3) are recalled in section 2.

In the last section, the proof of our main theorem is completed using a precise result of Langenbruch [16] on the solvability of partial differential equations for harmonic germs defined near non convex sets (see Theorem 6).

2 The main result

In this section, we will introduce some useful notation and formulate the main result of this paper in Theorem 1. Using the results of Hörmander [8] and Langenbruch [15,16], the proof of the main theorem is then reduced to the proof of the surjectivity of $P(D)$ on a certain space of harmonic germs (see (4) below).

In the present paper, $n \in \mathbb{N}$ always is at least 2 and Ω is an open set in \mathbb{R}^{n}. The real analytic functions on Ω are denoted by $A(\Omega) . P(D)$ is always a partial differential operator in n variables with constant coefficients. The degree of P is m and P_{m} denotes the principal part of P.

Our proofs will be based on harmonic germs in $(n+1)$ variables. Correspondingly, we will use the following notations: A point in \mathbb{R}^{n+1} is written as
$(x, y) \in \mathbb{R}^{n} \times \mathbb{R} . \Delta=\sum_{k \leq n}\left(\partial / \partial x_{k}\right)^{2}+(\partial / \partial y)^{2}$ denotes the Laplace operator on \mathbb{R}^{n+1}. The harmonic germs near a set $S \subset \mathbb{R}^{n+1}$ are denoted by $C_{\Delta}(S)$. Of course, $P(D)=P\left(D_{x}\right)$ also operates on the harmonic germs, and in fact we will solve the equation $P\left(D_{x}\right) f=g$ for harmonic germs f and g rather than for hyperfunctions f and g , that is, we will use the following well known representation of hyperfunctions on Ω

$$
\begin{equation*}
\mathfrak{B}(\Omega):=\widetilde{C}_{\Delta}(\Omega \times(\mathbb{R} \backslash\{0\})) / \widetilde{C}_{\Delta}(\Omega \times \mathbb{R}) \tag{3}
\end{equation*}
$$

(see Bengel [2] and Hörmander [9, Chapter IX]). Here $\widetilde{C}_{\Delta}(V)$ is the space of harmonic functions on V which are even w.r.t. y.

Let S^{n} denote the unit sphere in \mathbb{R}^{n}. The half space defined by $N \in S^{n}$ is denoted by

$$
H_{N}:=\left\{x \in \mathbb{R}^{n} \mid\langle x, N\rangle>0\right\}
$$

For $\xi \in \mathbb{R}^{n}$ let

$$
U_{k}(\xi):=\left\{x \in \mathbb{R}^{n} \mid\|x-\xi\|<k\right\}, U_{k}:=U_{k}(0)
$$

and

$$
U_{k,+}:=U_{k} \cap\left\{x \in \mathbb{R}^{n} \mid\langle x, N\rangle>1 / k\right\} .
$$

The main result of this paper is the following
1 Theorem. The following statements are equivalent:
(a) $P(D)$ is surjective on $A\left(H_{N}\right)$.
(b) $P(D)$ is surjective on $A\left(\mathbb{R}^{n}\right)$ and for any $j \in \mathbb{N}$ there are $\delta<0$ and a hyperfunction F defined on $\left\{x \in \mathbb{R}^{n} \mid\langle x, N\rangle>\delta\right\}$ such that

$$
P(D) F=\delta \text { on }\left\{x \in \mathbb{R}^{n} \mid\langle x, N\rangle>\delta\right\} \text { and }\left.F\right|_{U_{j,+}} \in A\left(U_{j,+}\right)
$$

(c) $P(D)$ is surjective on $A\left(\mathbb{R}^{n}\right)$ and $P(D)$ has an elementary solution $E \in$ $\mathfrak{B}\left(\mathbb{R}^{n}\right)$ such that $\left.E\right|_{H_{N}} \in A\left(H_{N}\right)$.
(d) $P(D)$ is surjective on $A\left(\mathbb{R}^{n}\right)$ and for any $g \in \mathfrak{B}\left(\mathbb{R}^{n}\right)$ with $\left.g\right|_{H_{N}} \in A\left(H_{N}\right)$ there is $f \in \mathfrak{B}\left(\mathbb{R}^{n}\right)$ with $\left.f\right|_{H_{N}} \in A\left(H_{N}\right)$ such that $P(D) f=g$ on \mathbb{R}^{n}.

The first characterization of surjective partial differential operators on $A(\Omega)$ for general open sets $\Omega \subset \mathbb{R}^{n}$ has been given in Langenbruch [15]. For convex Ω, a different characterization has been given in the pioneering work of Hörmander [8] by means of a suitable Phragmen-Lindelöf type condition valid on the complex zero variety of the principal part P_{m} of P. Hence, the statements in Theorem 1
are also equivalent to the corresponding statements for P_{m} instead of P, and also to the statements for $-N$ instead of N, respectively.

The main feature of Theorem 1 is the implication " $(a) \Longrightarrow(d)$ ". In fact, the implications " $(d) \Longrightarrow(c) \Longrightarrow(b) "$ are obvious, and the equivalence of (a) and (b) easily follows from the results of Hörmander [8] and Langenbruch [15].

Thus, Theorem 1 will be proved if we can show that (a) implies (d). Taking into account the definition of hyperfunctions in (3) it is sufficient to show that

$$
\begin{equation*}
P(D) C_{\Delta}(Z)=C_{\Delta}(Z) \tag{4}
\end{equation*}
$$

if $P(D)$ is surjective on $A\left(H_{N}\right)$, where

$$
Z:=\left(\mathbb{R}^{n} \times\right] 0, \infty[) \cup\left(H_{N} \times\{0\}\right)
$$

Indeed, a hyperfunction g on \mathbb{R}^{n} is defined by a harmonic function g_{+}defined on $\left.\mathbb{R}^{n} \times\right] 0, \infty\left[\right.$. Since $g_{\mid H_{N}}$ is real analytic, g_{+}can be extended to a harmonic germ near Z. If $P(D) f_{+}=g_{+}$for some harmonic germ f_{+}defined near Z then f_{+} defines a hyperfunction f which is analytic on H_{N} and which solves $P(D) f=g$.

3 Surjectivity via the Proj^{1}-functor

As was noticed in (4), we have to prove that $P(D)$ is surjective on $C_{\Delta}(Z)$ for $Z:=\left(\mathbb{R}^{n} \times\right] 0, \infty[) \cup\left(H_{N} \times\{0\}\right)$. The natural topology of this space is rather complicated and can be defined as follows: Using a strictly decreasing zero sequence $A_{K}>0$ (to be chosen later, see the remarks before Theorem 8 below) we set

$$
Z_{K}:=\left(V_{K} \times\left[A_{K}, K\right]\right) \cup\left(V_{K,+} \times[0, K]\right)
$$

where V_{k} and $V_{k,+}$ denote the closure of U_{k} and $U_{k,+}$, respectively. Then

$$
C_{\Delta}(Z)=\lim _{\leftarrow K} C_{\Delta}\left(Z_{K}\right)
$$

that is, $C_{\Delta}(Z)$ is the projective limit of the projective spectrum

$$
C_{\Delta}^{Z}:=\left\{C_{\Delta}\left(Z_{K}\right), R_{J}^{K}\right\}
$$

of (DFS)-spaces where the linking maps

$$
R_{J}^{K}: C_{\Delta}\left(Z_{J}\right) \rightarrow C_{\Delta}\left(Z_{K}\right) \text { for } J \geq K
$$

are defined by restriction. Notice that the topology of $C_{\Delta}(Z)$ is independent of the sequence A_{K}, while the proper choice of A_{K} is important for the proof of the needed properties of the projective spectrum C_{Δ}^{Z} (see Theorem 3 below).

Since the topology of $C_{\Delta}(Z)$ is so complicated the proof of (4) will rely on the theory of projective spectra of linear spaces and the corresponding Proj${ }^{k}$ functors which were developed by Palamodov [18,19] (see also Vogt [21] and the recent book of Wengenroth [22]). We will shortly introduce the corresponding notions and facts which we need. The reader is referred to these papers for further information.

For $S \subset \mathbb{R}^{n+1}$ let

$$
N_{P}(S):=\left\{C_{\Delta}(S) \mid P\left(D_{x}\right) f=0\right\}
$$

and let

$$
N_{P}^{Z}:=\left\{N_{P}\left(Z_{K}\right), R_{J}^{K}\right\}
$$

be the projective spectrum of the kernels of $P\left(D_{x}\right)$ in $C_{\Delta}\left(Z_{K}\right)$. We thus have the short sequence of projective spectra

$$
\begin{equation*}
0 \longrightarrow N_{P}^{Z} \longrightarrow C_{\Delta}^{Z} \xrightarrow{P(D)} C_{\Delta}^{Z} \longrightarrow 0 \tag{5}
\end{equation*}
$$

The sequence (5) of projective spectra is called exact if for any $K \in \mathbb{N}$ there is $J \geq K$ such that

$$
\begin{equation*}
P(D) C_{\Delta}\left(Z_{K}\right) \supset R_{J}^{K}\left(C_{\Delta}\left(Z_{J}\right)\right) . \tag{6}
\end{equation*}
$$

We now have the following key result which is essentially Theorem 5.1 of Vogt [21] in our concrete situation (see also Langenbruch [15, Proposition 1.1] for a proof which can easily be transferred to the present situation).

2 Proposition. Let the sequence of projective spectra (5) be exact. Then

$$
P(D) C_{\Delta}(Z)=C_{\Delta}(Z)
$$

if (and only if) $\operatorname{Proj}^{1}\left(N_{P}^{Z}\right)=0$.
The reader is referred to Palamodov [18, 19], Vogt [21] or Wengenroth [22] for the definition of the Proj^{1}-functor. We do not need the definition here since we will only use explicit criteria from Langenbruch [15] for the vanishing of the Proj ${ }^{1}$-functor of projective (DFS)-spectra (see Theorem 3 below). We shortly introduce the corresponding notions:

Let $\mathfrak{X}=\left\{X_{K}, R_{J}^{K}\right\}$ be a projective (DFS)-spectrum, that is, a projective spectrum of (DFS)-spaces $X_{K}=\lim _{k} \longrightarrow X_{K, k}$ with Banach spaces $X_{K, k}$ and compact inclusion mappings from $X_{K, k}$ into $X_{K, k+1}$. Let $B_{K, k}$ be the unit ball in $X_{K, k}$. For $X:=\lim _{\hookleftarrow_{K}} X_{K}$ let

$$
R^{K}: X \longrightarrow X_{K}
$$

be the canonical mapping.

To state our sufficient condition for $\operatorname{Proj}^{1}(\mathfrak{X})=0$ from Langenbruch [15] we need two further notions: Firstly, we will use condition $\left(P_{3}\right)$ defined for the spectrum \mathfrak{X} as follows (see Langenbruch [15, section 1]):

$$
\begin{equation*}
\forall K \exists L \forall M \exists k \forall l \exists m, C: R_{L}^{K}\left(B_{L, l}\right) \subset C\left(R_{M}^{K}\left(B_{M, m}\right)+B_{K, k}\right) . \tag{7}
\end{equation*}
$$

Secondly, we will need, that \mathfrak{X} is reduced in the sense of Braun and Vogt $[6$, p. 150], that is,
$\forall K \exists L \forall M \geq L$: the closure of $R_{M}^{K}\left(X_{M}\right)$ in X_{K} contains $R_{L}^{K}\left(X_{L}\right)$.
In many concrete situations the following theorem allows to check if $\operatorname{Proj}^{1}(\mathfrak{X})=0:$

3 Theorem (Langenbruch [15, Theorem 1.4]). $\operatorname{Proj}^{1}(\mathfrak{X})=0$ if \mathfrak{X} is a reduced projective (DFS)-spectrum satisfying property $\left(P_{3}\right)$.

4 The proofs

In this section the proof of our main result Theorem 1 is completed. From the discussion at the end of section 1, Proposition 2 and Theorem 3 we know that we have to show that the sequence of projective spectra (5) is exact (which roughly means that the equation $P(D) f=g$ can be solved semiglobally in $C_{\Delta}(Z)$) and that the kernel spectrum is reduced (which is a density property) and satisfies condition $\left(P_{3}\right)$ (which is a decomposition with bounds in the kernel spectrum). For this, we need the following two basic Lemmata (see Lemmata 1.1 and 1.2 in Langenbruch [16]). For compact sets $Q \subset S \subset \mathbb{R}^{n+1}$ let

$$
R_{S}^{Q}: C_{\Delta}(S) \longrightarrow C_{\Delta}(Q)
$$

be the canonical mapping defined by restriction.
4 Lemma. Let $Q \subset S \subset \mathbb{R}^{n+1}$ be compact sets such that
$\mathbb{R}^{n+1} \backslash Q$ does not have a bounded component.
(and the same for S). Then

$$
P(D) C_{\Delta}(Q) \supset R_{S}^{Q}\left(C_{\Delta}(S)\right)
$$

if for any bounded set B in $C_{\Delta}(Q)_{b}^{\prime}$ the set

$$
\widetilde{B}:=\left\{\mu \in C_{\Delta}(Q)^{\prime} \mid P(-D) \mu \in B\right\}
$$

is bounded in $C_{\Delta}(S)_{b}^{\prime}$.

5 Lemma. Let $Q \subset \mathbb{R}^{n+1}$ be compact with (9). Then for any bounded set B in $C_{\Delta}(Q)_{b}^{\prime}$ the set

$$
\widetilde{B}:=\left\{\mu \in C_{\Delta}(Q)^{\prime} \mid P(-D) \mu \in B\right\}
$$

is bounded in $C_{\Delta}(\operatorname{conv}(Q))_{b}^{\prime}$.
To apply Lemma 4 we need an appropriate representation for $C_{\Delta}(Q)_{b}^{\prime}$. This is provided by the Grothendieck-Tillmann duality: Let

$$
\begin{equation*}
G(x, y):=-|(x, y)|^{1-n} /\left((n-1) c_{n+1}\right) \tag{10}
\end{equation*}
$$

be the canonical even elementary solution of the Laplacian (see Hörmander [9], and recall that $(n+1) \geq 3)$. For $Q \subset \mathbb{R}^{n+1}$ compact let

$$
C_{\Delta, 0}\left(\mathbb{R}^{n+1} \backslash Q\right):=\left\{f \in C_{\Delta}\left(\mathbb{R}^{n+1} \backslash Q\right) \mid \lim _{\xi \rightarrow \infty} f(\xi)=0\right\}
$$

endowed with the topology of $C\left(\mathbb{R}^{n+1} \backslash Q\right) . C_{\Delta, 0}\left(\mathbb{R}^{n+1} \backslash Q\right)$ is a Fréchet space. Let

$$
\varkappa(\mu)(x, y):=u_{\mu}(x, y):=\left\langle\mu_{(s, t)}, G(s-x, t-y)\right\rangle \text { for } \mu \in C_{\Delta}(Q)_{b}^{\prime}
$$

Then we have the topological isomorphisms

$$
\begin{equation*}
\varkappa: C_{\Delta}(Q)_{b}^{\prime} \longrightarrow C_{\Delta, 0}\left(\mathbb{R}^{n+1} \backslash Q\right) \cong C_{\Delta}\left(\mathbb{R}^{n+1} \backslash Q\right) / C_{\Delta}\left(\mathbb{R}^{n+1}\right) \tag{11}
\end{equation*}
$$

by the Grothendieck-Tillmann duality (Grothendieck [7, Theorem 4], Mantovani, Spagnolo [17], Tillmann [20, Satz 6]).

We will also use the precise surjectivity results for partial differential operators on harmonic germs from Langenbruch [16], so we have to recall some notions introduced in that paper: For a compact $X \subset \Omega$ let

$$
S(X, \Omega):=\left\{\xi \in \mathbb{R}^{n} \mid \xi+X \subset \Omega\right\}
$$

and let $S_{0}(X, \Omega)$ be the component of 0 in $S(X, \Omega)$. The Ω-hull X_{Ω} of a compact $X \subset \Omega$ is defined by

$$
X_{\Omega}:=\left\{x \in \mathbb{R}^{n} \mid x+S_{0}(X, \Omega) \subset \Omega\right\}=\bigcap_{\xi \in S_{0}(X, \Omega)}(\Omega-\xi)
$$

Let

$$
J(c):=[-c, c] \text { for } c>0
$$

6 Theorem. Let $P(D)$ be surjective on $A(\Omega)$. Then for any compact $X \subset \Omega$ there is $C>0$ such that for any $\varepsilon>0$ there is $\delta_{0}>0$ such that for any $0<\delta \leq \delta_{0}$, any compact convex $Y \subset \Omega$ with $Y \supset \widetilde{X}_{\varepsilon}:=\left(X_{\Omega}+V_{\varepsilon}\right) \cap V_{C}$ and any $0<\gamma<\delta$ there is $0<\beta<\gamma$ such that

$$
\begin{aligned}
P(D) C_{\Delta}((X \times J(\delta)) & \cup(Y \times J(\beta))) \\
& \left.\supset C_{\Delta}\left(\left(\tilde{X}_{\varepsilon} \times J(\delta)\right) \cup(Y \times J(\gamma))\right)\right|_{(X \times J(\delta)) \cup(Y \times J(\beta))}
\end{aligned}
$$

Proof. This is Langenbruch [16, Theorem 2.3.a and d] in the special case where $\eta=0$ and Y is convex.

We first apply the preceding result for $\Omega:=H_{N}$ and for $\Omega:=\mathbb{R}^{n}$, respectively.

7 Corollary. Let $P(D)$ be surjective on $A\left(H_{N}\right)$.
(a) For any $L \in \mathbb{N}$ there is $\delta_{L}>0$ such that for any $\eta>0$ there is $E \in$ $C_{\Delta}\left(\left(V_{L,+} \times\left[-\delta_{L}, \infty[) \cup\left(V_{L} \times[\eta, \infty[))\right.\right.\right.\right.$ such that

$$
P(D) E=G \text { near }\left(V_{L,+} \times\left[-\delta_{L}, \infty[) \cup\left(V_{L} \times[\eta, \infty[)\right.\right.\right.
$$

(b) For any $L \in \mathbb{N}$ there are $L_{0} \in \mathbb{N}$ and $d_{L}>0$ such that for any $M \in \mathbb{N}$, any $\xi \in \mathbb{R}^{n}$ with $M \geq|\xi| \geq L_{0}$ and any $\eta>0$ there is $E_{\xi} \in C_{\Delta}\left(\left(V_{L} \times\right.\right.$ $\left[-d_{L}, \infty[) \cup\left(V_{M} \times[\eta, \infty[))\right.\right.$ such that

$$
P(D) E_{\xi}=G(\cdot-\xi, \cdot) \text { near }\left(V_{L} \times\left[-d_{L}, \infty[) \cup\left(V_{M} \times[\eta, \infty[)\right.\right.\right.
$$

Proof. (a) (I) Let $\Omega:=H_{N}$ and

$$
X:=C N+\left\{x \in \mathbb{R}^{n}|\langle x, N\rangle \geq A,|x| \leq B\}\right.
$$

for $A, B, C>0$. Then

$$
S_{0}\left(X, H_{N}\right)=S\left(X, H_{N}\right)=\left\{x \in \mathbb{R}^{n} \mid\langle x, N\rangle>-A-C\right\}
$$

and

$$
\begin{equation*}
X_{H_{N}}=\left\{x \in \mathbb{R}^{n} \mid\langle x, N\rangle \geq A+C\right\} \tag{12}
\end{equation*}
$$

if $B \geq A$, since $N \in S^{n}$.
(II) We now fix $L \in \mathbb{N}$ and apply Theorem 6 for $\Omega:=H_{N}$ and

$$
X:=2 L N+V_{L,+}=2 L N+\left\{x \in \mathbb{R}^{n}|\langle x, N\rangle \geq 1 / L,|x| \leq L\}\right.
$$

and get $C>0$ from Theorem 6. Using Theorem 6 for $\varepsilon=1 /(2 L)$ and (12) we get

$$
\begin{aligned}
\widetilde{X}_{1 /(2 L)} & =\left(X_{H_{N}}+V_{1 /(2 L)}\right) \cap V_{C} \\
& =\left(\left\{x \in \mathbb{R}^{n} \mid\langle x, N\rangle \geq 2 L+1 / L\right\}+V_{1 /(2 L)}\right) \cap V_{C} \subset 2 L N+V_{J_{0},+}
\end{aligned}
$$

for some $J_{0} \in \mathbb{N}$. From Theorem 6 we thus get $\delta_{0}>0$ such that (with $Y:=$ $2 L N+W$ for $W:=\operatorname{conv}\left(V_{L}, V_{J_{0},+}\right)$ and $\left.0<\gamma:=\eta / 2 \leq \delta_{0} / 4\right)$

$$
\begin{aligned}
& P(D) C_{\Delta}\left(2 L N+\left[\left(V_{L,+} \times J\left(\delta_{0}\right)\right) \cup(W \times J(\beta))\right]\right) \\
& \supset C_{\Delta}(2 L N+\left[\left(V_{J_{0},+} \times J\left(\delta_{0}\right)\right)\right. \\
&\cup(W \times J(\eta / 2))])\left.\right|_{2 L N+\left[\left(V_{L,+} \times J\left(\delta_{0}\right)\right) \cup(W \times J(\beta))\right]}
\end{aligned}
$$

for some $\beta>0$. Since

$$
G(\cdot-2 L N, \cdot+\eta) \in C_{\Delta}\left(2 L N+\left[\left(V_{J_{0},+} \times J\left(\delta_{0}\right)\right) \cup(W \times J(\eta / 2))\right]\right)
$$

we may thus find

$$
E_{1} \in C_{\Delta}\left(2 L N+\left[\left(V_{L,+} \times J\left(\delta_{0}\right)\right) \cup(W \times J(\beta))\right]\right)
$$

such that

$$
P(D) E_{1}=G(\cdot-2 L N, \cdot+\eta) \text { near } 2 L N+\left[\left(V_{L,+} \times J\left(\delta_{0}\right)\right) \cup(W \times J(\beta))\right]
$$

We now shift the sets and the functions by $(-2 L N, \eta)$ and restrict the functions to get

$$
E_{2} \in C_{\Delta}\left(\left(V_{L,+} \times\left(\eta+J\left(\delta_{0}\right)\right)\right) \cup\left(V_{L} \times(\eta+J(\beta))\right)\right)
$$

such that

$$
\begin{equation*}
P(D) E_{2}=G \text { near }\left(V_{L,+} \times\left(\eta+J\left(\delta_{0}\right)\right)\right) \cup\left(V_{L} \times(\eta+J(\beta))\right) \tag{13}
\end{equation*}
$$

(III) Choose $\varphi \in C^{\infty}(\mathbb{R})$ such that $\varphi=1$ near $\left.]-\infty, \eta\right]$ and $\varphi=0$ near $\left[\eta+\beta / 2, \infty\left[\right.\right.$. The function $\Delta\left(\varphi(y) E_{2}(x, y)\right)$ may be trivially extended (i.e. by the value 0) to an infinitely differentiable function \tilde{h} defined on $U_{L} \times \mathbb{R}$. By the fundamental principle of Ehrenpreis-Palamodov we can find an infinitely differentiable function h such that

$$
\begin{equation*}
P(D) h=(1-\varphi) G \text { and } \Delta h=-\tilde{h} \text { on } U_{L} \times \mathbb{R} \tag{14}
\end{equation*}
$$

Indeed, $U_{L} \times \mathbb{R}$ is convex, and the relation

$$
\begin{equation*}
P(D)(-\tilde{h})=\Delta((1-\varphi) G) \tag{15}
\end{equation*}
$$

is satisfied. This is trivial on $\left.U_{L} \times\right]-\infty, \eta\left[\right.$ and $\left.U_{L} \times\right] \eta+3 \beta / 4, \infty[$ while on $\left.U_{L} \times\right] \eta-\beta, \eta+\beta[$ we get by (13)

$$
\begin{align*}
P(D)(-\tilde{h}) & =P\left(D_{x}\right) \Delta\left(-\varphi E_{2}\right)=\Delta\left(-\varphi P\left(D_{x}\right) E_{2}\right) \\
& =\Delta(-\varphi G)=\Delta((1-\varphi) G) . \tag{16}
\end{align*}
$$

Set

$$
E:=\varphi E_{2}+h .
$$

By trivial extension of $\varphi E_{2}, E$ is then defined and harmonic on $\left(U_{L,+} \times\right]-$ $2 \delta_{L}, \infty[) \cup\left(U_{L} \times\right] \eta, \infty[)$ for $\delta_{L}:=\delta_{0} / 4$ since $\eta \leq \delta_{0} / 2$. Moreover, $P(D) E=G$ by (14). This shows the claim in (a) for $L-1$ and 2η instead of L and η, respectively.
(b) Since $P(D)$ is surjective on $A\left(H_{N}\right), P(D)$ is also surjective on $A\left(\mathbb{R}^{n}\right)$ by Hörmander [8]. We may therefore apply Theorem 6 for $\Omega=\mathbb{R}^{n}, X=V_{L}, \varepsilon=1$ and $Y:=V_{M}$ for $M \geq L_{0}:=C+1$. For $\xi \in \mathbb{R}^{n}$ with $M \geq|\xi| \geq L_{0}$ and $\eta>0$ we thus obtain (with $\gamma:=\eta / 2$)

$$
E_{1} \in C_{\Delta}\left(\left(V_{L} \times J\left(\delta_{0}\right)\right) \cup\left(V_{M} \times J(\beta)\right)\right)
$$

such that

$$
P(D) E_{1}=G(\cdot-\xi, \cdot+\eta) \text { near }\left(V_{L} \times J\left(\delta_{0}\right)\right) \cup\left(V_{M} \times J(\beta)\right)
$$

For $E_{2}:=E_{1}(\cdot, \cdot-\eta)$ we thus get

$$
P(D) E_{2}=G(\cdot-\xi, \cdot) \text { near }\left(V_{L} \times\left(\eta+J\left(\delta_{0}\right)\right)\right) \cup\left(V_{M} \times(\eta+J(\beta))\right) .
$$

The proof of b) is now completed as in (a.III) above.
Let $A_{K}>0$ be a strictly decreasing zero sequence such that

$$
\begin{equation*}
A_{K} \leq \delta_{2 K+1} / 2 \tag{17}
\end{equation*}
$$

for $\delta_{2 K+1}$ from Corollary $7(\mathrm{a})$ and let

$$
Z_{K, \delta}:=\left(V_{K} \times\left[A_{K}-\delta, K+\delta\right]\right) \cup\left(V_{K,+} \times[-\delta, K+\delta]\right)
$$

8 Theorem. Let $P(D)$ be surjective on $A\left(H_{N}\right)$. Then for any $K \in \mathbb{N}$ there is $J_{0}>K$ such that for any $J \geq J_{0}$ there is $\delta_{0}>0$ such that for any $0<\delta \leq \delta_{0}$ and any $0<\gamma<\delta$

$$
\left.P(D) C_{\Delta}\left(Z_{K, \delta} \cup Z_{J, \gamma}\right) \supset C_{\Delta}\left(Z_{J_{0}, \delta} \cup Z_{2 J, \gamma}\right)\right|_{Z_{K, \delta} \cup Z_{J, \gamma}}
$$

Proof. (a) We will use Lemma 4 for $S:=Z_{J_{0}, \delta} \cup Z_{2 J, \gamma}$ and $Q:=Z_{K, \delta} \cup Z_{J, \gamma}$. Let B be bounded in $C_{\Delta}(Q)_{b}^{\prime}$ and let

$$
\widetilde{B}:=\left\{\mu \in C_{\Delta}(Q)^{\prime} \mid P(-D) \mu \in B\right\} .
$$

By Lemma $5, \widetilde{B}$ is bounded in

$$
\begin{equation*}
C_{\Delta}\left(V_{J} \times[-\delta, J+\delta]\right)_{b}^{\prime} . \tag{18}
\end{equation*}
$$

(b) Let $J \geq J_{0} \geq 2 K$. Fix $\eta>0$ and let
$(x, y) \in M_{1}:=\left\{(x, y) \in \mathbb{R}^{n+1}\left|y \in\left[-1, A_{2 J}-\gamma-\eta\right],\langle x, N\rangle \leq \frac{1}{2 J},|x| \leq J+1\right\}\right.$.
Let $0<\delta_{0} \leq \min \left(A_{J} / 2, A_{K}-A_{J}\right)$ and choose

$$
E \in C_{\Delta}\left(\left(V_{2 J+1,+} \times\left[-2 A_{J}, \infty[) \cup\left(V_{2 J+1} \times[\eta, \infty[))\right.\right.\right.\right.
$$

by Corollary 7(a) for $L:=2 J+1$ (recall that $A_{J} \leq \delta_{2 J+1} / 2$ by (17)). Since

$$
Q-M_{1}=\left(Z_{K, \delta} \cup Z_{J, \gamma}\right)-M_{1} \subset\left(V_{2 J+1,+} \times\left[-2 A_{J}, \infty[) \cup\left(V_{2 J+1} \times[\eta, \infty[))\right.\right.\right.
$$

we get by Corollary 7(a)

$$
\begin{aligned}
u_{\mu}(x, y)=\left\langle\mu_{(s, t)}, G(s-x,\right. & t-y)\rangle=\left\langle\mu_{(s, t)}, P(D) E(s-x, t-y)\right\rangle \\
& =\left\langle P(-D) \mu_{(s, t)}, E(s-x, t-y)\right\rangle \text { for }(x, y) \in M_{1} .
\end{aligned}
$$

Since

$$
\left\{E(\cdot-x, \cdot-y) \mid(x, y) \in M_{1}\right\}
$$

is bounded in $C_{\Delta}(Q)$ and B is bounded in $C_{\Delta}(Q)_{b}^{\prime}$, this implies that

$$
\begin{equation*}
\left\{u_{\mu} \mid \mu \in \widetilde{B}\right\} \text { is uniformly bounded on } M_{1} \text {. } \tag{19}
\end{equation*}
$$

Let

$$
M_{2}:=\left\{(x, y) \in \mathbb{R}^{n+1}\left|y \in[-1,-\gamma-\eta], \frac{1}{2 J} \leq\langle x, N\rangle \leq \frac{1}{J_{0}},|x| \leq J+1\right\} .\right.
$$

Then

$$
Q-M_{2} \subset\left(V_{2 J+1,+} \times\left[-2 A_{J}, \infty[) \cup\left(V_{2 J+1} \times[\eta, \infty[))\right.\right.\right.
$$

and we conclude as above that

$$
\begin{equation*}
\left\{u_{\mu} \mid \mu \in \widetilde{B}\right\} \text { is uniformly bounded on } M_{2} \text {. } \tag{20}
\end{equation*}
$$

(c) Let $0<\delta_{0} \leq d_{K+1}$ for d_{K+1} from Corollary $7(\mathrm{~b})$. Let $J_{0} \geq L_{0}+1$, where L_{0} is chosen for $L:=K+1$ by Corollary 7(b) and set

$$
R:=\left\{\xi \in \mathbb{R}^{n}\left|J_{0} \leq|\xi| \leq J+1\right\}\right.
$$

Since R is compact we may choose $\xi_{1}, \ldots, \xi_{r} \in R$ such that

$$
\bigcup_{j=1}^{r} U_{1}\left(\xi_{j}\right) \supset R
$$

Fix $\eta>0$ and choose

$$
E_{\xi_{j}} \in C_{\Delta}\left(\left(V_{K+1} \times\left[-d_{K+1}, \infty[) \cup\left(V_{J+1} \times[\eta, \infty[))\right.\right.\right.\right.
$$

by Corollary 7(b). Since

$$
Q-\left(V_{1} \times[-1,-\gamma-\eta]\right) \subset\left(V_{K+1} \times\left[-d_{K+1}, \infty[) \cup\left(V_{J+1} \times[\eta, \infty[)\right.\right.\right.
$$

we get for $x \in V_{1}, y \in[-1,-\gamma-\eta]$ and $j \leq r$

$$
\begin{aligned}
& u_{\mu}\left(\xi_{j}+x, y\right)=\left\langle\mu_{(s, t)}, G\left(s-\xi_{j}-x, t-y\right)\right\rangle \\
& \quad=\left\langle\mu_{(s, t)}, P(D) E_{\xi_{j}}(s-x, t-y)\right\rangle=\left\langle P(-D) \mu_{(s, t)}, E_{\xi_{j}}(s-x, t-y)\right\rangle
\end{aligned}
$$

Since

$$
\left\{E_{\xi_{j}}(\cdot-x, \cdot-y) \mid j \leq r, x \in V_{1}, y \in[-1,-\gamma-\eta]\right\}
$$

is bounded in $C_{\Delta}(Q)$, this implies as above that

$$
\begin{equation*}
\left\{u_{\mu} \mid \mu \in \widetilde{B}\right\} \text { is uniformly bounded on } M_{3} \tag{21}
\end{equation*}
$$

for $M_{3}:=\left(V_{J+1} \backslash U_{J_{0}}\right) \times[-1,-\gamma-\eta]$.
(d) The claim follows from Lemma 4 by (18)-(21) and (11).

QED
9 Corollary. Let $P(D)$ be surjective on $A\left(H_{N}\right)$. Then the sequence of projective spectra (5) is exact.

Proof. To check (6) we fix $K \in \mathbb{N}$ and apply Theorem 8 for $K+1$ instead of K and $J:=J_{0}$ and set $\widetilde{J}:=2 J_{0}$. If $f \in C_{\Delta}\left(Z_{\widetilde{J}}\right)$, then $f \in C_{\Delta}\left(Z_{2 J_{0}, \delta}\right)$ for some $0<\delta<\delta_{0}$ and by Theorem 8 there is $g \in C_{\Delta}\left(Z_{K+1, \delta}\right)$ such that

$$
P(D) g=\left.f\right|_{Z_{K+1, \delta}}
$$

Since $Z_{K+1, \delta}$ is a neighborhood of Z_{K} we can identify g with an element $g_{Z_{K}} \in$ $C_{\Delta}\left(Z_{K}\right)$ and $P(D) g_{Z_{K}}=R_{\widetilde{J}}^{K}(f)$.

10 Corollary. Let $P(D)$ be surjective on $A\left(H_{N}\right)$. Then the projective spectrum N_{P}^{Z} is reduced.

Proof. (a) To check (8), we fix $\nu \in C_{\Delta}\left(Z_{K}\right)^{\prime}$ such that $\left.\nu\right|_{N_{P}\left(Z_{M}\right)}=0$ for some $M \geq 2 K$, and we will show that $\left.\nu\right|_{N_{P}\left(Z_{2 K}\right)}=0$. In part (a.II.i) of the proof of Langenbruch [15, Proposition 4.3] we already showed that

$$
\begin{equation*}
P(-D) \mu=\nu \text { for some } \mu \in C_{\Delta}\left(\mathbb{R}^{n+1}\right)^{\prime} \tag{22}
\end{equation*}
$$

By Lemma 5 we have

$$
\begin{equation*}
\mu \in C_{\Delta}\left(V_{K} \times[0, K]\right)^{\prime} \tag{23}
\end{equation*}
$$

since $\operatorname{conv}\left(Z_{K}\right) \subset V_{K} \times[0, K]$.
Since $C_{\Delta}\left(\mathbb{R}^{n+1}\right)$ is dense in $C_{\Delta}\left(V_{K} \times[0, K]\right)$, (22) implies that

$$
\begin{equation*}
\langle\nu, f\rangle=\langle P(-D) \mu, f\rangle=\langle\mu, P(D) f\rangle \text { if } f \in C_{\Delta}\left(V_{K} \times[0, K]\right) \tag{24}
\end{equation*}
$$

hence

$$
\begin{equation*}
\langle\nu, f\rangle=0 \text { if } f \in N_{P}\left(V_{K} \times[0, K]\right) \tag{25}
\end{equation*}
$$

(b) By Corollary 7(a) applied to $L:=2 K+1$ there are $\delta_{2 K+1}>0$ and $E \in C_{\Delta}\left(\left(V_{2 K+1,+} \times\left[-\delta_{2 K+1}, \infty[) \cup\left(V_{2 K+1} \times[\eta, \infty[))\right.\right.\right.\right.$ such that

$$
\begin{equation*}
P(D) E=G \text { near }\left(V_{2 K+1,+} \times\left[-\delta_{2 K+1}, \infty[) \cup\left(V_{2 K+1} \times[\eta, \infty[)\right.\right.\right. \tag{26}
\end{equation*}
$$

On the other hand, by the fundamental principle of Ehrenpreis-Palamodov there is $F \in C_{\Delta}\left(\mathbb{R}^{n} \times\right] 0, \infty[)$ such that

$$
\begin{equation*}
\left.P(D) F=G \text { on } \mathbb{R}^{n} \times\right] 0, \infty[\tag{27}
\end{equation*}
$$

For $x \in U_{K+1}$ and $\left.y \in\right]-2,-1[$ we therefore have

$$
P(D) F(\cdot-x, \cdot-y)=G(\cdot-x, \cdot-y)=P(D) E(\cdot-x, \cdot-y) \text { near } V_{K} \times[0, K]
$$

Hence,

$$
F(\cdot-x, \cdot-y)=E(\cdot-x, \cdot-y)+h_{x, y}=0
$$

for some $h_{x, y} \in N_{P}\left(V_{K} \times[0, K]\right)$. Since therefore $\nu\left(h_{x, y}\right)=0$ by (25), we get for $x \in U_{K+1}$ and $\left.y \in\right]-2,-1[$

$$
\begin{gather*}
u_{\mu}(x, y)=\left\langle\mu_{(s, t)}, G(s-x, t-y)\right\rangle=\left\langle\mu_{(s, t)}, P\left(D_{s}\right) F(s-x, t-y)\right\rangle \\
=\left\langle P(-D) \mu_{(s, t)}, F(s-x, t-y)\right\rangle=\left\langle\nu_{(s, t)}, F(s-x, t-y)\right\rangle \tag{28}\\
=\left\langle\nu_{(s, t)}, E(s-x, t-y)\right\rangle=: v(x, y)
\end{gather*}
$$

where (28) follows from (24). v is harmonic on

$$
M_{1}:=\left\{(x, y) \in \mathbb{R}^{n+1} \mid y \in\right]-2, A_{2 K}[,|x|<K+1,\langle x, N\rangle<1 /(2 K)\}
$$

since by (17)

$$
Z_{K}-M_{1} \subset\left(V_{2 K+1,+} \times\left[-\delta_{2 K+1}, \infty[) \cup\left(V_{2 K+1} \times[\eta, \infty[)\right.\right.\right.
$$

if $0<\eta<A_{K}-A_{2 K}$. Using also (23) we have thus shown that $\mu \in C_{\Delta}\left(Z_{2 K}\right)^{\prime}$. Since $C_{\Delta}\left(\mathbb{R}^{n+1}\right)$ is dense in $C_{\Delta}\left(Z_{2 K}\right)$ we have $P(-D) \mu=\nu$ also in $C_{\Delta}\left(Z_{2 K}\right)^{\prime}$. Thus

$$
\langle\nu, f\rangle=\langle P(-D) \mu, f\rangle=\langle\mu, P(D) f\rangle=0 \text { for } f \in N_{P}\left(Z_{2 K}\right)
$$

We finally must check that the projective spectrum N_{P}^{Z} satisfies the property $\left(P_{3}\right)$ (see (7)). For this we need to specify the (DFS)-structure of the step spaces $N_{P}\left(Z_{K}\right)$: For $K, k, c>0$ let

$$
\widetilde{U}_{c}:=\left\{\xi \in \mathbb{R}^{n+1}| | \xi \mid<c\right\} \text { and } Z_{K}(k):=Z_{K}+\widetilde{U}_{1 / k}
$$

For an open set $W \subset \mathbb{R}^{n+1}$ let

$$
C B_{\Delta}(W):=\left\{f \in C_{\Delta}(W) \mid f \text { is bounded on } W\right\}
$$

and

$$
N B_{P}(W):=N_{P}(W) \cap C B_{\Delta}(W)
$$

Then the (DFS)-structure of $N_{P}\left(Z_{K}\right)$ is given by

$$
N_{P}\left(Z_{K}\right)=\lim _{k \rightarrow \infty} N B_{P}\left(Z_{K}(k)\right)
$$

11 Theorem. Let $P(D)$ be surjective on $A\left(H_{N}\right)$. Then the projective spectrum N_{P}^{Z} satisfies property $\left(P_{3}\right)$.

Proof. The proof is similar as for Langenbruch [15, Theorem 4.5]. It is based on Theorem 8: We will first decompose functions in $N_{P}\left(Z_{L+1}(l)\right)$ as harmonic functions (see (a) below) and then use Theorem 8 (see (c)) to obtain a decomposition as harmonic zero solutions of $P(D)$ (in (d)).

In the proof below we will often use the notation from section 2.
(a) For any $L, l \in \mathbb{N}$ there is a continuous linear operator

$$
R=\left(R_{1}, R_{2}\right): C B_{\Delta}\left(Z_{L+1}(l)\right) \longrightarrow C B_{\Delta}\left(Y_{1,1}\right) \times C B_{\Delta}\left(Y_{1,2}\right)
$$

such that $R_{1}(f)+R_{2}(f)=f$ on $\operatorname{int}\left(Z_{L+1,2 l}\right)$. Here

$$
\left.Y_{1,1}:=U_{L+1,+} \times\right]-\infty, 0\left[\cup \operatorname{int}\left(Z_{L+1,2 l}\right)\right.
$$

and

$$
\left.Y_{1,2}:=\mathbb{R}^{n} \times\right]-1 /(2 l), \infty[
$$

Proof. Choose $\varphi \in D\left(Z_{L+1}(l)\right)$ with $\varphi=1$ near $Z_{L+1,2 l}$.
For $f \in C B_{\Delta}\left(Z_{L+1}(l)\right), \varphi f$ can be considered as a function on $Y_{1,2}$, and

$$
\tilde{f}:=\left.\Delta(\varphi f)\right|_{Y_{1,2}}
$$

defines a function f_{1} on \mathbb{R}^{n+1} by trivial extension (i.e. by setting $f_{1} \equiv 0$ outside $\left.Y_{1,2}\right) . f_{1}$ is bounded and has compact support. Thus,

$$
R_{1}(f):=\left.G * f_{1}\right|_{Y_{1,1}}
$$

and

$$
R_{2}(f):=\left.\left(\varphi f-G * f_{1}\right)\right|_{Y_{1,2}}
$$

have the required properties.
(b) For $f \in N B_{P}\left(Z_{L+1}(l)\right)$ we have by (a)

$$
P(D) R_{1}(f)=-P(D) R_{2}(f) \text { on } Y_{1,1} \cap Y_{1,2}=\operatorname{int}\left(Z_{L+1,2 l}\right) .
$$

Thus, a continuous and linear operator

$$
\begin{gathered}
\widetilde{R}: N B_{P}\left(Z_{L+1}(l)\right) \longrightarrow C_{\Delta}\left(Y_{1}\right), \\
Y_{1}:=Y_{1,1} \cup Y_{1,2}=\left(\mathbb{R}^{n} \times\right]-1(2 l), \infty[) \cup\left(U_{L+1,+} \times \mathbb{R}\right),
\end{gathered}
$$

is defined by

$$
\widetilde{R}(f):=P(D) R_{1}(f) \text { on } Y_{1,1}
$$

and

$$
\widetilde{R}(f):=-P(D) R_{2}(f) \text { on } Y_{1,2} .
$$

(c) Fix $K \in \mathbb{N}$ and choose $J_{0}=: L$ for $K+2$ instead of K by Theorem 8 . Let $M \geq L$ and fix $k \in \mathbb{N}$ with

$$
k \geq \max \left(1 / \delta_{0},(K+2)^{2}, 1 /\left(A_{K}-A_{L}\right)\right)
$$

where δ_{0} is chosen for $J:=M+2$ by Theorem 8 . Then for $l \geq k+(M+2)^{2}$ there is a continuous linear operator

$$
S: C_{\Delta}\left(Y_{1}\right) \longrightarrow C B_{\Delta}(Y), Y:=Z_{K}(k+2) \cup Z_{M}(5 l),
$$

such that

$$
\begin{equation*}
P(D) S(f)=f \text { on } Y \text { for } f \in C_{\Delta}\left(Y_{1}\right) \tag{29}
\end{equation*}
$$

Proof. Let $W:=Z_{K+2,1 / k} \cup Z_{M+2,1 /(3 l)}$. Since

$$
Y_{1} \supset Z_{L, 1 / k} \cup Z_{2(M+2), 1 /(3 l)}
$$

the mapping

$$
P(D)^{-1}: C_{\Delta}\left(Y_{1}\right) \longrightarrow C_{\Delta}(W) / N_{P}(W)
$$

is defined, linear and continuous by Theorem 8 and the closed graph theorem.
For an open set Y in \mathbb{R}^{n+1} let

$$
\left(L_{2}\right)_{\Delta}(Y):=L_{2}(Y) \cap C_{\Delta}(Y)
$$

$\left(L_{2}\right)_{\Delta}(Y)$ is a Hilbert space and

$$
\left(L_{2}\right)_{P}(Y):=\left(L_{2}\right)_{\Delta}(Y) \cap \operatorname{ker}(P(D))
$$

is a closed subspace. By the choice of k and l ,

$$
Y_{2}:=Z_{K+1}(k+1) \cup Z_{M+1}(4 l) \subset \subset \operatorname{int}(W)
$$

and the restriction defines a continuous linear mapping

$$
J_{1}: C_{\Delta}(W) / N_{P}(W) \longrightarrow\left(L_{2}\right)_{\Delta}\left(Y_{2}\right) /\left(L_{2}\right)_{P}\left(Y_{2}\right)
$$

Let

$$
\Pi:\left(L_{2}\right)_{\Delta}\left(Y_{2}\right) /\left(L_{2}\right)_{P}\left(Y_{2}\right) \longrightarrow\left(\left(L_{2}\right)_{P}\left(Y_{2}\right)\right)^{\perp}
$$

be the canonical topological isomorphism. Since

$$
Y=Z_{K}(k+2) \cup Z_{M}(5 l) \subset \subset Y_{2}
$$

the restriction

$$
J_{2}:\left(\left(L_{2}\right)_{P}\left(Y_{2}\right)\right)^{\perp} \longrightarrow C B_{\Delta}(Y)
$$

is defined and continuous. Then

$$
S:=J_{2} \circ \Pi \circ J_{1} \circ P(D)^{-1}: C_{\Delta}\left(Y_{1}\right) \longrightarrow C B_{\Delta}(Y)
$$

is defined, linear and continuous and satisfies (29).
(d) Since

$$
Z_{K}(k+2) \subset Y_{1,1} \text { and } Z_{M}(5 l) \subset Y_{1,2}
$$

by the choice of k, we may use the operators constructed in b) and (c) to define

$$
T=\left(T_{1}, T_{2}\right): N B_{P}\left(Z_{L+1}(l)\right) \longrightarrow N B_{P}\left(Z_{K}(k)\right) \times N B_{P}\left(Z_{M}(5 l)\right)
$$

by

$$
T_{1}(f):=\left.\left(R_{1}(f)-S \circ \widetilde{R}(f)\right)\right|_{Z_{K}(k+2)}
$$

and

$$
T_{2}(f):=\left.\left(R_{2}(f)+S \circ \widetilde{R}(f)\right)\right|_{Z_{M}(5 l)}
$$

for $f \in N B_{P}\left(Z_{L+1}(l)\right)$. Notice that $P(D) T=0$ by the definition of \widetilde{R} in b) and by (29). By (a) it is clear that

$$
T_{1}(f)+T_{2}(f)=f \text { on } Z_{K}(k+2) \cap Z_{M}(5 l)
$$

if $f \in N B_{P}\left(Z_{L+1}(l)\right)$. This proves $\left(P_{3}\right)$ since T is continuous.
Using the remarks at the end of section 1 , the proof of Theorem 1 is now completed by the following

12 Theorem. Let $P(D)$ be surjective on $A\left(H_{N}\right)$. Then

$$
P(D) C_{\Delta}(Z)=C_{\Delta}(Z)
$$

Proof. The sequence of projective spectra (5) is exact by Corollary 9. N_{P}^{Z} is a reduced projective spectrum satisfying property $\left(P_{3}\right)$ by Corollary 10 and Theorem 11. The claim thus follows from Proposition 2 and Theorem 3.

References

[1] A. Andreotti, M. Nacinovich: Analytic Convexity and the Principle of PhragmenLindelöf, Scuola Norm. Sup., Pisa 1980.
[2] G. Bengel: Das Weylsche Lemma in der Theorie der Hyperfunktionen, Math. Z., 96, (1967), 373-392.
[3] R.W. Braun: The surjectivity of a constant coefficient homogeneous differential operator on the real analytic functions and the geometry of its symbol, Ann. Inst. Fourier, 45, (1995), 223-249.
[4] R.W. Braun, R. Meise, B.A. Taylor: The geometry of analytic varieties satisfying the local Phragmen-Lindelöf condition and a geometric characterization of the partial differential operators that are surjective on $A\left(\mathbb{R}^{4}\right)$, Transactions AMS, to appear.
[5] R.W. Braun, R. Meise, B.A. Taylor: Surjectivity of constant coefficient partial differential operators on $A\left(\mathbb{R}^{4}\right)$ and Whitney's C_{4}-cone, Bull. Soc. Roy. Liege, 70, (2001), 195-206.
[6] R.W. Braun and D. Vogt: A sufficient condition for $\operatorname{Proj}^{1} \mathfrak{X}=0$, Michigan Math. J., 44, (1997), 149-156.
[7] A. Grothendieck: Sur les espaces des solutions d'une classe générale d'équations aux derivées partielles, J. Analyse Math., 2, (1952/53), 243-280.
[8] L. HÖrmander: On the existence of real analytic solutions of partial differential equations with constant coefficients, Invent. Math., 21, (1973), 151-183.
[9] L. Hörmander: The Analysis of Linear Partial Differential Operators I+II, Grundlehren Math. Wiss. Bde. 256+257, Springer, Berlin/Heidelberg/New York 1983.
[10] A. Kaneko: On the global existence of real analytic solutions of linear partial differential equations on unbounded domain, J. Fac. Sci. Tokyo, 32, (1985), 319-372.
[11] A. Kaneko: A sharp sufficient geometric condition for the existence of global real analytic solutions on a bounded domain, J. Math. Soc. Japan, 39, (1987), 163-170.
[12] T. Kawai: On the global existence of real analytic solutions of linear differential equations I, J. Math. Soc. Japan, 24, (1972), 481-517.
[13] M. Langenbruch: Localizations of partial differential operators and surjectivity on spaces of real analytic functions, Studia Math., 140, n. 1, (2000), 15-40.
[14] M. Langenbruch: Surjective partial differential operators on real analytic functions defined on convex open sets, Manuscr. Math., 103, (2000), 241-263.
[15] M. Langenbruch: Characterization of surjective partial differential operators on spaces of real analytic functions, Studia Math., 162(1), (2004), 53-96.
[16] M. Langenbruch: Inheritance of surjectivity for partial differential operators on spaces of real analytic functions, J. Math. Anal. Appl., 297, (2004), 696-719.
[17] F. Mantovi and S. Spagnolo: Funcionali analitici reali e funzioni armoniche, Ann. Sc. Norm. Sup. Pisa, Ser. III, (1964), 475-513.
[18] V.P. Palamodov: The projective limit functor in the category of linear topological spaces, Math. USSR-Sb., 4, (1968), 529-558.
[19] V.P. Palamodov: Homological methods in the theory of locally convex spaces, Russian Math. Surveys, 26, (1971), 1-64.
[20] H.G. Tillmann: Dualität in der Potentialtheorie, Port. Math., 13, (1954), 55-86.
[21] D. VogT: Topics on projective spectra of ($L B$)-spaces, In: T. Terzioglu, editor, Advances in the Theory of Frèchet-spaces, of NATO ASI Series C, 287, 11-27, Kluwer, 1989.
[22] J. Wengenroth: Derived Functors in Functional Analysis, LN in Math. 1810, Springer, Berlin/Heidelberg/New York 2003.
[23] G. Zampieri: Propagation of singularity and existence of real analytic solutions of locally hyperbolic equations, J. Fac. Sci. Univ. Tokyo Ser. IA Math., 31, (1984), 373-390.

