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1 Introduction

Since the pioneering papers of Kawai [12] and Hörmander [8], the basic
question if

P (D) is surjective on A(Ω) (1)

has been studied by many authors. Here P (D) is a partial differential operators
with constant coefficients, Ω ⊂ R

n is open and A(Ω) denotes the space of real
analytic functions on Ω. A by no means complete list of the corresponding papers
is contained in the references (see Andreotti and Nacinovich [1], Kaneko [10,11],
Zampieri [23], Braun [3], Braun, Meise and Taylor [4, 5] and Langenbruch [13–
16], see also the references given in Langenbruch [15]).

For convex Ω ⊂ R
n, a characterization of (1) was obtained by Hörmander [8]

using a Phragmen-Lindelöf type condition valid on the complex characteristic
variety of the principal part Pm of P . For general open sets Ω, a different
characterization by means of locally regular elementary solutions was given in
Langenbruch [15].

In the present paper, we will concentrate on the case of half spaces

Ω := HN := {x ∈ R
n | 〈x,N〉 > 0 }, 0 6= N ∈ R

n.
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Our main result is the following (see Theorem 1 below):
P (D) is surjective on A(HN ) if and only if P (D) is surjective on A(Rn) and
P (D) has a hyperfunction elementary solution E defined on R

n such that E is
real analytic on HN .

This improves the corresponding results of Langenbruch [15] and Zampie-
ri [23] considerably.

Besides the paper [8] of Hörmander, the present paper relies on the results
of Langenbruch [15,16], and the main part of our proof consists in showing that
P (D) has an elementary solution as above if P (D) is surjective on A(HN ).

The paper is organized as follows: In the first section, our main result is
stated in Theorem 1 and its proof is reduced to showing that

P (D)C∆(Z) = C∆(Z) (2)

if P (D) is surjective on A(HN ). Here

Z := (Rn× ]0,∞[ ) ∪ (HN × {0})

and C∆(Z) are the harmonic germs defined near Z.
Since C∆(Z) in a natural way is the projective limit of a projective spectrum

of (DFS)-spaces, the proof of (2) relies on the theory of projective spectra of
linear spaces and the corresponding Projk-functors which were developed by
Palamodov [18,19] (see also Vogt [21] and the recent book of Wengenroth [22]).

The corresponding notions and the key result from Langenbruch [15, Theo-
rem 1.4] (see Theorem 3) are recalled in section 2.

In the last section, the proof of our main theorem is completed using a precise
result of Langenbruch [16] on the solvability of partial differential equations for
harmonic germs defined near non convex sets (see Theorem 6).

2 The main result

In this section, we will introduce some useful notation and formulate the
main result of this paper in Theorem 1. Using the results of Hörmander [8] and
Langenbruch [15,16], the proof of the main theorem is then reduced to the proof
of the surjectivity of P (D) on a certain space of harmonic germs (see (4) below).

In the present paper, n ∈ N always is at least 2 and Ω is an open set in Rn.
The real analytic functions on Ω are denoted by A(Ω). P (D) is always a partial
differential operator in n variables with constant coefficients. The degree of P
is m and Pm denotes the principal part of P .

Our proofs will be based on harmonic germs in (n + 1) variables. Corre-
spondingly, we will use the following notations: A point in R

n+1 is written as
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(x, y) ∈ R
n × R. ∆ =

∑
k≤n(∂/∂xk)2 + (∂/∂y)2 denotes the Laplace operator

on R
n+1. The harmonic germs near a set S ⊂ R

n+1 are denoted by C∆(S). Of
course, P (D) = P (Dx) also operates on the harmonic germs, and in fact we will
solve the equation P (Dx)f = g for harmonic germs f and g rather than for hy-
perfunctions f and g, that is, we will use the following well known representation
of hyperfunctions on Ω

B(Ω) := C̃∆(Ω× (R \ {0}))/C̃∆(Ω× R) (3)

(see Bengel [2] and Hörmander [9, Chapter IX]). Here C̃∆(V ) is the space of
harmonic functions on V which are even w.r.t. y.

Let Sn denote the unit sphere in R
n. The half space defined by N ∈ Sn is

denoted by

HN := {x ∈ R
n | 〈x,N〉 > 0 }.

For ξ ∈ R
n let

Uk(ξ) := {x ∈ R
n | ‖x− ξ‖ < k }, Uk := Uk(0)

and

Uk,+ := Uk ∩ {x ∈ R
n | 〈x,N〉 > 1/k }.

The main result of this paper is the following

1 Theorem. The following statements are equivalent:

(a) P (D) is surjective on A(HN ).

(b) P (D) is surjective on A(Rn) and for any j ∈ N there are δ < 0 and a
hyperfunction F defined on {x ∈ R

n | 〈x,N〉 > δ } such that

P (D)F = δ on {x ∈ R
n | 〈x,N〉 > δ } and F |Uj,+∈ A(Uj,+).

(c) P (D) is surjective on A(Rn) and P (D) has an elementary solution E ∈
B(Rn) such that E |HN

∈ A(HN ).

(d) P (D) is surjective on A(Rn) and for any g ∈ B(Rn) with g |HN
∈ A(HN )

there is f ∈ B(Rn) with f |HN
∈ A(HN ) such that P (D)f = g on R

n.

The first characterization of surjective partial differential operators on A(Ω)
for general open sets Ω ⊂ R

n has been given in Langenbruch [15]. For convex Ω, a
different characterization has been given in the pioneering work of Hörmander [8]
by means of a suitable Phragmen-Lindelöf type condition valid on the complex
zero variety of the principal part Pm of P . Hence, the statements in Theorem 1
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are also equivalent to the corresponding statements for Pm instead of P , and
also to the statements for −N instead of N , respectively.

The main feature of Theorem 1 is the implication ”(a) =⇒ (d)”. In fact, the
implications ”(d) =⇒ (c) =⇒ (b)” are obvious, and the equivalence of (a) and
(b) easily follows from the results of Hörmander [8] and Langenbruch [15].

Thus, Theorem 1 will be proved if we can show that (a) implies (d). Taking
into account the definition of hyperfunctions in (3) it is sufficient to show that

P (D)C∆(Z) = C∆(Z) (4)

if P (D) is surjective on A(HN ), where

Z := (Rn× ]0,∞[ ) ∪ (HN × {0}) .

Indeed, a hyperfunction g on R
n is defined by a harmonic function g+ defined on

R
n× ]0,∞[. Since g|HN

is real analytic, g+ can be extended to a harmonic germ
near Z. If P (D)f+ = g+ for some harmonic germ f+ defined near Z then f+

defines a hyperfunction f which is analytic on HN and which solves P (D)f = g.

3 Surjectivity via the Proj1-functor

As was noticed in (4), we have to prove that P (D) is surjective on C∆(Z)
for Z := (Rn× ]0,∞[ ) ∪ (HN × {0}). The natural topology of this space is
rather complicated and can be defined as follows: Using a strictly decreasing
zero sequence AK > 0 (to be chosen later, see the remarks before Theorem 8
below) we set

ZK := (VK × [AK ,K]) ∪ (VK,+ × [0,K])

where Vk and Vk,+ denote the closure of Uk and Uk,+, respectively. Then

C∆(Z) = lim
←K

C∆(ZK),

that is, C∆(Z) is the projective limit of the projective spectrum

CZ
∆ := {C∆(ZK), RK

J }

of (DFS)-spaces where the linking maps

RK
J : C∆(ZJ)→ C∆(ZK) for J ≥ K

are defined by restriction. Notice that the topology of C∆(Z) is independent of
the sequence AK , while the proper choice of AK is important for the proof of
the needed properties of the projective spectrum CZ

∆ (see Theorem 3 below).
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Since the topology of C∆(Z) is so complicated the proof of (4) will rely on
the theory of projective spectra of linear spaces and the corresponding Projk-
functors which were developed by Palamodov [18,19] (see also Vogt [21] and the
recent book of Wengenroth [22]). We will shortly introduce the corresponding
notions and facts which we need. The reader is referred to these papers for
further information.

For S ⊂ R
n+1 let

NP (S) := {C∆(S) | P (Dx)f = 0 }

and let
NZ

P := {NP (ZK), RK
J }

be the projective spectrum of the kernels of P (Dx) in C∆(ZK). We thus have
the short sequence of projective spectra

0 −→ NZ
P −→ CZ

∆
P (D)−−−→ CZ

∆ −→ 0. (5)

The sequence (5) of projective spectra is called exact if for any K ∈ N there is
J ≥ K such that

P (D)C∆(ZK) ⊃ RK
J (C∆(ZJ)). (6)

We now have the following key result which is essentially Theorem 5.1 of
Vogt [21] in our concrete situation (see also Langenbruch [15, Proposition 1.1]
for a proof which can easily be transferred to the present situation).

2 Proposition. Let the sequence of projective spectra (5) be exact. Then

P (D)C∆(Z) = C∆(Z)

if (and only if) Proj1(NZ
P ) = 0.

The reader is referred to Palamodov [18, 19], Vogt [21] or Wengenroth [22]
for the definition of the Proj1-functor. We do not need the definition here since
we will only use explicit criteria from Langenbruch [15] for the vanishing of the
Proj1-functor of projective (DFS)-spectra (see Theorem 3 below). We shortly
introduce the corresponding notions:

Let X = {XK , R
K
J } be a projective (DFS)-spectrum, that is, a projective

spectrum of (DFS)-spaces XK = limk−→ XK,k with Banach spaces XK,k and
compact inclusion mappings from XK,k into XK,k+1. Let BK,k be the unit ball
in XK,k. For X := lim←−K XK let

RK : X −→ XK

be the canonical mapping.
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To state our sufficient condition for Proj1(X) = 0 from Langenbruch [15]
we need two further notions: Firstly, we will use condition (P3) defined for the
spectrum X as follows (see Langenbruch [15, section 1]):

∀K ∃L ∀M ∃k ∀l ∃m,C : RK
L (BL,l) ⊂ C

(
RK

M (BM,m) +BK,k

)
. (7)

Secondly, we will need, that X is reduced in the sense of Braun and Vogt [6, p.
150], that is,

∀K ∃L ∀M ≥ L : the closure of RK
M (XM ) in XK contains RK

L (XL). (8)

In many concrete situations the following theorem allows to check if
Proj1(X) = 0:

3 Theorem (Langenbruch [15, Theorem 1.4]). Proj1(X) = 0 if X is a
reduced projective (DFS)-spectrum satisfying property (P3).

4 The proofs

In this section the proof of our main result Theorem 1 is completed. From
the discussion at the end of section 1, Proposition 2 and Theorem 3 we know
that we have to show that the sequence of projective spectra (5) is exact (which
roughly means that the equation P (D)f = g can be solved semiglobally in
C∆(Z)) and that the kernel spectrum is reduced (which is a density property)
and satisfies condition (P3) (which is a decomposition with bounds in the kernel
spectrum). For this, we need the following two basic Lemmata (see Lemmata
1.1 and 1.2 in Langenbruch [16]). For compact sets Q ⊂ S ⊂ R

n+1 let

RQ
S : C∆(S) −→ C∆(Q)

be the canonical mapping defined by restriction.

4 Lemma. Let Q ⊂ S ⊂ R
n+1 be compact sets such that

R
n+1\Q does not have a bounded component. (9)

(and the same for S). Then

P (D)C∆(Q) ⊃ RQ
S (C∆(S))

if for any bounded set B in C∆(Q)′b the set

B̃ := {µ ∈ C∆(Q)′ | P (−D)µ ∈ B }

is bounded in C∆(S)′b.
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5 Lemma. Let Q ⊂ R
n+1 be compact with (9). Then for any bounded set

B in C∆(Q)′b the set

B̃ := {µ ∈ C∆(Q)′ | P (−D)µ ∈ B }

is bounded in C∆(conv(Q))′b.

To apply Lemma 4 we need an appropriate representation for C∆(Q)′b. This
is provided by the Grothendieck-Tillmann duality: Let

G(x, y) := −|(x, y)|1−n/((n − 1)cn+1) (10)

be the canonical even elementary solution of the Laplacian (see Hörmander [9],
and recall that (n+ 1) ≥ 3). For Q ⊂ R

n+1 compact let

C∆,0(Rn+1\Q) := { f ∈ C∆(Rn+1\Q) | lim
ξ→∞

f(ξ) = 0 }

endowed with the topology of C(Rn+1\Q). C∆,0(Rn+1\Q) is a Fréchet space.
Let

κ(µ)(x, y) := uµ(x, y) := 〈µ(s,t), G(s− x, t− y)〉 for µ ∈ C∆(Q)′b .

Then we have the topological isomorphisms

κ : C∆(Q)′b −→ C∆,0(Rn+1\Q) ∼= C∆(Rn+1\Q)/C∆(Rn+1) (11)

by the Grothendieck-Tillmann duality (Grothendieck [7, Theorem 4], Manto-
vani, Spagnolo [17], Tillmann [20, Satz 6]).

We will also use the precise surjectivity results for partial differential op-
erators on harmonic germs from Langenbruch [16], so we have to recall some
notions introduced in that paper: For a compact X ⊂ Ω let

S(X,Ω) := { ξ ∈ R
n | ξ +X ⊂ Ω }

and let S0(X,Ω) be the component of 0 in S(X,Ω). The Ω-hull XΩ of a compact
X ⊂ Ω is defined by

XΩ := {x ∈ R
n | x+ S0(X,Ω) ⊂ Ω } =

⋂

ξ∈S0(X,Ω)

(Ω− ξ).

Let

J(c) := [−c, c ] for c > 0.
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6 Theorem. Let P (D) be surjective on A(Ω). Then for any compact X ⊂ Ω
there is C > 0 such that for any ε > 0 there is δ0 > 0 such that for any
0 < δ ≤ δ0, any compact convex Y ⊂ Ω with Y ⊃ X̃ε := (XΩ + Vε) ∩ VC and
any 0 < γ < δ there is 0 < β < γ such that

P (D)C∆

(
(X × J(δ)) ∪ (Y × J(β))

)

⊃ C∆

(
(X̃ε × J(δ)) ∪ (Y × J(γ))

)
|(X×J(δ)) ∪ (Y×J(β)) .

Proof. This is Langenbruch [16, Theorem 2.3.a and d] in the special case
where η = 0 and Y is convex. QED

We first apply the preceding result for Ω := HN and for Ω := R
n, respec-

tively.

7 Corollary. Let P (D) be surjective on A(HN ).

(a) For any L ∈ N there is δL > 0 such that for any η > 0 there is E ∈
C∆

(
(VL,+ × [−δL,∞[ ) ∪ (VL × [η,∞[ )

)
such that

P (D)E = G near (VL,+ × [−δL,∞ [) ∪ (VL × [η,∞[ ).

(b) For any L ∈ N there are L0 ∈ N and dL > 0 such that for any M ∈ N,
any ξ ∈ R

n with M ≥ |ξ| ≥ L0 and any η > 0 there is Eξ ∈ C∆

(
(VL ×

[−dL,∞[) ∪ (VM × [η,∞[)
)

such that

P (D)Eξ = G(· − ξ, ·) near (VL × [−dL,∞[) ∪ (VM × [η,∞[ ).

Proof. (a) (I) Let Ω := HN and

X := CN + {x ∈ R
n | 〈x,N〉 ≥ A, |x| ≤ B }

for A,B,C > 0. Then

S0(X,HN ) = S(X,HN ) = {x ∈ R
n | 〈x,N〉 > −A− C }

and

XHN
= {x ∈ R

n | 〈x,N〉 ≥ A+ C } (12)

if B ≥ A, since N ∈ Sn.

(II) We now fix L ∈ N and apply Theorem 6 for Ω := HN and

X := 2LN + VL,+ = 2LN + {x ∈ R
n | 〈x,N〉 ≥ 1/L, |x| ≤ L }
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and get C > 0 from Theorem 6. Using Theorem 6 for ε = 1/(2L) and (12) we
get

X̃1/(2L) = (XHN
+ V1/(2L)) ∩ VC

=
(
{x ∈ R

n | 〈x,N〉 ≥ 2L+ 1/L } + V1/(2L)

)
∩ VC ⊂ 2LN + VJ0,+

for some J0 ∈ N. From Theorem 6 we thus get δ0 > 0 such that (with Y :=
2LN +W for W := conv(VL, VJ0,+) and 0 < γ := η/2 ≤ δ0/4)

P (D)C∆

(
2LN + [(VL,+ × J(δ0)) ∪ (W × J(β))]

)

⊃ C∆

(
2LN + [(VJ0,+ × J(δ0))

∪ (W × J(η/2))]
)
|2LN+[(VL,+×J(δ0))∪ (W×J(β))]

for some β > 0. Since

G(· − 2LN, ·+ η) ∈ C∆

(
2LN + [(VJ0,+ × J(δ0)) ∪ (W × J(η/2))]

)

we may thus find

E1 ∈ C∆

(
2LN + [(VL,+ × J(δ0)) ∪ (W × J(β))]

)

such that

P (D)E1 = G(· − 2LN, ·+ η) near 2LN + [(VL,+ × J(δ0)) ∪ (W × J(β))].

We now shift the sets and the functions by (−2LN, η) and restrict the functions
to get

E2 ∈ C∆

(
(VL,+ × (η + J(δ0))) ∪ (VL × (η + J(β)))

)

such that

P (D)E2 = G near (VL,+ × (η + J(δ0))) ∪ (VL × (η + J(β))). (13)

(III) Choose ϕ ∈ C∞(R) such that ϕ = 1 near ] − ∞, η] and ϕ = 0 near
[η + β/2,∞[. The function ∆(ϕ(y)E2(x, y)) may be trivially extended (i.e. by
the value 0) to an infinitely differentiable function h̃ defined on UL × R. By
the fundamental principle of Ehrenpreis-Palamodov we can find an infinitely
differentiable function h such that

P (D)h = (1− ϕ)G and ∆h = −h̃ on UL ×R. (14)

Indeed, UL × R is convex, and the relation

P (D)(−h̃) = ∆
(
(1− ϕ)G

)
(15)
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is satisfied. This is trivial on UL× ] − ∞, η[ and UL× ]η + 3β/4,∞[ while on
UL× ]η − β, η + β[ we get by (13)

P (D)(−h̃) = P (Dx)∆(−ϕE2) = ∆(−ϕP (Dx)E2)

= ∆(−ϕG) = ∆((1− ϕ)G). (16)

Set

E := ϕE2 + h.

By trivial extension of ϕE2, E is then defined and harmonic on (UL,+× ] −
2δL,∞[) ∪ (UL× ]η,∞[) for δL := δ0/4 since η ≤ δ0/2. Moreover, P (D)E = G
by (14). This shows the claim in (a) for L − 1 and 2η instead of L and η,
respectively.

(b) Since P (D) is surjective on A(HN ), P (D) is also surjective on A(Rn) by
Hörmander [8]. We may therefore apply Theorem 6 for Ω = R

n, X = VL, ε = 1
and Y := VM for M ≥ L0 := C + 1. For ξ ∈ R

n with M ≥ |ξ| ≥ L0 and η > 0
we thus obtain (with γ := η/2)

E1 ∈ C∆

(
(VL × J(δ0)) ∪ (VM × J(β))

)

such that

P (D)E1 = G(· − ξ, ·+ η) near (VL × J(δ0)) ∪ (VM × J(β)).

For E2 := E1(·, · − η) we thus get

P (D)E2 = G(· − ξ, ·) near (VL × (η + J(δ0))) ∪ (VM × (η + J(β))).

The proof of b) is now completed as in (a.III) above. QED

Let AK > 0 be a strictly decreasing zero sequence such that

AK ≤ δ2K+1/2 (17)

for δ2K+1 from Corollary 7(a) and let

ZK,δ := (VK × [AK − δ,K + δ]) ∪ (VK,+ × [−δ,K + δ]).

8 Theorem. Let P (D) be surjective on A(HN ). Then for any K ∈ N there
is J0 > K such that for any J ≥ J0 there is δ0 > 0 such that for any 0 < δ ≤ δ0
and any 0 < γ < δ

P (D)C∆

(
ZK,δ ∪ ZJ,γ

)
⊃ C∆

(
ZJ0,δ ∪ Z2J,γ

)
|ZK,δ∪ZJ,γ

.
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Proof. (a) We will use Lemma 4 for S := ZJ0,δ∪Z2J,γ and Q := ZK,δ∪ZJ,γ.
Let B be bounded in C∆(Q)′b and let

B̃ := {µ ∈ C∆(Q)′ | P (−D)µ ∈ B }.

By Lemma 5, B̃ is bounded in

C∆

(
VJ × [−δ, J + δ]

)′
b
. (18)

(b) Let J ≥ J0 ≥ 2K. Fix η > 0 and let

(x, y) ∈M1 := { (x, y) ∈ R
n+1 | y ∈ [−1, A2J −γ−η], 〈x,N〉 ≤ 1

2J
, |x| ≤ J+1 }.

Let 0 < δ0 ≤ min(AJ/2, AK −AJ ) and choose

E ∈ C∆

(
(V2J+1,+ × [−2AJ ,∞[ ) ∪ (V2J+1 × [η,∞[ )

)

by Corollary 7(a) for L := 2J + 1 (recall that AJ ≤ δ2J+1/2 by (17)). Since

Q−M1 = (ZK,δ ∪ZJ,γ)−M1 ⊂ (V2J+1,+ × [−2AJ ,∞[) ∪ (V2J+1 × [η,∞[))

we get by Corollary 7(a)

uµ(x, y) = 〈µ(s,t), G(s − x, t− y)〉 = 〈µ(s,t), P (D)E(s − x, t− y)〉
= 〈P (−D)µ(s,t), E(s − x, t− y)〉 for (x, y) ∈M1.

Since

{E(· − x, · − y) | (x, y) ∈M1 }
is bounded in C∆(Q) and B is bounded in C∆(Q)′b, this implies that

{uµ | µ ∈ B̃ } is uniformly bounded on M1. (19)

Let

M2 := { (x, y) ∈ R
n+1 | y ∈ [−1,−γ − η],

1

2J
≤ 〈x,N〉 ≤ 1

J0
, |x| ≤ J + 1 }.

Then

Q−M2 ⊂ (V2J+1,+ × [−2AJ ,∞[ ) ∪ (V2J+1 × [η,∞[ ))

and we conclude as above that

{uµ | µ ∈ B̃ } is uniformly bounded on M2. (20)
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(c) Let 0 < δ0 ≤ dK+1 for dK+1 from Corollary 7(b). Let J0 ≥ L0 + 1, where
L0 is chosen for L := K + 1 by Corollary 7(b) and set

R := { ξ ∈ R
n | J0 ≤ |ξ| ≤ J + 1 }.

Since R is compact we may choose ξ1, . . . , ξr ∈ R such that

r⋃

j=1

U1(ξj) ⊃ R.

Fix η > 0 and choose

Eξj
∈ C∆

(
(VK+1 × [−dK+1,∞[ ) ∪ (VJ+1 × [η,∞[ )

)

by Corollary 7(b). Since

Q− (V1 × [−1,−γ − η]) ⊂ (VK+1 × [−dK+1,∞[ ) ∪ (VJ+1 × [η,∞[ ),

we get for x ∈ V1, y ∈ [−1,−γ − η] and j ≤ r

uµ(ξj + x, y) = 〈µ(s,t), G(s − ξj − x, t− y)〉
= 〈µ(s,t), P (D)Eξj

(s− x, t− y)〉 = 〈P (−D)µ(s,t), Eξj
(s− x, t− y)〉.

Since

{Eξj
(· − x, · − y) | j ≤ r, x ∈ V1, y ∈ [−1,−γ − η] }

is bounded in C∆(Q), this implies as above that

{uµ | µ ∈ B̃ } is uniformly bounded on M3 (21)

for M3 := (VJ+1 \ UJ0)× [−1,−γ − η].

(d) The claim follows from Lemma 4 by (18)-(21) and (11). QED

9 Corollary. Let P (D) be surjective on A(HN ). Then the sequence of pro-
jective spectra (5) is exact.

Proof. To check (6) we fix K ∈ N and apply Theorem 8 for K + 1 instead
of K and J := J0 and set J̃ := 2J0. If f ∈ C∆(Z eJ), then f ∈ C∆(Z2J0,δ) for
some 0 < δ < δ0 and by Theorem 8 there is g ∈ C∆(ZK+1,δ) such that

P (D)g = f |ZK+1,δ
.

Since ZK+1,δ is a neighborhood of ZK we can identify g with an element gZK
∈

C∆(ZK) and P (D)gZK
= RK

eJ
(f). QED
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10 Corollary. Let P (D) be surjective on A(HN ). Then the projective spec-
trum NZ

P is reduced.

Proof. (a) To check (8), we fix ν ∈ C∆(ZK)′ such that ν |NP (ZM )= 0 for
some M ≥ 2K, and we will show that ν |NP (Z2K )= 0. In part (a.II.i) of the proof
of Langenbruch [15, Proposition 4.3] we already showed that

P (−D)µ = ν for some µ ∈ C∆(Rn+1)′. (22)

By Lemma 5 we have
µ ∈ C∆(VK × [0,K])′ (23)

since conv(ZK) ⊂ VK × [0,K].
Since C∆(Rn+1) is dense in C∆(VK × [0,K]), (22) implies that

〈ν, f〉 = 〈P (−D)µ, f〉 = 〈µ,P (D)f〉 if f ∈ C∆(VK × [0,K]) (24)

hence
〈ν, f〉 = 0 if f ∈ NP (VK × [0,K]) (25)

(b) By Corollary 7(a) applied to L := 2K + 1 there are δ2K+1 > 0 and
E ∈ C∆

(
(V2K+1,+ × [−δ2K+1,∞[) ∪ (V2K+1 × [η,∞[)

)
such that

P (D)E = G near (V2K+1,+ × [−δ2K+1,∞[ ) ∪ (V2K+1 × [η,∞[ ) . (26)

On the other hand, by the fundamental principle of Ehrenpreis-Palamodov there
is F ∈ C∆(Rn× ]0,∞[ ) such that

P (D)F = G on R
n× ]0,∞[ . (27)

For x ∈ UK+1 and y ∈ ]− 2,−1[ we therefore have

P (D)F (· − x, · − y) = G(· − x, · − y) = P (D)E(· − x, · − y) near VK × [0,K].

Hence,
F (· − x, · − y) = E(· − x, · − y) + hx,y = 0

for some hx,y ∈ NP

(
VK × [0,K]

)
. Since therefore ν(hx,y) = 0 by (25), we get

for x ∈ UK+1 and y ∈ ]− 2,−1[

uµ(x, y) = 〈µ(s,t), G(s − x, t− y)〉 = 〈µ(s,t), P (Ds)F (s− x, t− y)〉
= 〈P (−D)µ(s,t), F (s− x, t− y)〉 = 〈ν(s,t), F (s − x, t− y)〉 (28)

= 〈ν(s,t), E(s − x, t− y)〉 =: v(x, y),

where (28) follows from (24). v is harmonic on

M1 := { (x, y) ∈ R
n+1 | y ∈ ]− 2, A2K [, |x| < K + 1, 〈x,N〉 < 1/(2K) }
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since by (17)

ZK −M1 ⊂ (V2K+1,+ × [−δ2K+1,∞[ ) ∪ (V2K+1 × [η,∞[ )

if 0 < η < AK −A2K . Using also (23) we have thus shown that µ ∈ C∆(Z2K)′.
Since C∆(Rn+1) is dense in C∆(Z2K) we have P (−D)µ = ν also in C∆(Z2K)′.
Thus

〈ν, f〉 = 〈P (−D)µ, f〉 = 〈µ,P (D)f〉 = 0 for f ∈ NP (Z2K).

QED

We finally must check that the projective spectrum NZ
P satisfies the property

(P3) (see (7)). For this we need to specify the (DFS)-structure of the step spaces
NP (ZK): For K,k, c > 0 let

Ũc := { ξ ∈ R
n+1 | |ξ| < c } and ZK(k) := ZK + Ũ1/k.

For an open set W ⊂ R
n+1 let

CB∆(W ) := { f ∈ C∆(W ) | f is bounded on W }

and
NBP (W ) := NP (W ) ∩ CB∆(W ).

Then the (DFS)-structure of NP (ZK) is given by

NP (ZK) = lim
k→∞

NBP (ZK(k)).

11 Theorem. Let P (D) be surjective on A(HN ).Then the projective spec-
trum NZ

P satisfies property (P3).

Proof. The proof is similar as for Langenbruch [15, Theorem 4.5]. It is
based on Theorem 8: We will first decompose functions in NP (ZL+1(l)) as har-
monic functions (see (a) below) and then use Theorem 8 (see (c)) to obtain a
decomposition as harmonic zero solutions of P (D) (in (d)).

In the proof below we will often use the notation from section 2.
(a) For any L, l ∈ N there is a continuous linear operator

R = (R1, R2) : CB∆(ZL+1(l)) −→ CB∆(Y1,1)× CB∆(Y1,2)

such that R1(f) +R2(f) = f on int(ZL+1,2l). Here

Y1,1 := UL+1,+× ]−∞, 0[ ∪ int(ZL+1,2l)

and
Y1,2 := R

n× ]− 1/(2l),∞[ .
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Proof. Choose ϕ ∈ D(ZL+1(l)) with ϕ = 1 near ZL+1,2l.
For f ∈ CB∆(ZL+1(l)), ϕf can be considered as a function on Y1,2, and

f̃ := ∆(ϕf) |Y1,2

defines a function f1 on R
n+1 by trivial extension (i.e. by setting f1 ≡ 0 outside

Y1,2). f1 is bounded and has compact support. Thus,

R1(f) := G ∗ f1 |Y1,1

and

R2(f) := (ϕf −G ∗ f1) |Y1,2

have the required properties. QED

(b) For f ∈ NBP (ZL+1(l)) we have by (a)

P (D)R1(f) = −P (D)R2(f) on Y1,1 ∩ Y1,2 = int(ZL+1,2l).

Thus, a continuous and linear operator

R̃ : NBP (ZL+1(l)) −→ C∆(Y1),

Y1 := Y1,1 ∪ Y1,2 = (Rn×]− 1(2l),∞[) ∪ (UL+1,+ × R),

is defined by

R̃(f) := P (D)R1(f) on Y1,1

and

R̃(f) := −P (D)R2(f) on Y1,2.

(c) Fix K ∈ N and choose J0 =: L for K + 2 instead of K by Theorem 8.
Let M ≥ L and fix k ∈ N with

k ≥ max
(
1/δ0, (K + 2)2, 1/(AK −AL)

)
,

where δ0 is chosen for J := M + 2 by Theorem 8. Then for l ≥ k + (M + 2)2

there is a continuous linear operator

S : C∆

(
Y1) −→ CB∆(Y ), Y := ZK(k + 2) ∪ ZM (5l),

such that

P (D)S(f) = f on Y for f ∈ C∆(Y1) (29)
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Proof. Let W := ZK+2,1/k ∪ ZM+2,1/(3l). Since

Y1 ⊃ ZL,1/k ∪ Z2(M+2),1/(3l),

the mapping

P (D)−1 : C∆(Y1) −→ C∆(W )/NP (W )

is defined, linear and continuous by Theorem 8 and the closed graph theorem.

For an open set Y in R
n+1 let

(L2)∆(Y ) := L2(Y ) ∩ C∆(Y ).

(L2)∆(Y ) is a Hilbert space and

(L2)P (Y ) := (L2)∆(Y ) ∩ ker(P (D))

is a closed subspace. By the choice of k and l,

Y2 := ZK+1(k + 1) ∪ ZM+1(4l) ⊂⊂ int(W ),

and the restriction defines a continuous linear mapping

J1 : C∆(W )/NP (W ) −→ (L2)∆(Y2)/(L2)P (Y2).

Let

Π : (L2)∆(Y2)/(L2)P (Y2) −→
(
(L2)P (Y2)

)⊥

be the canonical topological isomorphism. Since

Y = ZK(k + 2) ∪ ZM (5l) ⊂⊂ Y2,

the restriction

J2 :
(
(L2)P (Y2)

)⊥ −→ CB∆(Y )

is defined and continuous. Then

S := J2 ◦ Π ◦ J1 ◦ P (D)−1 : C∆(Y1) −→ CB∆(Y )

is defined, linear and continuous and satisfies (29). QED

(d) Since

ZK(k + 2) ⊂ Y1,1 and ZM (5l) ⊂ Y1,2

by the choice of k, we may use the operators constructed in b) and (c) to define

T = (T1, T2) : NBP

(
ZL+1(l)

)
−→ NBP

(
ZK(k)

)
×NBP

(
ZM (5l)

)
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by

T1(f) :=
(
R1(f)− S ◦ R̃(f)

)
|ZK(k+2)

and

T2(f) :=
(
R2(f) + S ◦ R̃(f)

)
|ZM (5l)

for f ∈ NBP (ZL+1(l)). Notice that P (D)T = 0 by the definition of R̃ in b) and
by (29). By (a) it is clear that

T1(f) + T2(f) = f on ZK(k + 2) ∩ ZM (5l)

if f ∈ NBP (ZL+1(l)). This proves (P3) since T is continuous. QED

Using the remarks at the end of section 1, the proof of Theorem 1 is now
completed by the following

12 Theorem. Let P (D) be surjective on A(HN ). Then

P (D)C∆(Z) = C∆(Z).

Proof. The sequence of projective spectra (5) is exact by Corollary 9. NZ
P

is a reduced projective spectrum satisfying property (P3) by Corollary 10 and
Theorem 11. The claim thus follows from Proposition 2 and Theorem 3. QED
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